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Abstract: Enhancing the path planning capabilities of ships is crucial for ensuring navigation safety,
saving time, and reducing energy consumption in complex maritime environments. Traditional
methods, reliant on static algorithms and singular models, are frequently limited by the physical
constraints of ships, such as turning radius, and struggle to adapt to the maritime environment’s
variability and emergencies. The development of reinforcement learning has introduced new methods
and perspectives to path planning by addressing complex environments, achieving multi-objective
optimization, and enhancing autonomous learning and adaptability, significantly improving the
performance and application scope. In this study, we introduce a two-stage path planning approach
for large ships named MAPF-DQN, combining Manipulation-Compliant Artificial Potential Field
(MAPF) with Deep Q-Network (DQN). In the first stage, we improve the reward function in DQN by
integrating the artificial potential field method and use a time-varying greedy algorithm to search
for paths. In the second stage, we use the nonlinear Nomoto model for path smoothing to enhance
maneuverability. To validate the performance and effectiveness of the algorithm, we conducted
extensive experiments using the model of “Yupeng” ship. Case studies and experimental results
demonstrate that the MAPF-DQN algorithm can find paths that closely match the actual trajectory
under normal environmental conditions and U-shaped obstacles. In summary, the MAPF-DQN
algorithm not only enhances the efficiency of path planning for large ships, but also finds relatively
safe and maneuverable routes, which are of great significance for maritime activities.

Keywords: large ships; path planning; safety; DQN; artificial potential field

1. Introduction

Maritime transport is the lifeblood of the global economy, and large vessels play a
pivotal role due to their exceptional cargo capacity. However, naval accidents are frequent
and more than 80% are attributed to human factors [1], underscoring the importance of
intelligent automated navigation systems. These systems can significantly reduce the rate
of maritime accidents by minimizing human error, thereby ensuring the safety of personnel
and assets at sea. Within intelligent navigation systems, route planning is crucial. It requires
algorithms to ensure the safety and feasibility of the route while also demonstrating high
adaptability and flexibility to cope with the ever-changing maritime conditions and poten-
tial emergencies. Researchers have developed various route planning methods, including
bio-inspired algorithms [2-7], graph-based A* algorithms [8-12], artificial potential field
methods [13-15], and data-driven intelligent algorithms [16-21], all aimed at improving
the safety and efficiency of maritime navigation.

Bionic algorithms [2] perform probabilistic optimization searches by simulating bi-
ological behaviors. A prominent example is the ant colony algorithm [3,4,11], which is
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frequently applied in path planning research. Researchers have integrated it with other
optimization techniques to improve performance, such as the bacterial foraging optimiza-
tion algorithm [7] and the simulated annealing algorithm [6]. However, these approaches
do not always ensure effective path planning under dynamic or time-varying conditions.
To address this problem, Wang et al. [5] proposed a method that utilizes particle swarm
acceleration for local path planning in dynamic navigation environments. Even with this
progress, bionic algorithms still frequently need fine-tuning parameters and are prone to
becoming stuck in local optima.

Unlike bionic algorithms, the A* algorithm [12] employs raster maps to discover paths
with reduced costs and shorter distances. Yu et al. [8] enhanced the traditional A* algorithm
by incorporating a surrogate value into its cost function, allowing ships to rapidly return
to their predetermined course after avoiding obstacles. Li et al. [9] reduced both the path
length and the number of inflection points by combining the A* algorithm with the dynamic
window approach. To accurately represent the ship’s current navigation situation, factors
such as the genuine marine environment and the time consumption of expected routes
are incorporated into the algorithm design [10,22]. Nevertheless, these algorithms often
struggle with real-time performance and their search efficiency diminishes in environments
with an abundance of nodes.

The artificial potential field method (APF) has been employed for ship path planning
due to its real-time performance and ease of implementation. Liu et al. [14] enhanced
this method by incorporating velocity and acceleration factors into the attractive and
repulsive forces. However, this strategy relies on the ship’s precise location, which can
be uncertain in practice. To address this issue, Wang et al. [15] proposed an APF variant
capable of detecting interference sources to determine their positions. The International
Regulations for Preventing Collisions at Sea (COLREGS) is an internationally recognized
convention aimed at preventing maritime collisions. Ohn and Namgung [23] found that
the APF exhibits the highest adaptability to the COLREGS. Consequently, researchers
have integrated several enhanced APF methods with COLREGS to develop algorithms
for dynamically avoiding obstacles [13,24,25]. Despite the advantages of this approach,
it has three significant flaws, i.e., local minimum traps, inability to reach the destination,
and complex path execution.

Despite the individual strengths of bio-inspired algorithms, A* algorithms, and Artifi-
cial Potential Field (APF) methods in path planning, they may exhibit limitations as single
models when confronted with complex and variable environments. These algorithms often
lack the flexibility to rapidly adapt to unforeseen circumstances, such as sudden environ-
mental changes. In such cases, further adjustments may be needed for prompt and effective
response. To address these limitations, the academic community has begun exploring deep
reinforcement learning, particularly Deep Q-Networks (DQNs) [16], as a strategic solution.
The DON aims to achieve more agile and adaptable path planning in complex navigational
environments by learning the mapping between environmental states and actions. For in-
stance, studies by Shen et al. [26], Chun et al. [20], Liu et al. [21], and Wen et al. [27] have
applied DQNs to maritime path planning that adheres to the International Regulations for
Preventing Collisions at Sea (COLREGS). These studies demonstrate the potential applica-
tion of DQNs in various maritime tasks, including route planning within ferry terminals
and search and rescue missions.

The application of DQNs in maritime path planning is constrained by the design of
the reward function. Sparse reward signals can slow the learning process and affect the
algorithm’s convergence speed. To address this challenge, Du et al. [28] and Chen et al. [29]
redesigned the reward function to introduce a denser reward distribution, thus accelerating
the learning process and enhancing the exploratory capacity of the strategy. Furthermore,
Yang et al. [30], Guo et al. [19], and Li et al. [31] attempted to simplify the design of the
reward function using the APF method, building attractive and repulsive potential fields to
guide the vessels to avoid obstacles and move toward their goals. However, the existing
methods’ oversight of kinematic and dynamic constraints in reward function formulation
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can lead to infeasible or hazardous navigation, especially in confined maritime settings [32].
To address this, we introduce a novel path-planning algorithm that integrates vessel
dynamics, environmental variability, and risk assessment into its core design. The primary
contributions of this paper are summarized as follows:

(1) Following the grid-based representation of the navigation environment, the reward
function within the DQN algorithm has been enhanced using the APF method to improve
learning efficiency and overcome the difficulties associated with local minimum traps and
the inability to reach the destination.

(2) In response to the high inertia of large ships and the characteristics of the rudder
servo systems, the experiment involves conducting sustained rotational trials using the
nonlinear Nomoto mathematical model of the “Yupeng” vessel. The experimental paths are
pruned, extended, and translated into the paths generated by the MAPF-DON algorithm
to obtain smooth trajectories with rudder positions.

The structure of this paper is as follows. Section 2 introduces the basic knowledge
underlying the algorithms discussed in this paper. Section 3 details the framework of
the proposed algorithm, integrating the Artificial Potential Field and Deep Q-Network
processes. Section 4 demonstrates the performance of the proposed algorithm through
experimentation, covering both path planning and path feasibility enhancement. Finally,
Section 5 provides a comprehensive conclusion based on the experimental results.

2. Theoretical Background
2.1. Artificial Potential Field Method

The Artificial Potential Field (APF) method mimics the attraction and repulsion of
charged particles to guide an entity around obstacles and toward its goal. Consequently,
establishing attractive and repulsive fields is crucial for the effectiveness of this strategy.
As the controlled entity increases its distance from obstacles, the magnitude of the repulsive
force should decrease. On the contrary, as the distance from the target point increases,
the magnitude of the attractive force should increase. This scheme ensures that the resultant
forces collectively steer the entity toward the predetermined target.

In a two-dimensional plane, suppose a ship departs from a starting point under the
dual effects of both a gravitational Ug; and a repulsive field Ug;. The spatial positions of
the starting and target points are represented as [x,y] and [xg,y¢], respectively, within the
inertial coordinate system. The overall potential field acting on the ship can be expressed
as Uy in Equation (1).

Uan(X) = Ugi(X) + Ugi(X) @)

where X denotes the coordinate position [xsh,'p,yship} of the ship while sailing. At this
point, the ship experiences the gravitational field function outlined in Equation (2).

1

Ugi(X) = 5

KGR; )
where K represents an artificially determined gravitational coefficient. The term R, refers
to the Euclidean distance between the ship and the target point.

The repulsive field function is often modeled as a quadratic function in which the
independent variable corresponds to the inverse of the Euclidean distance between the ship
and the obstacle. It indicates that minor variations in the ship’s trajectory can substantially
affect the repulsive force, potentially intensifying the vibration phenomenon. Consequently,
this study utilizes an exponential function [33] for the repulsive field function, which is
mathematically formulated as shown in Equation (3).

R2e(=F%) o <
Uri(X) = {KRZR”EO oh ©
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where Kg; represents an artificially determined repulsion coefficient, p denotes the Euclidean
distance between the ship and the obstacle, and p; is the obstacle’s range of influence.

2.2. Deep Reinforcement Learning

The research framework of reinforcement learning is based on Markov Decision
Processes (MDPs), where the core concept is that the state of the intelligent agent in the next
time step depends solely on the current state and the action taken. This process involves the
agent receiving a state signal S; from the environment at a specific moment ¢ € T, selecting
an action from the allowable set of actions A;, updating its state based on the transition
probabilities, and obtaining rewards. The particular manifestation of MDP is denoted in
Equation (4).

S¢ Hale) Ay Ploetalonae) Sit1 — R 4)

where S represents the set of states of the agent; A denotes the set of actions that the agent
can execute; P represents the transition probabilities between states; R signifies the rewards
the agent receives upon reaching a certain state; and 7, referred to as the policy, is the
probability of transitioning from a state to an action.

The requite G; of the agent from time step t < T onwards encapsulates all future
rewards, as depicted in Equation (5).

+o0
Gt = Res1+YRer2 + 7 Regs. .. = Y 7 Resoi1 5)
=0

The discount factor y € [0,1] determines the balance between immediate rewards
and future rewards. A value of 0 implies that the agent prioritizes immediate gains, while
a value of 1 indicates that the agent values all future rewards equally. The action—value
function Qx(s, a) denotes the expected return after the agent takes action (a) in the state (s),
as defined in Equation (6).

Qnr(s,a) = Ex(G¢ | St =s, At = a) (6)

In conventional reinforcement learning, Q-values are often represented in tabular
forms, indexed by various states and corresponding actions. Nevertheless, such method-
ology frequently proves impractical for real-world scenarios characterized by continuous
state spaces. Consequently, an integration of deep learning techniques with reinforce-
ment learning has emerged, wherein neural networks are employed to estimate Q-values.
The schematic of this approach is depicted in Figure 1.

DQN LOSS Function
Update
max Q (S’. a; 9_) Q(s,a;0) network
$ parameters
R e
Target Main | ia: . ]
r [ Iéilrégte J&[ Nzgtn AR Environment
y — s e
s sa| |
% ’
[ Replay Buffer l (s,a,rs)

g™

Figure 1. Structure of the DON algorithm.

The following five steps are taken to analyze the structure of framework components.
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(1) The main network is a convolutional neural network designed to approximate the
state—action value function with hyperparameters 6. It accepts both the current state and
the selected action by the agent as inputs and produces corresponding Q-values as outputs.
This network aims to learn representations of state-action pairs to predict the expected
return of taking a specific action in a given state.

(2) The target network is employed to mitigate discrepancies induced by temporal
differences, of which the hyperparameters are 0~. It periodically replicates the parameters
(0) from the primary network, maintaining consistency with it. This approach bolsters the
algorithm’s stability and generates training labels for the main network.

(3) Convolutional neural networks utilize the maximum likelihood estimation method
to approximate the true Q-value, predicated on the assumption of independently and
identically distributed training samples. However, correlations may be present in the data
collected during the learning process. To address this issue and augment training stability,
researchers have incorporated an experience replay pool. This pool persistently archives
state (s), action (a), and reward information (r), facilitating random data extraction during
the learning episodes.

(4) The loss function is shown in Equation (7).

L) =E

2
(r+'ymaxQ(s’,a’;9_) - Q(s,a;@)) ] 7)
a/
The parameters of the main network are updated according to Equation (8).
01 =6 +a [? +ymaxQ(s’,a’;07) — Q(S,a;G)} v Q(s,a;0) (8)
ﬂ/

In Equation (8), the gradient of the main network is indicated by 7Q(s,a;60) and «
denotes the learning rate. In the algorithm flow,r + ymax, Q(s’,a’;6~) represents the
target Q value. Subsequently, the Q is updated using the temporal difference method,
as per Equation (9).

Q(s,a) < Q(s,a;0) + a(Target Q — Q(s,a;0)) )

(5) The traditional greedy strategy in the search process evenly allocates a certain
probability to each action, while assigning the remaining probability to the optimal action.
However, random searches conducted during the later stages of training can potentially
disrupt the identification of the optimal strategy. To alleviate this disruption, adjusting
the value of the parameter € is recommended'. The specific equations are illustrated in
Equations (10) and (11).

1—e+ 5=,if a = arg max, Qx(s,a)
_ [A(s)]
m(als) = { IA‘ES)I ,if a # arg max, Qx(s,a) (10)
1, if Ts <100 || P, < =iy
0, else

The variable T; represents the training rounds of the algorithm, while P, is a random
number of [0,1]. In the initial phase, the algorithm searches for paths with 100% probability.
After 100 training rounds, the search continues with some level of randomness. This
method involves dynamically tuning the value of € throughout the training process to strike
a balance between minimizing computational overhead and optimizing the robustness of
the resultant strategy.
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3. General Framework of the Algorithm

In this paper, we propose an algorithmic framework based on deep reinforcement
learning for the planning and smoothing of ship navigation paths. This framework has two
main stages: the path planning stage and the path smoothing stage.The overall framework
is depicted in Figure 2. During the path planning stage, the algorithm utilizes deep reinforce-
ment learning techniques to initiate from the initial state, assess the environment, and select
the optimal sequence of actions to generate a preliminary navigation path. The objective
of this stage is to establish an efficient route to the destination, without considering the
specific operational constraints of the ship.

Environment Deep Reinforcement Learning Algorithm Planned path
Action A,
> B - l SE T
Gridded [] o ]

State S¢4q Reward Ryyq

Ship Turning Path Acquisition Process Smooth path
i Maximum Rudder E E Nonlinear Nomoto Mathematical
i Angle and Speed Limit i H Modelling of the Yupeng in Ballast B ...‘ {
i} ® .

Rudder
Angle

a i ¢ ]
— - P -
v (28 | ) Expand | =Y
¥ ] i Translate

Figure 2. The overall framework of MAPF-DQN algorithm.

Subsequently, the algorithm advances to the path smoothing stage, actively integrating
the nonlinear Nomoto mathematical model to simulate the dynamic behavior of the ship
when it is in a ballast state. By segmenting, expanding, and transforming the preliminary
path, the algorithm further optimizes the route, reducing its tortuosity and enhancing the
smoothness of navigation. In this stage, the algorithm also considers the ship’s maximum
rudder angle and speed limitations, ensuring that the generated path complies with the
ship’s physical characteristics and meets the requirements of actual navigation.

The entire algorithm framework diagram depicts the comprehensive process, starting
from environment initialization, moving through path planning, and finally reaching
path smoothing. This progression showcases the logical and systematic nature of our
algorithm design.

3.1. Path Planning Algorithm

In the path planning stage, we adopted deep reinforcement learning techniques to
overcome the limitations of single models in terms of adaptability. In this field, the Deep
Q-Network (DQN) algorithm, recognized as a classic and mature technology, has been
widely acknowledged and applied to solve complex decision-making problems. The DQN
algorithm works in various intricate navigation environments, but it encounters the chal-
lenge of reward sparsity. Although the APF is efficient, fast, and simple, it is hindered by
local minimum traps and the inability to reach the destination. This research merges the
APF technique with the DQN algorithm to surmount these constraints.

In the MAPF-DQON algorithm, the environment module of the framework is imple-
mented as the APF environment module, as shown in Figure 3. The pseudo-code is shown
in Algorithm 1.
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The APF environment module is essentially a design of the original segmented reward

function into the improved artificial potential field method mentioned in Section 2.1,
as shown in Equation (12).

r=—Ugi(X) — Ugi(X) (12)

Algorithm 1 Path Planning Algorithm.

1:

Input: Initial environmental observation matrix G. The action set is defined as a discrete
ensemble of movements, i.e., up, down, left, and right.

: Parameter descriptions:
: Observation period T, the algorithm solely accumulates data into the replay buffer

without performing random sampling.

: Training period Ti,in, the algorithm stores data in the replay buffer and conducts

random sampling.

: Training round Tpisode, the algorithm ceases searching and advances to the subsequent

round, upon reaching the iteration limit.

: Update interval Trenew, the main network synchronizes hyperparameters to the target

network every 20 rounds.

7: Learning rate «, the learning rate for updating the Q.
8: Gravitational coefficient K¢, adjusting gravitational potential field intensity.

11:
12:
13:
14:
15:

16:

17:
18:
19:
20:
21:
22:
23:
24:
25:

26:
27:
28:
29:
30:
31:

32:

33:
34:
35:
36:
37:

39:

: Repulsive force coefficient Kg, adjusting repulsive potential field intensity.
10:

Discount factor v, balancing the trade-off between immediate and future rewards.

Output: Destination arrival path S, optimal path Spest
fori =1to Ty, do
for T, = 1 to Tepisode do
Determine Qnow based on the current Qpn,in network
Select action based on time-changing-greedy policy and determine the next
position
Store the obtained environmental observation sequence (s, a) in the experience
pool
if destination is reached then
Record the path
end if
end for
end for
for j = 1 to Tiain do
for Ty = 1t0 Tepisode dO
Determine Qnow based on the current Qpain network
Select action based on time-changing S-greedy policy and determine the next
position
Update the experience pool
if T, mod Tyenew = O then
Update the target neural network Qtarget
end if
Update the Q value using temporal difference method and reward function:
r=—Ugi(X) - uRi()g)
Ugs(X) = KriRGe ", ifo < p4
0, ifp>py
Uci(X) = ;KGR;
Train the Qmain network with the updated a and experience pool data
if destination is reached then
Record the path
end if
end for
end for
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The gravitational potential function Ug; and the repulsive potential function Ug; are
components of the enhanced APF method detailed in Section 2.1. Equation (12) disregards
the direction of the force, instead expressing the force magnitude as a reward value. When
the ship approaches the target point, the gravitational force decreases, leading to increased
reward. In contrast, approaching an obstacle intensifies the repulsive force, which decreases
the reward value r. Integrating the artificial potential field into the reward function ensures
continuity, making the deep reinforcement learning search process more directed and
boosting the learning efficacy.

—>[ DQN LOSS Function ] APF Environment
| update
max Q(s’,a’;67) Q(s,a;6) network Information
: parameters
copy Y :
Target i .
[ ;Irfte ] [ I\I/f]z:tn I Reward Function
T S
s G
7[ Replay Buffer J P

Figure 3. Structure of the MAPF-DQN algorithm.

3.2. Feasibility Enhancement Algorithm

The generated path effectively tackles the issues of local minimum traps and inability
to reach the destination present in the artificial potential field method. The path planning
algorithm should take into account various factors that affect the maneuvering performance
of vessels [34], including vessel type, size, propulsion system, hydrodynamic characteristics,
etc. As a result, this section centers on examining the turning behavior of massive ships and
optimizing the planned route to coincide with the ship’s handling traits, thereby achieving
a smoother trajectory. Next, we will explore the acquisition of data regarding the ship’s
helm position for a 90° heading change across various bearings, while considering the
unique attributes of the rudder servo mechanism.

To achieve a realistic simulation, a platform built within Simulink generates the exper-
imental trajectory of the ship’s continuous rotation. The structure depicted in Figure 4 inte-
grates the rudder servo system, which includes the rudder angle saturation limit, the rudder
angle rate of change limit, and a first-order inertia system. Zhang and Zhang [35] designed
the first-order inertia system as the transfer function ﬁ to simulate the transition process
of the ship’s rudder angle response.

Rudder Servo Nomoto
angle system model

o

Math |,

x calculation | -
Position (_’7—J
display j€<—__ | Math
Y calculation l

Figure 4. Simulation diagram of ship cyclotron experiment.

The framework specifically incorporates the Nomoto module, which features a nonlin-
ear Nomoto model [36] designed to describe the motion characteristics of ships accurately.
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The nonlinear Nomoto model was developed through a combination of theoretical develop-
ment, empirical observations, and experimental data from model tests and full-scale ship
trials. It typically takes the form of a set of nonlinear differential equations that describe
the ship’s motion in surge, sway. The model parameters can be directly obtained from the
actual ships.

. Ky 3 K

G+ 7 (ap+p9°) = 26+ 4 (13)

The parameters K and T are pivotal within this model, representing the ship’s ma-
neuverability indices. These indices are not constants but are influenced by a myriad
of factors including, yet not limited to, the ship’s hydrodynamic design, its operational
conditions, the state of the hull, and the environmental conditions such as wind and cur-
rent. Furthermore, i represents the actual heading, § denotes the rudder angle, and A
symbolizes external disturbances. This study focuses solely on examining the turning
performance of the ship to ensure a smoother planned path, disregarding the influence of
external interference.

To enhance the smoothness of the paths generated by the MAPF-DQN algorithm, it
is essential to incorporate precise positional information during ship turning maneuvers,
moving beyond sole reliance on the cumulative heading angle calculated from the head-
ing rate of change. This critical conversion is depicted in Equation (14), signifying the
computational procedure executed within the simulation environment.

{’.&_UC.‘W (14)
y=Usiny

where (x,y) denotes the ship’s position and U represents the magnitude of the ship’s
velocity. The heading, ¢, is determined by integrating the bow angular velocity.

The temporal lag inherent in the rudder response manifests exclusively during a
vessel’s 90° course alteration from its point of departure. We selectively preserve the
trajectory segment to accurately reflect the practical scenario characterized by a time
delay in steering. Subsequently, the preserved segment is expanded upon using the
principle of symmetry. As illustrated in Figure 5, the trajectory located within the first
quadrant corresponds to the positional data (x, y) acquired from the simulation experiment.
The positional information throughout the remaining quadrants is extrapolated by employing
the symmetry principle.

Y/\

Position obtained by
symmetry [-X.y]

Position obtained by
simulation [x.y]

s, ’
\\\ e
-
~\~ "
-~ -
S -
———————— \
- ——
_________ - -
"_,-— -.___‘
~
-~ S
-
# .
’ ~
! Y
! \
1 i
i I

Figure 5. Principle of ship turn information expansion.
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4. Experiments and Analyses
4.1. Path Planning Experiments

Within the scope of this experimental study, the ship navigates in a calm sea area with a
size of 3000 m x 3000 m, a partitioned grid with dimensions of 30 x 30. The neural network
is constructed with two hidden layers, each hosting 60 neurons. The precise parametric
configurations are elucidated in Table 1. And the “Observation period” and “Training
period” refer to the iterative rounds of the algorithm’s training regimen. Each round is a
critical phase for the model, integrating observation, decision-making, and learning updates.
In all the following experiments, the safety, economy, and practicality of paths are evaluated
through various parameters, including the minimal distance from the planned trajectory to
obstacles (R;,i,), the length of the planned path (L), and the number of waypoints (N) and
the number of turns back in situ (Z).

Table 1. Parameters of the MAPF-DQN algorithm.

Parameters Symbols Numeric Parameters Symbols Numeric
Observation Period Tops [times] 200 Discount factor 0% 0.9
Training period Tirain [Himes] 800 Gravitational coefficient Kgi 0.9
Training round Tepisode [iterations] 300 Repulsive force coefficient Kgi 0.9
Update interval Trenew [times) 20 Learning rate w 1

4.1.1. Collision Avoidance Experiment in Conventional Narrow Waterways

This investigation employs simulations to compare the MAPF-DQN, A*, and DON al-
gorithms for marine obstacle avoidance within an identical maritime environment, thereby
assessing the efficacy of the MAPF-DQN approach. The results of these experiments are
illustrated in Figures 6-8. Specifically, Figure 8 depicts the obstacle field in black, the suc-
cessfully navigated path of the ship during learning training in blue, and the optimal
planned path achieved during training, characterized by the least number of waypoints,
in green.

Figure 6 illustrates the evolution of Q during the training of both DQN and MAPF-
DQON algorithms. Q represents the expected cumulative reward for state—action pairs,
assisting the agent in evaluating the contribution of each action to long-term rewards,
thereby enhancing learning and decision-making. In the training of MAPF-DQN, the Q
stabilizes after 200 iterations, indicating that the learning process may have converged to a
steady state. The agent has learned to take optimal actions in given states to maximize its
expected return. Figure 7 depicts the temporal evolution of successful path-finding attempts
during the learning process, serving to evaluate the learning progress and performance
enhancement of the MAPF-DON algorithm in path planning tasks. Over time, there is
a steady increase in the number of successful path-finding instances, indicating iterative
optimization and effective adoption of environment-appropriate path planning strategies
by the MAPF-DQN algorithm.

o 50

-50

-100

Value of Q
o
&
Value of Q

-150

-200

0 100 200 300 400 500 600 700 800 900 1000
Episodes

0 100 200 300 400 500 600 700 800 900 1000
Episodes

(a) (b)

Figure 6. Changes in Q value of obstacle avoidance experiment. (a) shows the Q-value variation
process of DQN algorithm; (b) shows the process of Q value variation of MAPF-DQN algorithm.
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Figure 7. Times of success of obstacle avoidance experiment. (a) shows the successful times of DQN
algorithm; (b) shows the successful times of MAPF-DQN algorithm.
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Figure 8. The planning path of obstacle avoidance experiment. (a) shows the planning path of A*
algorithm; (b) shows the planning path of DQN algorithm; (c) shows the planning path of MAPF-
DOQON algorithm. (The green path of the DQN algorithm is obtained by the 250th cycle of the search.
The green path of the MAPF-DQN algorithm is obtained by searching for the 968th cycle).

Figures 6 and 7 illustrate that the DON algorithm randomly explored two distinct
paths during the observational period. Although there was evidence of learning in the
initial stages, the algorithm failed to identify a successful trajectory to the target point
even after 300 rounds of training. This failure could be attributed to an error during this
phase, which subsequent learning sessions did not rectify. Moreover, the learned strategy
proved inadequate in guiding the vessel precisely to the target point by the conclusion
of the training. In contrast, the number of successfully identified paths increased consis-
tently when the MAPF-DON algorithm commenced its training phase, demonstrating its
capability to learn and avoid collisions with stationary obstacles. In Figure 8, the optimal
path was achieved in the 968th cycle rather than the final 1000th cycle. This occurrence is
due to the probability that the vessel may seek alternative trajectories based on the applied
greedy strategy. However, these subsequent paths did not result in improvements beyond
those attained in the 968th iteration. Notably, the frequency of reaching the target point
increased from 22 to 703 times, signifying an improvement of over 30-fold. The significant
increase suggests that the MAPF-DQN algorithm enhances the likelihood of converging
upon an optimal learned strategy. By integrating the APF method’s physical model with
the data-driven DQN algorithm, the MAPF-DQN approach significantly boosts the latter’s
learning efficiency.

Figure 8 depicts the optimal paths planned by the A* algorithm, the DQN algorithm,
and the MAPF-DQN algorithm. The A* algorithm selects a path along the edges of obsta-
cles, which is the shortest path. However, the path is too close to obstacles which raises the
risk of navigating narrow waterways. It could stem from the use of the Euclidean distance
as the heuristic function, which, while enabling the identification of the shortest path, may
not be suitable for real-world scenarios. Factors such as the representation of obstacles,
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the appropriateness of the heuristic function, specifics of the algorithm’s implementation,
the presence of local optima, and the choice of algorithm parameters could all contribute
to the impracticality of the path generated. On the other hand, the optimal path obtained
by the DOQN algorithm traverses an area filled with obstacles while maintaining a certain
distance from them. However, this path contains the most waypoints. Therefore, frequent
adjustments to the rudder and potential reversals in heading pose significant challenges
to the execution work and hurt navigation efficiency. In contrast, the trajectory computed
by the MAPF-DON algorithm, as shown in Figure 8, clearly lacks the local minima and
unreachable target issues commonly associated with artificial potential field methods. Com-
pared to the DQN algorithm, the best trajectory generated by the MAPF-DQN algorithm
effectively passes through sparsely populated obstacle areas. It reaches the destination
with fewer waypoints and wider spacing. Furthermore, the path generated by the MAPF-
DOQON algorithm focuses on the endpoint, thanks to the direction guidance imposed by the
gravitational vectors. As shown in Table 2, the path planned by the MAPF-DQN algorithm
exhibits improvements in safety, operational economy, and practical feasibility.

Table 2. Results of qualitative analysis. (Bold numbers indicate the best performance).

A* Algorithm DOQON Algorithm MAPF-DON Algorithm
Ryin [m] 50 50 150
L [m] 2100 2700 2300
N [number] 10 9 6
M [number] - 22 703
Z [number] 0 2 0

In conclusion, the MAPF-DQN algorithm for planning routes enhanced learning
efficiency, safety, economics, and feasibility. However, the presence of six right-angle bends
in the track results in abrupt 90° changes in direction, which deviate from the actual sailing
trajectory of large ships.

4.1.2. Collision Avoidance Experiment on U-Shaped Obstacle

During actual maritime navigation, vessels routinely engage in berthing and un-
berthing maneuvers, with ports often characterized by U-shaped configurations. The con-
ventional artificial potential field method for obstacle avoidance may encounter entrapment
at specific points within such U-shaped geometries. We conduct a comparative simula-
tion with the DQN algorithm for U-shaped obstacle avoidance to validate the efficacy of
the MAPF-DQN algorithm in resolving local minimum traps issues. The results of the
experimental evaluation are presented in Figures 9 and 10.

Figure 9 documents the evolution of Q-values for DQN and MAPF-DQN algorithms
when encountering a U-shaped obstacle. The DQN algorithm exhibits relatively stable
Q-value changes but stabilizes at —5, significantly deviating from the ideal target value
of 0, indicating ineffective learning of strategies to reach the goal. In contrast, despite
MAPF-DQN showing more pronounced Q-value fluctuations during training, it converges
successfully to the ideal value of 0. This demonstrates MAPF-DQN’s ability to learn strate-
gies guiding the agent to navigate obstacles and reach the target effectively. The traditional
artificial potential field method often exhibits suboptimal performance in U-shaped ob-
stacles with a propensity to deadlock. Conversely, the DON algorithm circumvents this
issue; however, it suffers from diminished learning efficiency due to the reward function’s
sparsity, culminating in an impractical final trajectory. As demonstrated in Figure 9, the op-
timal path is achieved during the seventh iterative search, indicating that the terminally
trained network does not converge to an optimal policy. In stark contrast, the MAPF-DQN
algorithm outperforms its DQN counterpart in learning efficiency and path practicality.
Furthermore, the algorithm effectively negotiates escape from U-shaped impediments,
alleviating predicaments such as local minimum entrapment.
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Figure 9. Changes in Q value of U-shaped obstacle experiment. (a) shows the Q-value variation
process of DON algorithm; (b) shows the process of Q value variation of MAPF-DQN algorithm.

Planned trajectories Planned trajectories

30

R
=

25

20

x
&l

=< 15

s go1]
s oo1]

0 5 10 15 20 25 30 ] 5 10 15 20 25 30

[100 meters] [100 ;‘:em‘s]
@) (b)

Figure 10. The planning path of U-shaped obstacle experiment. ((a) The green path of the DON
algorithm is obtained by the 7th cycle of the search. (b) The green path of the MAPF-DQN algorithm
is obtained by searching for the 804th cycle).

4.1.3. Collision Avoidance Experiments across Diverse Scenarios

This experiment aims to investigate the generalisability of the MAPF-DQN algorithm
in various navigational environments and the performance difference of the DQN algo-
rithm. As the previous comparative experiments were limited to specific environments,
this study designed a set of experiments covering ten different navigation environments
and conducted a detailed evaluation of the performance of both algorithms in these en-
vironments. The specific experimental results are detailed in Figure 11. In Figure 11,
the green line distinctly marks the optimal path planned by the algorithm. In contrast,
the blue lines represent the collection of all paths successfully reaching the target during
the training process. We have set up a hypothetical navigation environment primarily
consisting of narrow channels, and have specifically included challenging special channels,
such as double-U-shaped obstacles. These complex navigation conditions pose a severe
challenge for path-planning algorithms. Through comparative validation of experimen-
tal results, the advantages of the MAPF-DQN algorithm in planning paths in complex
navigation environments are proven. Tables 3 and 4 illustrate the specific performance
indicators of the DQN and MAPF-DQN algorithms in different navigation environments.
To clearly demonstrate the changes in the MAPF-DQN algorithm on the five metrics,
this study used the indicator values of the DQN algorithm as a baseline, calculated the
relative indicator values of the MAPF-DQN algorithm, and provided the difference in
values. However, since the optimal paths of the DQON algorithm in the respective harsh
environments could not be counted for some of the metrics, they were replaced with the
maximum values from other experiments, as shown in Figure 11. By analyzing these data,



J. Mar. Sci. Eng. 2024, 12,1334

14 of 20

we aim to reveal the adaptability advantages and disadvantages of the two algorithms in
diverse sailing environments.
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Figure 11. Results of the generalizability experiment.

The experimental results are shown in Figures 11 and 12. After comparing the number
of successfully searched paths between the MAPF-DQN algorithm and the DQN algorithm
in ten independent experiments, we found that the average number of successful searches
for the MAPF-DQN algorithm was significantly higher than that of the DQN algorithm.
The enhancement can be attributed to the revised reward function, which explicitly defines
the rewards and aids in generating paths that are closer to the target point during the
learning process. As a result of the improved search efficiency, the selected optimal paths
also showed partial improvement in other performance metrics. Although the paths
generated by the DON algorithm had one less turn than the MAPF-DQN algorithm in
the fourth experiment, the MAPF-DON algorithm still demonstrated an advantage in the
number of successful searches. This may indicate that the DQN algorithm probabilistically
found a superior path in this experiment. However, the result cannot prove that the
DQN algorithm outperforms the MAPF-DQN algorithm overall. In particular, in the
experimental scenario containing two reversed U-shaped obstacles, the DQN algorithm
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failed to successfully discover any paths to the target point during the learning process.
The MAPF-DQN algorithm successfully found 506 valid paths, and the final selected paths
were relatively high in quality. Therefore, the advantage of the MAPF-DQN algorithm is
more significant in more challenging environments.

Table 3. DQN algorithm metrics in generalization experiments. (- indicates that the value could not

be counted).

Ripin [m] L [m] N [number] Z [number] M [number]
Scenario 1 50 9300 - 6 6
Scenario 2 50 4700 18 2 15
Scenario 3 50 10,800 22 6 4
Scenario 4 150 2000 6 0 621
Scenario 5 50 20,400 - 8 1
Scenario 6 50 18,500 - - 1
Scenario 7 50 10,300 - 11 4
Scenario 8 50 13,900 - 5 8
Scenario 9 50 2700 9 0 26
Scenario 10 - - - - 0
Average 60 11,300 25.3 6 68.6
value
Table 4. MAPF-DQN algorithm metrics in generalization experiments.
Ripin [m] L [m] N [number] Z [number] M [number]
Scenario 1 50 2100 10 0 777
Scenario 2 150 2100 11 0 790
Scenario 3 50 3100 13 1 233
Scenario 4 150 2000 7 0 750
Scenario 5 50 6900 28 4 19
Scenario 6 150 2100 2 0 762
Scenario 7 50 2700 10 1 719
Scenario 8 250 2100 10 0 781
Scenario 9 150 2100 12 0 779
Scenario 10 150 4300 16 0 506
Average 120 2950 119 0.6 611.6
value

Comparison of two algorithms for five metrics

I Algorithm DQN 7.9
B Algorithm MAPF-DQN 1
81 —«- Line Plot ]

Values
~—

1.00

Figure 12. Comparison of two algorithms for five metrics.

Difference in value
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In summary, the MAPF-DON algorithm demonstrates strong generalization ability,
can adapt to a variety of navigational environments, and shows better comprehensiveness

in path selection.

4.2. Feasibility Enhancement Experiment

In this experiment, the path planned by the MAPF-DQN algorithm in Section 4.1.1 is
processed to match the turning performance of “Yupeng”, as shown in Figure 8. The prin-
cipal parameters of the ship are delineated in Table 5. The derived parameters for the
nonlinear Nomoto model are K = 0.21, T = 107.78,a = 13.17, B = 16,323.89, as cited from
Zhang and Zhang [35]. An examination of the rudder dynamics of the subject vessel reveals
a maximum rudder angle of £35° and a maximum steering rate of +5°/s.

Table 5. Ship type parameters during the ballast of the practice ship “Yupeng”.

Variant Numeric Variant Numeric
Length between perpendiculars 189 m Width 27.8 m
Draft 6.313 m Discharge volume 22,036.7 m>
Distance from center of gravity —4.043 m Block coefficient 0.661
Rudder area 31.67 m? Speed 17.26 kn

Figure 13 depicts the outcomes of the simulation experiment, revealing a longitudinal
tactical diameter of approximately 694 m—equivalent to 3.7 times the vessel’s length; and
a transverse tactical diameter of about 717 m, which is 3.8 times the ship’s length. These
findings are consistent with the actual “Yupeng” vessel’s constant rotation experimental
results. For instance, Figure 14 illustrates the trajectory planned by the MAPF-DQN
algorithm, as detailed in Section 4.1.1, wherein the “Yupeng” vessel initiates its journey
from the starting point and navigates through an array of obstacles before finally reaching
the destination. The red dot indicates the start point, the green dot the end point, the blue
line the planned trajectory, and the black + the rudder position. The red dot signifies the
starting point, the green dot denotes the endpoint, the blue line illustrates the planned
trajectory, and the black “+” indicates the steering position. En route, the ship executes six
turns that adhere to its maneuvering characteristics and maintains a safe distance of no less

than 150 m from the obstacles.

600 T T T T T T T

500 ““ 0,'. -
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Figure 13. Results of the ship slewing experiment.
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Figure 14. Final trajectory for path planning (+ indicates specific rudder position).

4.3. Dicussion for Seafarers-Related Training Issues

Role and Skill Requirement Transformation. The transition to automated vessels,
exemplified by sophisticated algorithms such as MAPF-DQN, has redefined the maritime
professional’s role, evolving from manual operation to strategic oversight and technical
stewardship. Seafarers must now be adept in the intricacies of advanced navigation sys-
tems, prepared to manage and troubleshoot in real time, especially in critical scenarios
like navigating through hazardous areas with impaired or disabled AIS and radar sys-
tems. In such instances, relying on manual observations through telescopes to delineate
no-go zones within the MAPF-DQN algorithm, seafarers must demonstrate agility and
resourcefulness to ensure safe passage.

Evolution of Training Needs. With the advent of automation, seafarer training has
become more compleX, requiring not only a grasp of high-tech systems but also proficiency
in traditional navigation skills. Training must encompass emergency response to situations
where automated systems like the AIS and radar may be compromised, necessitating
manual intervention to input no-go zones into the MAPF-DOQN for safe navigation. This
highlights the need for a dual-skills approach: maintaining traditional seamanship while
advancing technical expertise.

Managerial Implications. Our research significantly impacts maritime management
by enhancing safety, efficiency, and adaptability. The MAPF-DON algorithm can assist
shipping companies in optimizing routes, reducing fuel consumption, and minimizing
travel time, which directly translates to cost savings and improved operational efficiency.
Moreover, the ability to rapidly adapt to dynamic maritime conditions and emergencies
can significantly improve safety standards.

Challenges in Management and Regulation. The shift toward automation introduces
challenges in management and regulatory oversight. It requires the development of con-
tingency protocols for scenarios wherein standard navigation aids are non-operational,
and seafarers must manually guide the ship’s path planning. Regulatory bodies must
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References

update standards to accommodate such manual interventions, ensuring they are safely and
effectively integrated with automated systems like MAPF-DQN.

In conclusion, the maritime industry’s progression toward automation demands a
seafarer workforce that is versatile, capable of addressing both routine operations and
unexpected emergencies. The integration of MAPF-DQN with traditional navigation skills
underscores the need for a comprehensive training regimen that prepares seafarers to
navigate safely, even when faced with the unexpected challenges of modern seafaring.

5. Conclusions

This paper addresses the static obstacle avoidance problem for large ships by design-
ing a local path planning algorithm that combines deep reinforcement learning with the
artificial potential field method. The algorithm consists of two main components: path
planning and feasibility enhancement. In the path planning phase, the planned path in
the simulation experiment overcomes local minimum traps and the inability to reach the
destination. Specifically, the path search is more targeted, generalizable to various environ-
ments, and search efficiency is improved. After enhancing the feasibility of the paths found
by the MAPF-DQN algorithm, the path turns are smoother and meet the maneuvering
characteristics of the “Yupeng” ship. In conclusion, the path planned by the MAPF-DOQN
algorithm exhibits safety, economy, and feasibility, while also demonstrating improved
learning efficiency. However, the MAPF-DQN algorithm faces challenges in rapidly adapt-
ing to dynamic environmental changes and does not yet incorporate collision avoidance
regulations, potentially impacting its practicality in maritime navigation. The phased ap-
proach of the algorithm increases computational demands, which could hinder its real-time
capabilities in systems with limited resources. To enhance the performance and practicality
of the algorithm, we need to focus on several areas in the future. First, to improve the
responsiveness of the algorithm so that it can rapidly adapt to dynamic changes in sea
conditions; second, to integrate collision avoidance protocols to ensure the safety of vessels
during navigation; in addition, we need to enhance the generalizability of the algorithm to
cope with the constant changes in the navigation environment; finally, through testing in
sea conditions, we continue to optimize and refine the performance of the algorithm.
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