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Abstract: Due to the lack of sufficient valid labeled data and severe channel fading, the recogni-
tion of various underwater acoustic (UWA) communication modulation types still faces significant
challenges. In this paper, we propose a lightweight UWA communication type recognition network
based on semi-supervised learning, named the SSL-LRN. In the SSL-LRN, a mean teacher–student
mechanism is developed to improve learning performance by averaging the weights of multiple mod-
els, thereby improving recognition accuracy for insufficiently labeled data. The SSL-LRN employs
techniques such as quantization and small convolutional kernels to reduce floating-point operations
(FLOPs), enabling its deployment on underwater mobile nodes. To mitigate the performance loss
caused by quantization, the SSL-LRN adopts a channel expansion module to optimize the neuron
distribution. It also employs an attention mechanism to enhance the recognition robustness for
frequency-selective-fading channels. Pool and lake experiments demonstrate that the framework
effectively recognizes most modulation types, achieving a more than 5% increase in recognition
accuracy at a 0 dB signal-to-noise ratio (SNRs) while reducing FLOPs by 84.9% compared with
baseline algorithms. Even with only 10% labeled data, the performance of the SSL-LRN approaches
that of the fully supervised LRN algorithm.

Keywords: underwater acoustic communication; modulation recognition; semi-supervised learning;
lightweight convolutional neural network

1. Introduction

Underwater acoustic (UWA) communication is the primary means of information
exchange among underwater devices and plays a critical role in the detection and identifi-
cation of underwater targets. Also, it is crucial for enhancing the efficiency of underwater
communication networks and improving the anti-interference capabilities of intelligent
UWA communication systems [1,2]. Traditional UWA communication modulation recogni-
tion schemes combine expert feature extraction with basic machine learning classification
techniques and are effective at recognizing specific modulation types [3,4]. For instance,
cyclostationary analysis combined with higher-order statistics is utilized to form compos-
ite features, and a support vector machine (SVM) is employed to effectively recognize
multiple phase-shift keying (MPSK) and multiple frequency-shift keying (MFSK) modula-
tion types [5]. However, these traditional methods often require accurate prior knowledge
about the signal characteristics and the environment, such as the channel impulse responses
(CIRs), which are difficult to estimate with known training sequences. Furthermore, the lim-
ited bandwidth available for UWA communications becomes increasingly congested with
signals from different modulation schemes, thereby reducing the network throughput
of the UWA sensor network. Due to the spatial and temporal variability of the UWA
channel, multipath effects, and fading, UWA communication signals experience significant
frequency-selective fading. Under such conditions, the recognition performance of tradi-
tional schemes based on the maximum likelihood criterion or expert features decreases
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at low signal-to-noise ratios (SNRs). This decline is particularly evident with modulation
types that are easily confused, such as QPSK and 8PSK [6].

Deep learning, leveraging its strengths in extracting high-dimensional features and
capturing non-linear characteristics, has demonstrated improved recognition accuracy in
fading channels such as UWA communication systems under low-SNR conditions [7–10]. For
instance, Zhang et al. [7] proposed a hybrid R&CNN algorithm that combines convolutional
neural networks (CNNs) and recurrent neural networks (RNNs) for recognizing UWA modu-
lation signals. Sea trial results indicate that this method significantly improves recognition
accuracy under low-SNR conditions. In addition to improvements in network structure,
some researchers have focused on signal preprocessing and denoising, achieving significant
results. Yao et al. [8] proposed a deep complex matched filter and a deep complex channel
equalizer based on neural networks to denoise received signals and reduce the impact of
multipath fading, thereby effectively enhancing recognition accuracy. Wang et al. [9] in-
troduced the IAFNET algorithm, which incorporates a noise elimination module and a
task-driven mechanism to extract features more effectively. Furthermore, to optimize
the separation of feature spaces, Gao et al. [10] proposed the UMCSCL algorithm, which
employs supervised contrastive learning, further improving recognition performance.

However, these algorithms cannot be deployed on underwater devices such as buoys
and unmanned underwater vehicles (UUVs), which have limited computational capabil-
ity and energy. The floating-point operations (FLOPs) of neural networks are a critical
indicator that determines whether deep learning algorithms can be successfully deployed
on devices with limited computational power and energy, such as underwater nodes. In
recent years, significant progress has been made in lightweight modulation recognition
research. For instance, input data can be transformed into different coordinate systems to
highlight significant features. Additionally, feature maps can be folded to reduce redundant
information. These techniques reduce complexity while enhancing the neural network’s
ability to extract features [11]. In the area of signal processing, Bai et al. [12] proposed an
adaptive denoising network based on convolution, which effectively filters noise in signals
and reduces computational complexity during network training. Additionally, to improve
network efficiency, Lyu et al. [13] introduced depthwise separable convolutions and con-
volutional attention modules in ResNet18, which reduces network size while improving
acoustic signal recognition performance. In terms of feature extraction, the SSKNET algo-
rithm is designed with special convolutional kernels to extract deeper semantic features
with fewer layers [14]. However, the performance of these lightweight algorithms may
decline compared to full-precision algorithms.

Deep learning models typically require a large number of high-quality training sam-
ples [15]. However, acquiring sufficient labeled data for UWA modulation recognition tasks
is challenging and costly [16]. To effectively utilize unlabeled data, Lee et al. [17] intro-
duced pseudo-label learning, which demonstrated excellent performance on the MNIST
dataset. To further improve the utilization of unlabeled data, many semi-supervised learn-
ing methods incorporate loss terms for unlabeled data. For instance, Dong et al. [18]
proposed the SSRCNN algorithm, which employs random perturbations of unlabeled
signals and is designed with a divergence-based loss function for unlabeled data, effec-
tively extracting information from these signals. Liu et al. [19] proposed the SEMIAMC
algorithm, which uses self-supervised contrastive learning to pre-train with unlabeled
data, achieving higher performance with limited labeled data. To further enhance feature
extraction, Guo et al. [20] used a short-time Fourier transform (STFT) to extract modu-
lation features and enhanced the model’s generalization ability through pseudo-labels,
consistency constraints, and entropy regularization, significantly improving modulation
recognition accuracy with minimal labeled data. Fu et al. [21] proposed the SS-SEI al-
gorithm, which is based on metric adversarial training and uses a regularized objective
function to extract semantic features, thereby achieving better recognition performance.
However, these algorithms are not specifically designed for UWA channels.
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In this paper, we propose a lightweight UWA modulation recognition algorithm,
lightweight recognition network (LRN), designed to identify common acoustic modulation
types such as MFSK, MPSK, multiple quadrature amplitude modulation (MQAM), and or-
thogonal frequency division multiplexing (OFDM). Traditional deep learning algorithms
typically use large convolutional kernels and have high computational complexity, making
them difficult to deploy on underwater nodes. The LRN algorithm uses numerous small
kernels instead of traditional large ones and uses quantized weights and parameters to
reduce the FLOPs, making it more suitable for underwater devices. A channel expansion
module is introduced to optimize the neuron distribution within the network, enhancing
feature learning capabilities and improving recognition accuracy. Additionally, an atten-
tion mechanism is established to accelerate the training speed and enhance robustness.
Deep learning models generally rely on large amounts of high-quality training samples,
but obtaining such samples in UWA channels is very challenging. To effectively utilize
unlabeled data, we also propose a semi-supervised-learning LRN (SSL-LRN) algorithm. In
the SSL-LRN algorithm, interpolation consistency training is applied to unlabeled data; this
is combined with a mean teacher–student mechanism to enhance the stability of pseudo-
labels, thereby improving the efficiency of extracting useful features from unlabeled data.
We have established a UWA modulation recognition dataset that includes nine modulation
types to evaluate performance; the dataset features simulated data as well as pool and
lake test data. The performance of the SSL-LRN algorithm is analyzed and compared
with two other semi-supervised learning-based algorithms and three newly proposed
recognition algorithms.

The principal contributions of this paper are outlined as follows:

1. We propose the LRN for UWA communication modulation recognition, which utilizes
a streamlined network architecture with small convolutional kernels and incorporates
a channel expansion module and an attention mechanism. This algorithm significantly
reduces FLOPs while achieving high recognition accuracy for various modulation
types such as MFSK, MPSK, MQAM, and OFDM under low-SNR conditions.

2. We also introduce an SSL-LRN algorithm for acoustic communication modulation
recognition. This algorithm uses interpolation consistency training for unlabeled data
and incorporates an average teacher model to stabilize pseudo-labels. This approach
improves learning efficiency from unlabeled data, enhances robustness, and boosts
learning capabilities in scenarios with insufficient labeled data [9,10].

3. The performance of the LRN algorithm is compared to that of three baseline algorithms.
The LRN algorithm exhibits the lowest FLOPs: reduced by more than 84.9%. In
pool and lake experiments, the LRN algorithm demonstrates the highest recognition
accuracy at 0 dB, reaching 95.5%.

The structure of the paper is organized as follows: In Section 2, we introduce the system
model and signal preprocessing methods. In Section 3, the architecture of the proposed semi-
supervised lightweight network is detailed. In Section 4, we present experimental results
conducted in pool and lake environments and compare these with baseline algorithms. In
Section 5, conclusions are drawn.

2. Signal Preprocessing
2.1. System Model

As shown in Figure 1, the underwater data collector is equipped with an omnidirec-
tional hydrophone and a UWA communication system that broadcasts communication
signals s(t) to communicate with buoys [7]. Both buoys and UUVs can receive these
signals using hydrophones, which typically consist of synchronization and modulation
components. The buoy has comprehensive knowledge of the synchronization signal struc-
ture, modulation type, and code length, which it uses to demodulate x(t) and extract
necessary information. UUVs also aim to derive useful information from x(t), but they
must first identify the modulation type and extract features using embedded devices [22].
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However, the accuracy of such tasks performed by embedded devices is limited by their
computational power, energy consumption, and algorithm efficiency.

Figure 1. System model.

In our calculations, we used the double datatype (float64) to ensure higher precision
in our results. This datatype was chosen to minimize the impact of numerical errors and to
enhance the robustness of the signal processing and recognition algorithms.

Through the UWA channel, the transmitted signal s(t) is affected by multipath effects,
fading, and Doppler shifts. According to the ray acoustic model, the received signal x(t)
can be expressed as:

x(t) =
N

∑
i=1

Ais(αi(t− τi)) + n(t) (1)

where x(t) represents the received signal, N is the total number of paths, Ai denotes the
attenuation amplitude of the i-th path, αi is the Doppler scale factor for the i-th path, τi is
the time delay associated with the i-th path, and n(t) is the additive noise.

Due to the complexity of UWA channels and the limited computational capacity of
embedded devices, it is crucial to preprocess the received signals to enhance the accuracy
and robustness of modulation type recognition. Signal preprocessing helps convert raw
time-domain signals into a data format that the recognition algorithm can efficiently process.

2.2. Signal Preprocessing

It is important to note that the original time-domain signal contains the richest infor-
mation. To discern the differences between adjacent symbols and enhance the accuracy
and robustness of recognition, the recognition algorithm requires the input of several
symbols. However, the symbol durations for some UWA modulation types, such as MFSK
and OFDM, can extend beyond tens of milliseconds. In such cases, using the original
time-domain signals directly as inputs becomes overly complex. As described in [23], by ju-
diciously designing the structure of the recognition network, including activation functions
and loss functions, similar recognition accuracy can be achieved with preprocessed signals.
The received signals are preprocessed as follows:

2.2.1. Segmentation and Normalization

The received signal is segmented into smaller sections and filtered using a band-pass
filter. The normalization of these segments is defined as:

x̃(n) =
Nx(n)

∑N
i=1x(n)

(2)
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where x(n) represents the sampled signal and N is the number of samples.

2.2.2. Transforming and Mapping

Inspired by [23], we apply the STFT to the signal to obtain its complex representation
in the time–frequency domain. The STFT provides a localized frequency representation of
the signal, which is crucial for analyzing non-stationary signals like UWA signals:

X(m, k) =
M−1

∑
n=0

x̃(n)w(n−m)e−j2πkn/M (3)

where w(n) is the Hann window function. The Hann window is utilized to reduce disconti-
nuities at the signal ends, which helps minimize spectral leakage and edge effects that can
distort the time–frequency representation. The function is defined as:

w(n) =
{

0.5
[
1− cos

( 2πn
M−1

)]
0 ≤ n ≤ M− 1

0 otherwise
(4)

Subsequently, we calculate the magnitude and phase of X(m, k):

|X(m, k)| =
√
ℜ(X(m, k))2 +ℑ(X(m, k))2 (5)

∠X(m, k) = arctan 2(ℑ(X(m, k)),ℜ(X(m, k))) (6)

Here, ℜ(·) and ℑ(·) denote the real and imaginary parts of the complex numbers,
respectively. The magnitude |X(m, k)| reflects the energy intensity across different frequency
components, which is crucial for capturing energy patterns and variations. The phase
∠X(m, k) provides relative timing information between frequency components, which is
essential for recognizing phase-sensitive modulation types such as MPSK signals.

By combining |X(m, k)| and ∠X(m, k), we obtain a comprehensive representation of
the signal in the time–frequency domain. Mapping these two types of information onto two
64 × 64 matrices, we create a dual-channel input for the recognition network, where one
channel carries amplitude information and the other carries phase information. This data
structure allows the network to fully utilize the signal’s energy distribution characteristics
and waveform information, thus enhancing the accuracy of modulation type recognition.

3. The Proposed Recognition Algorithm
3.1. The Structure of the Proposed LRN Algorithm

The structure of the LRN is illustrated in Figure 2. The architecture comprises one
layer of conventional convolution (Conv), five layers of quantized convolution (QConv),
three layers of max pooling (Maxpool), and one fully connected (FC) layer. Inspired by
the VGG16 network architecture, the LRN algorithm does not utilize large convolutional
kernels but instead employs multiple small kernels [24], effectively reducing computational
complexity. In the diagram, light brown blocks represent the full-precision Conv layers,
dark brown blocks denote the quantized QConv layers, light blue blocks represent the
Maxpool layers, and yellow blocks signify the FC layer. Maxpool2 indicates a kernel size of
2 × 2 for the max pooling layer, and Conv3 indicates a kernel size of 3 × 3 for the convolution
layer. The symbols s and p respectively denote stride and padding.

When deploying neural networks on embedded devices, the number of FLOPs serves
as a critical metric to gauge the computational complexity of the network. It reflects the
computational resources required for one forward pass of the network [25,26]. Although
the LRN algorithm has fewer convolutional layers compared to VGG16, its FLOPs may
still be relatively high due to the number of parameters and the computational intensity
involved. High FLOPs mean that the network requires more computations per input,
making it challenging to deploy on resource-constrained embedded devices.
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Figure 2. The structure of the proposed LRN algorithm.

To address the issue of high computational demands, inspired by the binary neural
network approach proposed in [25], we optimize the LRN by using only binary weights and
parameters to significantly reduce the number of FLOPs. The quantization of floating-point
weights W and activation parameters A is performed as follows:

Wb = sign(W)× E(|W|)
Ab = round(Clip(A, 0, 1))

= round(max(0, min(1, A)))

(7)

where Wb and Ab are the binary forms of W and A, respectively. The function sign(W)
represents the sign function. E(| · |) calculates the expected value of the absolute values.
The function Clip(A, 0, 1) restricts the values of A to between 0 and 1, ensuring that the
activation parameters remain within a valid range.

Due to the first convolutional layer interacting directly with the input image and con-
taining a wealth of feature information, quantization at this stage can result in a substantial
loss of critical information. Similarly, the last fully connected layer, which contains highly
refined information after multiple layers of convolution and pooling, is also not suitable for
quantization. Therefore, the initial convolution layer and the final output layer of the net-
work are not subjected to quantization. This approach preserves the accuracy of important
information and features. Meanwhile, the weights and activations of the remaining layers
are quantized. As shown in Figure 2, except for the first convolutional layer and the fully
connected layer, all convolutional layers restrict the weights and activation parameters to
1 bit. For example, QConv3 indicates the quantization of weights for the kernel.

The input of dimensions 64 × 64 × 2 is initially processed by the first Conv layer and
the second QConv layer. After each convolution operation, an activation function extracts
features, which are then refined by a max pooling layer to remove redundant information,
thereby enhancing processing efficiency and recognition accuracy. As illustrated in Figure 2,
the features are processed through a series of convolution and pooling layers, and ultimately,
the recognition results are output by the FC layer.

3.2. Performance Improvement of the LRN Algorithm

The reduction in the number of convolution layers and the quantization of parameters
decrease the FLOPs of the LRN algorithm. However, the quantization process can introduce
new challenges such as gradient loss during backpropagation, slower training speeds,
and decreased recognition accuracy.

3.2.1. The Training Algorithm of the LRN

Initially, due to the quantization of parameters and weights, gradient vanishing
occurs during backpropagation when partial derivatives of the loss function with respect
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to the activation values are calculated, preventing the network from updating. This is
illustrated by:

∂Loss

∂A
=

∂Loss

∂Ab
× ∂Ab

∂A
=

∂Loss

∂Ab
× 0 = 0 (8)

where Loss denotes the loss function. To address this issue, a straight-through estimator is
constructed according to [27], where the derivative ∂Ab/∂A is replaced by the derivative
of a hard tanh function, which is represented as:

dHtanh(A)

dA
=

dClip(A,−1, 1)
dA

= 1|A|≤1 (9)

Secondly, to enhance the network’s nonlinearity, activation functions are introduced
after each convolutional and fully connected layer. Typically, the ReLU function is em-
ployed due to its fast convergence and computational efficiency. However, this can result
in the loss of negative value information. To address this issue, ref. [28] proposed the
LeakyReLU function, which replaces the negative values of the ReLU function with leaky
values, thereby preserving negative values. This is shown by:

LeakyReLU(x) = max(kx, x) =
{

x x ≥ 0
kx x < 0

(10)

where k ∈ {0, 1}.
Finally, to further accelerate training, a batch normalization step is incorporated before

the activation functions; it normalizes the data distribution to have a mean of zero and a
variance of one. According to [29], the batch normalization operation is defined as:

y =
η − 1

p ∑
p
i=1 η(i)

sqrt
(

1
p ∑

p
i=1

(
η(i) − 1

p ∑
p
i=1 η(i)

))2 (11)

where η represents the feature point and p is the total number of feature points.
The training algorithm of the LRN is outlined in Algorithm 1. Additionally, we

integrate a channel expansion module and an attention mechanism, which significantly
enhance recognition accuracy with only a slight increase in FLOPs, parameter count,
and memory usage.

Algorithm 1 LRN Training Algorithm.
Require: Hyperparameter learning rate α and labeled input and target set
{(X1, Y1), . . . , (Xn, Yn)}.

1: Initialization: Initialize weights W and biases B for all layers.
2: Loss is the cost function, W is weights, B is bias, and L is the number of layers.
3: {1.Forward propagation}
4: for k = 1 to L do
5: Binarize the weights and biases:
6: Wk

b = sign
(

Wk
)
∗ E

(∣∣∣Wk
∣∣∣)

7: Bk
b = sign

(
Bk

)
∗ E

(∣∣∣Bk
∣∣∣)

8: Compute the linear transformation:
9: Zk = sign

(
Wk

b

)
∗ Ak−1

b + Bk
b

10: Apply activation function (LeakyReLU):
11: Ak = LeakyReLU

(
Zk

)
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Algorithm 1 Cont.

12: if k < L then
13: Clip and binarize the activations:
14: Ak

b = round(Clip(Ak, 0, 1))
15: end if
16: end for
17: {2.Backward propagation}
18: Compute the gradient of the loss function with respect to the final activation:
19: Compute gAL = ∂Loss

∂AL
, knowing A and Y

20: for k = L to 1 by −1 do
21: if k < L then
22: Compute the gradient of the activation function:

23: gAk = gk
Ab
∗ dHtanh(Ak)

dAk = gb
Ak ∗ 1|Ak|≤1

24: end if
25: Compute the gradient with respect to Zk:
26: gZk = gAk ∗ dAk

dZk

27: Propagate the gradient to the previous layer:
28: gb

Ak−1 = Wk
b ∗ gZk

29: Compute the gradients with respect to weights and biases:
30: gWk

b
= Ak−1

b ∗ gZk

31: gBb = sum(gZk )
32: Update the weights and biases:
33: Wk

b = Wk
b − αgWk

b

34: Bk
b = Bk

b − αgBk
b

35: end for

3.2.2. Channel Expansion Modules

Following quantization, there may be a decline in recognition accuracy due to the loss
of neuronal precision. According to [26], the accuracy of recognition is influenced by both
the number and the precision of neurons. To enhance recognition accuracy, we introduce
channel expansion modules. As shown in Figure 2, channel expansion is achieved by
increasing the number of channels in specific layers, optimizing neuron distribution within
the network, and enhancing feature learning capabilities. Specifically, an represents the
channel expansion ratio for the nth convolutional layer. Since the weights and parameters of
the convolutional layers are already quantized, the inclusion of channel expansion modules
only results in a slight increase in FLOPs. However, expansion also implies an increase in
the number of parameters and memory usage, which will be analyzed in Section 4.

Among the many parameters that affect recognition performance, the channel ex-
pansion ratio an is a critical factor. According to [26], the expansion ratio for each layer
is selected from the set {0.25, 0.5, 1, 2, 3, 4}. For the six convolutional layers, the channel
expansion ratios are represented as a vector al = [a1, . . . , a6]. The challenge lies in selecting
the optimal al from a large number of possible combinations.

To address this, we evaluated each possible al by calculating its recognition accuracy
εm and FLOPs βm. We then established an evaluation metric em to measure the utility of
different al configurations, which is defined as follows:

em = εm − 0.1× βm (12)

We selected al by maximizing the value of em, ultimately determining the optimal
channel expansion ratios to be [1, 2, 1, 1, 1, 0.5].
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3.2.3. Attention Mechanism

Inspired by [30], we incorporated an attention mechanism to further enhance the per-
formance of the LRN. Compared to adding additional convolutional layers or parameters,
the attention mechanism improves the network’s capability to extract key information with
relatively low computational cost. The attention mechanism consists of two modules: the
channel attention module and the spatial attention module, as depicted in Figure 3 and
Figure 4, respectively.

The specific composition of the channel attention module is illustrated in Figure 3,
where H, W, and C respectively represent the height, width, and number of channels of the
input features. In this module, average pooling and max pooling operate concurrently to
aggregate spatial information from the input feature F. Following aggregation, the size of
F is reduced from H ×W × C to 1× 1× C. Subsequently, a shared deep neural network
(DNN) composed of three fully connected layers generates two attention maps of size
1× 1× C. These attention maps are then superimposed and processed through a sigmoid
function to produce a normalized channel attention map, which is given by:

AC(F) = σ(DNN(Pavg(F)) + DNN(Pmax(F))) (13)

where σ(·) denotes the sigmoid function, and Pavg and Pmax respectively represent average
pooling and Maxpool.

Figure 3. Channel attention module.

Figure 4. Spatial attention module.

Similarly, the computation process for spatial attention is illustrated in Figure 4.
Initially, the channel information of F is aggregated through sequential average pooling
and max pooling operations, reducing the dimensions from H ×W × C to H ×W × 1.
The results of these pooling operations are then concatenated to form a feature map of
dimensions H ×W × 2. This feature map is processed through a 2× 2 convolutional layer,
and the output is subsequently passed through a sigmoid function to produce the final
spatial attention map of dimensions H ×W × 1. The normalized attention map created by
the spatial attention module is represented as:

AS(F) = σ
(

C2×2([Pavg(F); Pmax(F)])
)

(14)

where C2×2 denotes a convolution operation with a kernel size of 2 × 2.
It is important to emphasize that the DNN module is shared and the convolution

kernel weights have been quantized; thus, the increase in computational complexity is
minimal. The input features are first weighted by the channel attention module to enhance
the response of important channel features and suppress less significant ones. Subsequently,
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the spatial attention map is multiplied element-wise with the original features at the spatial
level, enhancing the focus on task-relevant areas. Through attention mechanisms in both
the channel and spatial dimensions, the network more effectively captures and emphasizes
critical information.

3.3. Semi-Supervised-Learning-Based LRN: SSL-LRN Algorithm

In the field of UWA communication, obtaining sufficient labeled data is not only
time-consuming but also costly. Additionally, the harsh conditions of UWA channels make
the labeling process prone to errors, which is a factor that can potentially degrade the
performance of the LRN model. Semi-supervised learning addresses the lack of sufficient
labeled data. By integrating a large amount of unlabeled data with a small amount of
labeled data, this approach effectively trains neural networks. It also mitigates the effects
of insufficiently labeled data [16]. The structure of the proposed SSL-LRN algorithm
introduced in this study is illustrated in Figure 5. The SSL-LRN algorithm consists of
two components: a student model and a teacher model (LRN-T). The student model is
a standard LRN model, while the teacher model is an auxiliary network derived from
the student model. The training process of the SSL-LRN algorithm is also divided into
two parts.

Figure 5. The flowchart of the SSL-LRN algorithm.

3.3.1. Guiding Training with Insufficient Labeled Data

During the initial training phase, the SSL-LRN model relies on a small amount of
labeled data to guide the training process, ensuring the model learns in the correct direction.
During this phase, cross-entropy is used as the loss function to enhance convergence speed.
The loss function for the labeled data is represented by Ls, which is given by:

Ls = −
1
N

N

∑
a=1

M

∑
c=1

Yac log
(
Ŷac

)
(15)

where N is the number of data points, M is the number of label categories, and Ŷac is
the predicted probability. If the actual class of data point a is c, then Yac = 1. Otherwise,
Yac = 0.
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3.3.2. Dominant Training with Unlabeled Data

Once the model demonstrates initial effectiveness, to prevent overfitting, a large
volume of unlabeled data is introduced to dominate the training process. As iterations
progress, the weight of these data in parameter updates gradually increases. Initially,
according to [31], unlabeled data Ud and pseudo-labels Yd are generated through a linear
interpolation algorithm.

Specifically, LRN-T is constructed to assist the LRN; it features a similar network
structure but has a slower rate of parameter updates. In this study, the parameters of
LRN-T are designed to be the moving average of the LRN parameters, which enhances
training efficiency and robustness [32]. The unlabeled data are then split into two parts:
Ub and Uc. LRN-T processes Ub and Uc to compute the predicted probabilities Ŷb and Ŷc.
Subsequently, pseudo data Ud and pseudo labels Yd are created by{

Ud = Mixz(Ub, Uc) = z ·Ub + (1− z) ·Uc

Yd = Mixz
(
Ŷb, Ŷc

)
= z · Ŷb + (1− z) · Ŷc

(16)

where z is a random number calculated from Beta(b, b) [33]. In this study, b is set to 0.5,
and z is re-estimated at each interpolation.

The loss values for LRN and LRN-T are represented by Yd and Ŷd, respectively. The un-
labeled loss Lu is calculated using the mean squared error to enhance robustness, as shown
in the following equation:

Lu =
1
N

N

∑
i=1

(Yd − Ŷd)
2 (17)

The total loss function Loss is the weighted sum of Ls and Lu. Given that the weight of the
unlabeled data should increase over time, Loss is constructed as:

Loss = Ls + r(t) · Lu (18)

where r(t) represents the importance of the unlabeled data. As unlabeled data are typically
unstable at the start of training, r(t) is a monotonically increasing function over time.

The SSL-LRN algorithm is described in Algorithm 2.

Algorithm 2 SSL-LRN Algorithm
Input: Unlabeled input set {U1, U2, . . . , Un}, labeled input and target set
{(X1, Y1), . . . , (Xn, Yn)}, hyperparameter learning rate α, rate of moving average γ,
batch size S, and ramp function r(t).
Output: Parameters θ.

1: Initialize parameters θ.
2: M is the number of label categories.
3: for t = 1 to T do
4: Feed in a labeled batch {(X1, Y1), . . . , (XS, YS)} to LRN to obtain Ŷa.
5: Calculate supervised loss Ls:
6: Ls = − 1

S ∑S
a=1 ∑M

c=1 Yac log
(
Ŷac

)
.

7: Feed in two unlabeled batches {U1, U2,...,US} and {US+1, US+2,...,U2S} to LRN-T to
obtain Ŷb and Ŷc.

8: Sample z ∼ Beta(b, b).
9: Calculate mixed input Ud:

10: Ud = z ·Ub + (1− z) ·Uc.
11: Calculate mixed target Yd:
12: Yd = z · Ŷb + (1− z) · Ŷc.
13: Feed in Ud to LRN to obtain Ŷd.
14: Calculate unsupervised loss Lu:
15: Lu = 1

S ∑S
i=1 (Yd − Ŷd)

2.
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Algorithm 2 Cont.

16: Calculate total loss Loss:
17: Loss = Ls + r(t) ∗ Lu.
18: Update the LRN-T parameters:
19: θT = γθT + (1− γ)θ.
20: Update the LRN parameters:
21: θ ← θ − α∇θ Loss.
22: end for

4. Experiments and Performance Evaluation

In this section, we establish a dataset and conduct experimental analyses, comparisons,
and evaluations of recognition performance. Initially, we introduce the UWA communi-
cation system and the associated datasets used. Subsequently, using simulated data, we
analyze and evaluate the relationship between recognition accuracy and SNR under condi-
tions of insufficient labeled data through the SSL-LRN algorithm. Finally, using real data
from pool and lake environments, we analyze and compare the recognition accuracy of the
SSL-LRN algorithm with three other recognition algorithms under various SNR conditions.

4.1. UWA Communication System and Dataset

To establish a UWA communication recognition dataset in a real-world environment, we
designed a broadband UWA communication system, the structure of which is shown in Figure 6.

In the transmission transducer, nine types of UWA communication signals are gen-
erated, including 2FSK, 4FSK, 8FSK, BPSK, QPSK, 8PSK, 16QAM, 64QAM, and OFDM.
These signals are modulated by a computer and are stored as binary files. Subsequently,
these binary files are transmitted to an NI USB-6259 data acquisition (DAQ) module and
converted into analog signals. The analog signals are then amplified by a JYH500A linear
power amplifier and transmitted through a WBT22-1107 acoustic transducer.

After transmission through the UWA channel, the signals are received by an RHS-20
hydrophone and amplified by a 2692-OS2 charge amplifier. The signals are then converted
back into digital binary files by the USB-6259 and stored. To facilitate the identification of
the start of the modulation signals, a synchronization signal is added.

Figure 6. The broadband UWA communication system flowchart.
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The dataset was collected during experiments conducted in both a swimming pool
and a lake. In the pool experiments, the water depth was approximately 1.5 m, and commu-
nication distances ranged from 5 to 20 m. Some critical parameters of the lake experiments
are shown in Table 1.

Table 1. Environmental parameters of lake tests.

Parameter Name Parameter Value

Water depth 1–5 m

Distance between transmitting and receiving
transducer 50–100 m

Distance between transmitting transducer and
lake surface 1 m

Distance between receiving transducer and
lake surface 3 m

Carrier frequency 10–15 kHz

Sample frequency 100 kHz

Number of samples 1100

Symbol rate 1000 Baud

Modulation types for transmission signal 2FSK, 4FSK, 8FSK, BPSK, QPSK, 8PSK, 16QAM,
64QAM, and OFDM

4.2. Performance Analysis with Insufficient Labeled Data

As shown in Figure 7, the relationship between recognition accuracy and SNR was
examined using simulated data. Initially, the SSL-LRN algorithm was compared with
its fully supervised version to assess the potential performance loss under conditions
of insufficient labeled data. Subsequently, the SSL-LRN algorithm was compared with
two other semi-supervised learning algorithms: SSRCNN [18] and SEMIAMC [19]. In
Figure 7, the fully supervised version of the SSL-LRN algorithm is labeled as “Supervised
(100%)”, indicating that 100% of the labeled data (1000 samples) were used during training.
Similarly, “Supervised (10%)” indicates that only 100 labeled samples were used in training.
In addition to “Supervised (100%)” and “Supervised (10%)”, all other algorithms utilized
100 labeled samples and 900 unlabeled samples during training.

Figure 7. Recognition accuracy comparison for simulation channels: SSL-LRN, Supervised (100%),
Supervised (10%), SSRCNN [18], and SEMIAMC [19].
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4.2.1. Comparison with Other Semi-Supervised Algorithms

Among the three semi-supervised algorithms evaluated, the SEMIAMC algorithm
exhibits the lowest recognition accuracy, closely aligning with “Supervised (10%)”.

Compared to the SEMIAMC algorithm, the SSRCNN algorithm shows a 9.3% higher
recognition accuracy at an SNR of 0 dB. This performance improvement is attributed to its
specially designed neural network architecture and loss function, which enhance its ability
to learn from unlabeled data. However, the recognition accuracy of the SSRCNN algorithm
is approximately 86.2% at an SNR of 0 dB, and it fails to reach 90% even at an SNR of 10 dB.

In contrast, the SSL-LRN algorithm performs optimally among these three semi-
supervised algorithms. Compared to the SSRCNN algorithm, at an SNR of 0 dB, the SSL-
LRN algorithm’s recognition accuracy is higher by 7.6%. This is due to the utilization of
the mean squared error in the loss function of SSL-LRN, which is calculated as shown in
(17) and improves the efficiency of using unlabeled data.

4.2.2. Analysis of Errors

The recognition accuracy of the SSL-LRN algorithm for each modulation type is
displayed in Table 2. At 10 dB, most modulation types can be recognized with high
accuracy, with precision rates nearing 100%. Even at −10 dB, the recognition accuracies
for 2FSK, 4FSK, 8FSK, and OFDM remain above 96%. However, there were some errors in
recognizing 16QAM and 64QAM at 10 dB, with accuracies of 81% and 88%, respectively.
At −10 dB, primary recognition errors occurred in MPSK and MQAM.

Table 2. Detailed recognition accuracy of each modulation type.

Type −14 dB −12 dB −10 dB −8 dB −6 dB −4 dB −2 dB 0 dB 2 dB 4 dB 6 dB 8 dB 10 dB

2PSK 30% 50% 73% 92% 98% 100% 100% 100% 100% 100% 100% 100% 100%
4PSK 52% 58% 62% 64% 66% 78% 87% 92% 98% 99% 100% 100% 100%
8PSK 22% 38% 43% 54% 54% 76% 86% 96% 97% 98% 100% 100% 100%
2FSK 92% 94% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
4FSK 75% 95% 98% 100% 98% 100% 100% 100% 100% 100% 100% 100% 100%
8FSK 91% 98% 99% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

16QAM 47% 54% 60% 68% 71% 72% 74% 76% 80% 80% 81% 82% 81%
64QAM 57% 77% 73% 78% 80% 84% 82% 85% 85% 86% 86% 87% 88%
OFDM 88% 91% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

To better analyze these errors, we utilized the confusion matrix shown in Figure 8.
Within these matrices, two pairs of modulation types are primarily confused with each other:
specifically, [16QAM, 64QAM] and [QPSK, 8PSK]. This confusion arises due to several
factors. Primarily, the amplitude information of 16QAM and 64QAM is easily mixed under
the influence of fading. Both 16QAM and 64QAM rely on variations in both amplitude
and phase to encode information. In UWA channels, where signal strength can fluctuate
significantly, the differences between these modulation types in terms of amplitude and
phase become less distinct. This overlap makes it difficult for the recognition algorithm to
accurately distinguish between the two modulation types, especially under conditions of
severe fading.

Additionally, the small phase differences make it challenging to distinguish between
QPSK and 8PSK in harsh UWA channels and low-SNR conditions. QPSK and 8PSK utilize
phase shifts to encode data, but the phase angles between adjacent symbols in these
modulation types are relatively close. In environments with significant noise and multipath
effects, the received phase information can be distorted, leading to recognition errors. This
distortion is particularly problematic at low SNRs, where the signal is already weak and any
additional noise can further obscure the phase differences.
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(a) (b)

Figure 8. Confusion matrices at −10 dB and 10 dB. (a) −10 dB; (b) 10 dB.

However, no confusion occurred among MFSK, MPSK, or OFDM in high-SNR envi-
ronments. These modulation types are inherently more robust against the specific types
of distortions encountered in UWA channels. MFSK relies on frequency shifts, which are
less susceptible to amplitude and phase noise, while OFDM’s use of multiple subcarriers
allows for more reliable signal reconstruction even in the presence of multipath effects.
Considering that 16QAM and 64QAM are typically used only in short-range, high-SNR
underwater acoustic communication systems, the SSL-LRN algorithm still maintains high
recognition accuracy in practical applications.

In summary, compared to other semi-supervised algorithms, the SSL-LRN algorithm
performs exceptionally well. The recognition accuracy of the SSL-LRN algorithm is very
close to that of fully supervised algorithms, even though it uses only 10% of the labeled
data. The SSL-LRN algorithm can recognize most common types of UWA communications
with high accuracy under low-SNR conditions.

4.3. Comparison with Other Recognition Algorithms

The performance of the SSL-LRN algorithm was also compared with three benchmark
signal recognition algorithms. These include R&CNN [7], SSKNET [14], and IAFNET [9].
R&CNN integrates an RNN and a CNN to more effectively extract signal features. SSKNET,
a kernel generation network, efficiently fuses signal features. IAFNET, based on denoising
and task-driven mechanisms, improves recognition accuracy under low-SNR conditions.
The size of the input data is closely related to the recognition latency and computational
complexity. For example, R&CNN [7] requires an input size of 32 × 1280, necessitating
substantial FLOPs and resulting in increased recognition time delays. To facilitate a fair
comparison of these algorithms’ performance, the signal input size was standardized
to 64 × 64.

4.3.1. Computation Complexity

The computational complexity of the SSL-LRN algorithm was analyzed in Table 3,
which compares FLOPs, parameters, and memory across different algorithms. The SSL-LRN
has the lowest computational complexity at 15.4 M FLOPs, mainly due to the quantization
of the convolution kernel parameters. In addition, IAFNET’s FLOPs of 101.8 M are lower
than those of R&CNN and SSKNET. Compared to IAFNET, SSL-LRN reduces FLOPs
by 84.9%.

In terms of parameters and memory usage, IAFNET has the smallest values with 0.5 M
and 1.9 M, respectively. SSKNET follows with 2.1 M parameters and 8.7 M memory usage.
In contrast, the SSL-LRN has relatively higher parameters and memory usage, with 6.0 M
and 17.3 M, respectively. This is mainly because the SSL-LRN uses channel expansion
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modules and attention mechanisms. Although these increase the number of parameters
and memory usage, they significantly improve recognition accuracy while maintaining low
computational complexity.

FLOPs are a critical metric for determining whether an algorithm can be deployed
on resource-limited devices, as they directly affect computational complexity and energy
consumption. Although the SSL-LRN has relatively higher parameters and memory re-
quirements, they are still within acceptable ranges, and the the SSL-LRN can efficiently run
on resource-constrained devices.

Table 3. Computation complexity.

Network FLOPs Parameters Memory

SSL-LRN 15.4 M 6.0 M 17.3 M
R&CNN [7] 240.0 M 4.6 M 17.8 M

SSKNET [14] 150.3 M 2.1 M 8.7 M
IAFNET [9] 101.8 M 0.5 M 1.9 M

4.3.2. Recognition Accuracy vs. SNR

The recognition accuracy of these algorithms was compared using simulated data as
well as data from pool and lake environments. Pool and lake data were combined with
simulated data to form the dataset used in this experiment. Only 10% of the data were used
as labeled data. The relationship between recognition accuracy and the SNR is displayed in
Figure 9.

Figure 9. Recognition accuracy comparison for pool and lake channel: SSL-LRN, R&CNN [7],
SSKNET [14], and IAFNET [9].

R&CNN utilizes RNN to extract temporal information from received signals. Com-
pared to SSKNET and IAFNET, it demonstrates improved recognition performance. At
0 dB, the recognition accuracy of R&CNN reaches approximately 90.6%. Moreover, when
the SNR exceeds 0 dB, this accuracy remains above 90%. Conversely, at the same SNR,
SSKNET and IAFNET achieve lower recognition accuracies, falling below 90% and 80%,
respectively.

However, R&CNN lacks attention mechanisms between convolutional layers and is
not designed to efficiently utilize unlabeled data. In scenarios with insufficient labeled
data, the recognition accuracy of R&CNN declines. The SSL-LRN algorithm exhibits the
highest recognition accuracy. At 0 dB, using only 10% labeled data, the SSL-LRN achieves
a recognition accuracy of approximately 95.5%. At 10 dB, the SSL-LRN’s recognition accu-
racy is about 97.7%. In summary, the SSL-LRN algorithm enhances recognition accuracy
under low-SNR and insufficient-labeled-data conditions and can be applied to underwater
embedded systems.



J. Mar. Sci. Eng. 2024, 12, 1317 17 of 19

The performance of the SSL-LRN algorithm is assessed by analyzing its loss function
values, which measure the algorithm’s learning capability. Figure 10 illustrates the variation
of different types of loss function values across iterations on a simulated dataset.

Figure 10b,d clearly demonstrate that during the pre-training phase, despite a rapid
decrease in labeled loss due to insufficient labeled data, the validation set loss fluctuates
significantly, indicating poor performance and overfitting to the training data. Figure 10c
shows that after the 10th epoch, with the influence of added unlabeled data, the loss
function for unlabeled data Lu begins to significantly decrease, and the validation set loss
stabilizes and eventually levels off around 0.05 after the 40th epoch. This indicates that the
SSL-LRN algorithm effectively learns useful information from unlabeled data.

The total loss Loss, as shown in Figure 10a, is calculated using Equation (18). Notably,
the weight of the unlabeled data r(t) increases over time. In our experiments, r(t) is
calculated using the following formula:

r(t) =

{
e−5(1−(t−10)/20)2

t ≥ 10
0 t < 10

(19)

where t denotes the number of training epochs. Thus, after the 10th epoch, when unlabeled
data are added, Loss increases. However, as the loss from unlabeled data decreases, Loss
declines and ultimately converges to approximately 0.05, suggesting that the SSL-LRN
algorithm learns effective features from unlabeled data, reducing reliance on limited labeled
data and optimizing the overall learning process. This is supported by the results displayed
for the SSL-LRN in Figure 7.
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Figure 10. Loss functions of the SSL-LRN algorithm. (a) Total loss. (b) Labeled loss. (c) Unlabeled
loss. (d) Validation loss.
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5. Conclusions

Deep-learning-based algorithms have been extensively applied in communication
modulation recognition and demonstrate superior recognition performance. However,
these algorithms typically require large amounts of labeled data and have high com-
putational complexity. Additionally, due to the multipath effect and Doppler effect in
underwater channels, UWA signals experience severe frequency-selective fading. There-
fore, achieving high recognition accuracy under low-SNR conditions is of great importance.
This paper introduces the SSL-LRN algorithm for UWA modulation recognition; it is tai-
lored to rapidly changing UWA channels and can be applied in practical scenarios such as
underwater target detection and environmental monitoring.

Firstly, the SSL-LRN algorithm employs a lightweight network architecture that re-
duces FLOPs by 84.9% compared to baseline algorithms, making it more suitable for
deployment in underwater devices. Secondly, the SSL-LRN algorithm can effectively utilize
unlabeled data. Simulation results show that even with only 10% labeled data, the recog-
nition accuracy of SSL-LRN is very close to that of fully supervised algorithms, with an
average accuracy difference of only 3.2%. Lastly, the SSL-LRN algorithm achieves high
recognition accuracy even at very low SNRs. Results from pool and lake tests demonstrate
that even at an SNR of −4dB, the SSL-LRN achieves an average recognition accuracy of
92.3%, enabling the recognition of most commonly used UWA modulation types under
low-SNR conditions.

In future work, we will further optimize the network architecture and develop adap-
tive mechanisms to enable the algorithm to automatically adjust parameters based on
real-time channel conditions, thereby improving robustness in various environments.
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