Unleashing the Potential of the 360° Baited Remote Underwater Video System (BRUVS): An Innovative Design for Complex Habitats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Sampling Design BRUVS
2.2.1. Previous Design (PD) BRUVS
2.2.2. New Design BRUVS Deployment
2.3. BRUVS Design Performance
2.3.1. Time Consumption and Design Resilience
- (a)
- System anchoring: The stability of the BRUVS on the seabed was observed (e.g., overturning or drifting).
- (b)
- Equipment Damage: Any damage to the BRUVS components after recollection was documented.
- (c)
- Equipment Loss: Instances of equipment loss, such as cameras or other critical components, were documented.
2.3.2. Video Analysis
- (a)
- Angle of View: The field of view provided by the cameras in each BRUVS design was assessed to understand the type of information that could be collected.
- (b)
- Species Detection: The presence and identification of species were compared between the two designs. Species were identified based on distinctive morphological characteristics visible in the video, such as body shape, coloration, and behavior by the same observer. Reference materials, including regional identification guides and online databases (e.g., FishBase), were used for cross-referencing and verification. Individuals with ambiguous features were excluded to ensure accuracy.
- (c)
- Habitat Visualisation: The ability to visualise and understand the surrounding habitat during the video processing’s was evaluated.
- (d)
- Video processing facilities: The capability of video software to processing, including multiview and zoom facilities, was accessed for each design.
3. Results and Discussion
3.1. BRUVS Performance Comparisons
3.2. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cappo, M.; Speare, P.; De’ath, G. Comparison of Baited Remote Underwater Video Stations (BRUVS) and Prawn (Shrimp) Trawls for Assessments of Fish Biodiversity in Inter-Reefal Areas of the Great Barrier Reef Marine Park. J. Exp. Mar. Biol. Ecol. 2004, 302, 123–152. [Google Scholar] [CrossRef]
- Friedlander, A.M.; Giddens, J.; Ballesteros, E.; Blum, S.; Brown, E.K.; Caselle, J.E.; Henning, B.; Jost, C.; Salinas-de-León, P.; Sala, E. Marine Biodiversity from Zero to a Thousand Meters at Clipperton Atoll (Île de La Passion), Tropical Eastern Pacific. Peer J. 2019, 7, e7279. [Google Scholar] [CrossRef] [PubMed]
- Langlois, T.; Goetze, J.; Bond, T.; Monk, J.; Abesamis, R.A.; Asher, J.; Barrett, N.; Bernard, A.T.F.; Bouchet, P.J.; Birt, M.J.; et al. A Field and Video Annotation Guide for Baited Remote Underwater Stereo-Video Surveys of Demersal Fish Assemblages. Methods Ecol. Evol. 2020, 11, 1401–1409. [Google Scholar] [CrossRef]
- Osgood, G.J.; McCord, M.E.; Baum, J.K. Using Baited Remote Underwater Videos (BRUVs) to Characterize Chondrichthyan Communities in a Global Biodiversity Hotspot. PLoS ONE 2019, 14, e0225859. [Google Scholar] [CrossRef] [PubMed]
- Roberson, L.; Winker, H.; Attwood, C.; De Vos, L.; Sanguinetti, C.; Götz, A. First Survey of Fishes in the Betty’s Bay Marine Protected Area along South Africa’s Temperate South-West Coast. Afr. J. Mar. Sci. 2015, 37, 543–556. [Google Scholar] [CrossRef]
- Sherman, C.S.; Chin, A.; Heupel, M.R.; Simpfendorfer, C.A. Are We Underestimating Elasmobranch Abundances on Baited Remote Underwater Video Systems (BRUVS) Using Traditional Metrics? J. Exp. Mar. Biol. Ecol. 2018, 503, 80–85. [Google Scholar] [CrossRef]
- Caldwell, Z.R.; Zgliczynski, B.J.; Williams, G.J.; Sandin, S.A. Reef Fish Survey Techniques: Assessing the Potential for Standardizing Methodologies. PLoS ONE 2016, 11, e0153066. [Google Scholar] [CrossRef] [PubMed]
- Dorman, S.R.; Harvey, E.S.; Newman, S.J. Bait Effects in Sampling Coral Reef Fish Assemblages with Stereo-BRUVs. PLoS ONE 2012, 7, e41538. [Google Scholar] [CrossRef] [PubMed]
- Goetze, J.S.; Jupiter, S.D.; Langlois, T.J.; Wilson, S.K.; Harvey, E.S.; Bond, T.; Naisilisili, W. Diver Operated Video Most Accurately Detects the Impacts of Fishing within Periodically Harvested Closures. J. Exp. Mar. Biol. Ecol. 2015, 462, 74–82. [Google Scholar] [CrossRef]
- Gomes, M.A.; Alves, C.M.; Faria, F.; Troncoso, J.S.; Gomes, P.T. Untangling Coastal Diversity: How Habitat Complexity Shapes Demersal and Benthopelagic Assemblages in NW Iberia. J. Mar. Sci. Eng. 2024, 12, 538. [Google Scholar] [CrossRef]
- Holmes, T.H.; Wilson, S.K.; Travers, M.J.; Langlois, T.J.; Evans, R.D.; Moore, G.I.; Douglas, R.A.; Shedrawi, G.; Harvey, E.S.; Hickey, K. A Comparison of Visual- and Stereo-Video Based Fish Community Assessment Methods in Tropical and Temperate Marine Waters of Western Australia. Limnol. Oceanogr. Methods 2013, 11, 337–350. [Google Scholar] [CrossRef]
- Gore, M.; Ormond, R.; Clarke, C.; Kohler, J.; Millar, C.; Brooks, E. Application of Photo-Identification and Lengthened Deployment Periods to Baited Remote Underwater Video Stations (BRUVS) Abundance Estimates of Coral Reef Sharks. Oceans 2020, 1, 274–299. [Google Scholar] [CrossRef]
- Mallet, D.; Pelletier, D. Underwater Video Techniques for Observing Coastal Marine Biodiversity: A Review of Sixty Years of Publications (1952–2012). Fish. Res. 2014, 154, 44–62. [Google Scholar] [CrossRef]
- Moore, C.H.; Harvey, E.S.; Van Niel, K.P. Spatial Prediction of Demersal Fish Distributions: Enhancing Our Understanding of Species–Environment Relationships. ICES J. Mar. Sci. 2009, 66, 2068–2075. [Google Scholar] [CrossRef]
- Fernandes, E.F. Utilização de Baited Remote Underwater Video Systems na avaliação da diversidade de peixes. Master’s Thesis, Master in Ecology, University of Minho, Braga, Portugal, 2019. [Google Scholar]
- Barazzetti, L.; Previtali, M.; Roncoroni, F. Can we use low-cost 360 degree cameras to create accurate 3D models? Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 2, 69–75. [Google Scholar] [CrossRef]
- Fangi, G.; Pierdicca, R.; Sturari, M.; Malinverni, E.S. Improving Spherical Photogrammetry Using 360° Omni-cameras: Use Cases and New Applications. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 2, 331–337. [Google Scholar] [CrossRef]
- Gallagher, A.J.; Alsudairy, N.A.; Shea, B.D.; Payne, N.L.; Duarte, C.M. First Application of 360-Degree Camera Technology to Marine Predator Bio-Logging. Front. Mar. Sci. 2021, 8, 707376. [Google Scholar] [CrossRef]
- Hemery, L.G.; Mackereth, K.F.; Gunn, C.M.; Pablo, E.B. Use of a 360-Degree Underwater Camera to Characterize Artificial Reef and Fish Aggregating Effects around Marine Energy Devices. J. Mar. Sci. Eng. 2022, 10, 555. [Google Scholar] [CrossRef]
- Pérez-García, J.L.; Gómez-López, J.M.; Mozas-Calvache, A.T.; Delgado-García, J. Analysis of the Photogrammetric Use of 360-Degree Cameras in Complex Heritage-Related Scenes: Case of the Necropolis of Qubbet El-Hawa (Aswan Egypt). Sensors 2024, 24, 2268. [Google Scholar] [CrossRef]
- Teppati Losè, L.; Chiabrando, F.; Giulio Tonolo, F. Documentation of Complex Environments Using 360° Cameras. The Santa Marta Belltower in Montanaro. Remote Sens. 2021, 13, 3633. [Google Scholar] [CrossRef]
- Alves, C.M.; Gomes, M.A.; Troncoso, J.S.; Gomes, P.T. Structural and Functional Diversity Patterns of Macrofaunal Communities from a Semi-Enclosed Inlet of Northeast Atlantic: The Influence of Environmental Conditions. Estuar. Coast. Shelf Sci. 2024, 296, 108575. [Google Scholar] [CrossRef]
- Rey, D.; Álvarez-Iglesias, P.; Jo, M.F.A.; Bernabeu, A.M.; Comas, M.; Decastro, M.; Druet, M.; Silva, E.F.D.; Ferrín, A.; Gesteira, M.; et al. The NW Iberian Continental Shelf. Geol. Soc. Mem. 2014, 41, 91–108. [Google Scholar] [CrossRef]
- Rosa-Santos, P.; Veloso-Gomes, F.; Taveira-Pinto, F.; Silva, R.; Pais-Barbosa, J. Evolution of Coastal Works in Portugal and Their Interference with Local Morphodynamics. J. Coast. Res. 2009, 1, 757–761. [Google Scholar]
- Lemos, R.T.; Pires, H.O. The Upwelling Regime off the West Portuguese Coast, 1941-2000: Portuguese coastal upwelling. Int. J. Climatol. 2004, 24, 511–524. [Google Scholar] [CrossRef]
- Pérez, F.F.; Padín, X.A.; Pazos, Y.; Gilcoto, M.; Cabanas, M.; Pardo, P.C.; Doval, M.D.; Farina-Busto, L. Plankton Response to Weakening of the Iberian Coastal Upwelling. Glob. Chang. Biol. 2010, 16, 1258–1267. [Google Scholar] [CrossRef]
- Silva, R.; Coelho, C.; Veloso-Gomes, F.; Taveira-Pinto, F. Dynamic Numerical Simulation of Medium-Term Coastal Evolution of the West Coast of Portugal. J. Coast. Res. 2007, 50, 263–267. [Google Scholar] [CrossRef]
- Veiga, P.; Rubal, M.; Sousa-Pinto, I. Structural Complexity of Macroalgae Influences Epifaunal Assemblages Associated with Native and Invasive Species. Mar. Environ. Res. 2014, 101, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Langlois, T.; Williams, J.; Monk, J.; Bouchet, P.; Currey, L.; Goetze, J.; Harasti, D.; Huveneers, C.; Ierodiaconou, D.; Whitmarsh, S. Marine Sampling Field Manual for Benthic Stereo BRUVS. In Field Manuals for Marine Sampling to Monitor Australian Waters; Przeslawski, R., Foster, S., Eds.; National Environmental Science Programme (NESP); NESP Marine Biodiversity Hub: Canberra, Australia, 2018; Volume 5, pp. 82–104. [Google Scholar]
- Jones, R.E.; Griffin, R.A.; Herbert, R.J.H.; Unsworth, R.K.F. Consistency Is Critical for the Effective Use of Baited Remote Video. Oceans 2021, 2, 215–232. [Google Scholar] [CrossRef]
- Quintella, B.R.; Silva, A.F.; Marques, J.P.; Pinto, B.; Ferreti, P.; QuilesPons, C.; Coelho, P.; Almeida, P.R.; Jacinto, D.; Cruz, T.; et al. Modelo de Monitorização da Biodiversidade Marinha Das Áreas Classificadas Do Sudoeste Alentejano e Costa Vicentina (Primeiro Relatório); II Relatório Técnico Do Projeto MARSW: Lisboa, Portugal, 2019; Volume 126. [Google Scholar]
- Kilfoil, J.; Wirsing, A.; Campbell, M.; Kiszka, J.; Gastrich, K.; Heithaus, M.; Zhang, Y.; Bond, M. Baited Remote Underwater Video Surveys Undercount Sharks at High Densities: Insights from Full-Spherical Camera Technologies. Mar. Ecol. Prog. Ser. 2017, 585, 113–121. [Google Scholar] [CrossRef]
- French, B.; Wilson, S.; Holmes, T.; Kendrick, A.; Rule, M.; Ryan, N. Comparing Five Methods for Quantifying Abundance and Diversity of Fish Assemblages in Seagrass Habitat. Ecol Ind. 2021, 124, 107415. [Google Scholar] [CrossRef]
- Whitmarsh, S.K.; Huveneers, C.; Fairweather, P.G. What Are We Missing? Advantages of More than One Viewpoint to Estimate Fish Assemblages Using Baited Video. R. Soc. Open Sci. 2018, 5, 171993. [Google Scholar] [CrossRef] [PubMed]
- Hasselman, D.J.; Barclay, D.R.; Cavagnaro, R.; Chandler, C.; Cotter, E.; Gillespie, D.M.; Hastie, G.D.; Horne, J.K.; Joslin, J.; Long, C.; et al. 2020 State of the Science Report, Chapter 10: Environmental Monitoring Technologies and Techniques for Detecting Interactions of Marine Animals with Turbines; Pacific Northwest National Laboratory (PNNL): Richland, WA, USA, 2020. [Google Scholar]
- Ditria, E.M.; Buelow, C.A.; Gonzalez-Rivero, M.; Connolly, R.M. Artificial Intelligence and Automated Monitoring for Assisting Conservation of Marine Ecosystems: A Perspective. Front. Mar. Sci. 2022, 9, 918104. [Google Scholar] [CrossRef]
- Rhodes, N.; Wilms, T.; Baktoft, H.; Ramm, G.; Bertelsen, J.L.; Flávio, H.; Støttrup, J.G.; Kruse, B.M.; Svendsen, J.C. Comparing Methodologies in Marine Habitat Monitoring Research: An Assessment of Species-Habitat Relationships as Revealed by Baited and Unbaited Remote Underwater Video Systems. J. Exp. Mar. Biol. Ecol. 2020, 526, 151315. [Google Scholar] [CrossRef]
- Colton, M.; Swearer, S. A Comparison of Two Survey Methods: Differences between Underwater Visual Census and Baited Remote Underwater Video. Mar. Ecol. Prog. Ser. 2010, 400, 19–36. [Google Scholar] [CrossRef]
- Hardinge, J.; Harvey, E.S.; Saunders, B.J.; Newman, S.J. A Little Bait Goes a Long Way: The Influence of Bait Quantity on a Temperate Fish Assemblage Sampled Using Stereo-BRUVs. J. Exp. Mar. Biol. Ecol. 2013, 449, 250–260. [Google Scholar] [CrossRef]
- Schramm, K.D.; Marnane, M.J.; Elsdon, T.S.; Jones, C.; Saunders, B.J.; Goetze, J.S.; Driessen, D.; Fullwood, L.A.F.; Harvey, E.S. A Comparison of Stereo-BRUVs and Stereo-ROV Techniques for Sampling Shallow Water Fish Communities on and off Pipelines. Mar. Environ. Res. 2020, 162, 105198. [Google Scholar] [CrossRef] [PubMed]
- Bond, T.; McLean, D.L.; Prince, J.; Taylor, M.D.; Partridge, J.C. Baited Remote Underwater Video Sample Less Site Attached Fish Species along a Subsea Pipeline Compared to a Remotely Operated Vehicle. Mar. Freshw. Res. 2022. [CrossRef]
- Schramm, K.D.; Harvey, E.S.; Goetze, J.S.; Travers, M.J.; Warnock, B.; Saunders, B.J. A Comparison of Stereo-BRUV, Diver Operated and Remote Stereo-Video Transects for Assessing Reef Fish Assemblages. J. Exp. Mar. Biol. Ecol. 2020, 524, 151273. [Google Scholar] [CrossRef]
- Jessop, S.A.; Saunders, B.J.; Goetze, J.S.; Harvey, E.S. A Comparison of Underwater Visual Census, Baited, Diver Operated and Remotely Operated Stereo-Video for Sampling Shallow Water Reef Fishes. Estuar. Coast. Shelf Sci. 2022, 276, 108017. [Google Scholar] [CrossRef]
PD | ND | |
---|---|---|
Average deployment time/per camera | ≈1 h 45 min | ≈1 h |
Lost cameras | 6 | 0 |
Anchoring | 25 | 0 |
Common species | yes | yes |
Surrounding habitat | challenging | straightforward |
Angle of view | fixed frame < 180° | variable frame—360° up/down |
Zoom in/zoom out ≠ angles | no | yes |
Species | PD | ND |
---|---|---|
Ctenolabrus rupestris | √ | √ |
Symphodus bailloni | √ | √ |
Labrus bergylta | √ | √ |
Coris julis | √ | √ |
Symphodus melops | √ | X |
Symphodus roissali | √ | X |
Pollachius pollachius | √ | X |
Trisopterus luscus | √ | √ |
Diplodus vulgaris | √ | √ |
Spondyliosoma cantharus | √ | √ |
Diplodus sargus | X | √ |
Conger conger | √ | √ |
Dicentrarchus labrax | √ | √ |
Serranus cabrilla | √ | √ |
Loligo vulgaris | √ | √ |
Pomatoschistus pictus | √ | X |
Parablennius gattorugine | √ | √ |
Parablennius pilicornis | √ | √ |
Trachurus trachurus | √ | √ |
Trachurus picturatus | √ | √ |
Chelon auratus | √ | √ |
Chelon labrosus | √ | √ |
Phycis phycis | X | √ |
Chelidonichthys lucerna | X | √ |
Belone belone | √ | √ |
Mullus surmuletus | √ | √ |
Hyperoplus lanceolatus | X | √ |
Zeugopterus punctatus | X | √ |
Raja undulata | √ | X |
Balistes capriscus | √ | X |
Pseudocaranx dentex | √ | X |
Scomber colias | √ | X |
Necora puber | X | √ |
Carcinus maenas | √ | √ |
Octopus vulgaris | X | √ |
Total species identified | 28 | 27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, M.A.; Alves, C.M.; Faria, F.; Neto, R.; Fernandes, E.; Troncoso, J.S.; Gomes, P.T. Unleashing the Potential of the 360° Baited Remote Underwater Video System (BRUVS): An Innovative Design for Complex Habitats. J. Mar. Sci. Eng. 2024, 12, 1346. https://doi.org/10.3390/jmse12081346
Gomes MA, Alves CM, Faria F, Neto R, Fernandes E, Troncoso JS, Gomes PT. Unleashing the Potential of the 360° Baited Remote Underwater Video System (BRUVS): An Innovative Design for Complex Habitats. Journal of Marine Science and Engineering. 2024; 12(8):1346. https://doi.org/10.3390/jmse12081346
Chicago/Turabian StyleGomes, Marisa A., Catarina M. Alves, Fábio Faria, Regina Neto, Edgar Fernandes, Jesus S. Troncoso, and Pedro T. Gomes. 2024. "Unleashing the Potential of the 360° Baited Remote Underwater Video System (BRUVS): An Innovative Design for Complex Habitats" Journal of Marine Science and Engineering 12, no. 8: 1346. https://doi.org/10.3390/jmse12081346
APA StyleGomes, M. A., Alves, C. M., Faria, F., Neto, R., Fernandes, E., Troncoso, J. S., & Gomes, P. T. (2024). Unleashing the Potential of the 360° Baited Remote Underwater Video System (BRUVS): An Innovative Design for Complex Habitats. Journal of Marine Science and Engineering, 12(8), 1346. https://doi.org/10.3390/jmse12081346