Utilizing WFSim to Investigate the Impact of Optimal Wind Farm Layout and Inter-Field Wake on Average Power
Abstract
:1. Introduction
2. Establishment and Verification of Wake Model of Wind Farms
2.1. Mathematical Model Analysis Method
2.2. Model Verification
2.2.1. Power Prediction Verification of the WFSim Model
2.2.2. Wind Speed Deficit Verification of the WFSim Model
2.2.3. Wake Verification of the WFSim Model
2.2.4. Wake Deflection Verification of the WFSim Model
3. Results and Discussion
3.1. Influence of Single-Factor Change on Average Power Output of Wind Farm
3.1.1. Parameter Settings When Studying the Influence of Single Factors
3.1.2. Influence of Wind Farm Layout on Average Power Output of Wind Farm
3.1.3. Influence of Wind Farm Yaw Setting on Average Power Output
3.2. Influence of Multi-Factor Change on the Average Power Output of Wind Farm
3.2.1. Results of Orthogonal Test
3.2.2. Analysis of Range and Variance
4. Wake Analysis and Influence of Yaw Operation on Inter-Field Wake and Downstream Wind Farm Wake under Optimal Conditions
4.1. The Influence of the Yaw of the Upstream Wind Farm on the Downstream Wind Farm
4.2. The Influence of the Yaw Operation on Inter-Field Wake
5. Conclusions
- (1)
- In descending order of importance, the yaw wind turbine position (n), yaw angle (γ), wind farm spacing (xwf), wind turbine longitudinal spacing (xxt), and yaw rate (ω) influence the average power output of the wind farm.
- (2)
- The optimal working conditions for maximizing the average power output of the wind farm are achieved when the wind turbine longitudinal spacing (xxt) is 7.0D, the wind farm spacing (xwf) is 15.0D, the yaw angle (γ) is 30°, and the yaw rate (ω) is 0.0122 rad/s. The first and second rows of wind turbines are in a yaw state. Under these conditions, the average power output of the wind farm is 35.19 MW, an increase of 2.86 MW compared to the original configuration of the wind farm, and the incoming wind velocity at the wind farm rises by 1.341 m/s.
- (3)
- The average power output of the wind farm under the optimal conditions derived from the orthogonal test is 35.19 MW, which is 5.43 MW higher than the 29.76 MW under the worst conditions, indicating that the selection of appropriate yaw and layout settings can significantly increase the average power of the wind farm.
- (4)
- The effects of the upstream wind farm’s trail predominantly influence the first few rows of wind turbines in the downstream wind farm.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Msigwa, G.; Ighalo, J.O.; Yap, P.-S. Considerations on Environmental, Economic, and Energy Impacts of Wind Energy Generation: Projections towards Sustainability Initiatives. Sci. Total Environ. 2022, 849, 157755. [Google Scholar] [CrossRef] [PubMed]
- Roga, S.; Bardhan, S.; Kumar, Y.; Dubey, S.K. Recent Technology and Challenges of Wind Energy Generation: A Review. Sustain. Energy Technol. Assess. 2022, 52, 102239. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, X.; Zhao, D.; Post, S.; Chen, J. Overview of the Development and Application of Wind Energy in New Zealand. Energy Built Environ. 2023, 4, 725–742. [Google Scholar] [CrossRef]
- Chang, L.; Saydaliev, H.B.; Meo, M.S.; Mohsin, M. How Renewable Energy Matter for Environmental Sustainability: Evidence from Top-10 Wind Energy Consumer Countries of European Union. Sustain. Energy Grids Netw. 2022, 31, 100716. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Y.; Zhang, H.; Xu, X.; Yang, Z.; Xu, W. A Review of the Potential of District Heating System in Northern China. Appl. Therm. Eng. 2021, 188, 116605. [Google Scholar] [CrossRef]
- Veers, P.; Dykes, K.; Lantz, E.; Barth, S.; Bottasso, C.L.; Carlson, O.; Clifton, A.; Green, J.; Green, P.; Holttinen, H.; et al. Grand Challenges in the Science of Wind Energy. Science 2019, 366, eaau2027. [Google Scholar] [CrossRef]
- Li, Y.; Yang, S.; Feng, F.; Tagawa, K. A Review on Numerical Simulation Based on CFD Technology of Aerodynamic Characteristics of Straight-Bladed Vertical Axis Wind Turbines. Energy Rep. 2023, 9, 4360–4379. [Google Scholar] [CrossRef]
- Sun, H.; Yang, H.; Gao, X. Investigation into Wind Turbine Wake Effect on Complex Terrain. Energy 2023, 269, 126767. [Google Scholar] [CrossRef]
- Cao, J.; Qin, Z.; Gao, X.; Pu, T.; Zhu, W.; Ke, S.; Shen, X. Study of Aerodynamic Performance and Wake Effects for Offshore Wind Farm Cluster. Ocean Eng. 2023, 280, 114639. [Google Scholar] [CrossRef]
- Zhao, L.; Gong, F.; Chen, S.; Wang, J.; Xue, L.; Xue, Y. Optimization Study of Control Strategy for Combined Multi-Wind Turbines Energy Production and Loads during Wake Effects. Energy Rep. 2022, 8, 1098–1107. [Google Scholar] [CrossRef]
- Sulake, N.R.; Pranupa, S.; Sriram, A.T. A Review of Wind Farm Layout Optimization Techniques for Optimal Placement of Wind Turbines. Int. J. Renew. Energy Res. 2023, 13, 957–965. [Google Scholar] [CrossRef]
- Zhang, L.; Feng, Z.; Zhao, Y.; Xu, X.; Feng, J.; Ren, H.; Zhang, B.; Tian, W. Experimental Study of Wake Evolution under Vertical Staggered Arrangement of Wind Turbines of Different Sizes. J. Mar. Sci. Eng. 2024, 12, 434. [Google Scholar] [CrossRef]
- Zhang, L.; Feng, Z.; Pan, P.; Liang, J.; Tian, W.; Zhao, X.; Shen, K.; Zhang, P.; Chen, Y.; Song, C. Experimental Study on the Periodicity of Wake Flow of a Vertical Staggered Wind Turbine Fleet. Ocean Eng. 2024, 309, 118471. [Google Scholar] [CrossRef]
- Munters, W.; Meyers, J. Dynamic Strategies for Yaw and Induction Control of Wind Farms Based on Large-Eddy Simulation and Optimization. Energies 2018, 11, 177. [Google Scholar] [CrossRef]
- Ma, H.; Ge, M.; Wu, G.; Du, B.; Liu, Y. Formulas of the Optimized Yaw Angles for Cooperative Control of Wind Farms with Aligned Turbines to Maximize the Power Production. Appl. Energy 2021, 303, 117691. [Google Scholar] [CrossRef]
- Wang, Y.; Miao, W.; Ding, Q.; Li, C.; Xiang, B. Numerical Investigations on Control Strategies of Wake Deviation for Large Wind Turbines in an Offshore Wind Farm. Ocean Eng. 2019, 173, 794–801. [Google Scholar] [CrossRef]
- Nygaard, N.G.; Hansen, S.D. Wake Effects between Two Neighbouring Wind Farms. J. Phys. Conf. Ser. 2016, 753, 032020. [Google Scholar] [CrossRef]
- Hansen, K.S.; Réthoré, P.-E.; Palma, J.; Hevia, B.G.; Prospathopoulos, J.; Peña, A.; Ott, S.; Schepers, G.; Palomares, A.; van der Laan, M.P.; et al. Simulation of Wake Effects between Two Wind Farms. J. Phys. Conf. Ser. 2015, 625, 012008. [Google Scholar] [CrossRef]
- Díaz, H.; Guedes Soares, C. Review of the Current Status, Technology and Future Trends of Offshore Wind Farms. Ocean Eng. 2020, 209, 107381. [Google Scholar] [CrossRef]
- Wang, L.; Dong, M.; Yang, J.; Wang, L.; Chen, S.; Duić, N.; Joo, Y.H.; Song, D. Wind Turbine Wakes Modeling and Applications: Past, Present, and Future. Ocean Eng. 2024, 309, 118508. [Google Scholar] [CrossRef]
- Churchfield, M.; Lee, S.; Moriarty, P. Overview of the Simulator for Wind Farm Application (SOWFA); National Renewable Energy Laboratory: Golden, CO, USA, 2012.
- Iungo, G.V.; Viola, F.; Ciri, U.; Rotea, M.A.; Leonardi, S. Data-Driven RANS for Simulations of Large Wind Farms. J. Phys. Conf. Ser. 2015, 625, 012025. [Google Scholar] [CrossRef]
- Raasch, S.; Schröter, M. P3. 13 A Large-Eddy Simulation Model Performing on Massively Parallel Computers. In Symposium on Boundary Layers and Turbulence; American Meteorological Society: Boston, MA, USA, 2001; Volume 15, p. 289. [Google Scholar]
- Maronga, B.; Gryschka, M.; Heinze, R.; Hoffmann, F.; Kanani-Sühring, F.; Keck, M.; Ketelsen, K.; Letzel, M.O.; Sühring, M.; Raasch, S. The Parallelized Large-Eddy Simulation Model (PALM) Version 4.0 for Atmospheric and Oceanic Flows: Model Formulation, Recent Developments, and Future Perspectives. Geosci. Model. Dev. 2015, 8, 2515–2551. [Google Scholar] [CrossRef]
- Boersma, S.; Doekemeijer, B.; Vali, M.; Meyers, J.; van Wingerden, J.-W. A Control-Oriented Dynamic Wind Farm Model: WFSim. Wind Energy Sci. 2018, 3, 75–95. [Google Scholar] [CrossRef]
- Chen, K.; Song, M.; Zhang, X. The Investigation on Computational Grids in Wind Turbine Positioning Optimization Using Greedy Algorithm. Chin. Sci. Bull. 2014, 59, 3304–3313. [Google Scholar] [CrossRef]
- Ainslie, J.F. Calculating the Flowfield in the Wake of Wind Turbines. J. Wind Eng. Ind. Aerodyn. 1988, 27, 213–224. [Google Scholar] [CrossRef]
- Shakoor, R.; Hassan, M.Y.; Raheem, A.; Wu, Y.-K. Wake Effect Modeling: A Review of Wind Farm Layout Optimization Using Jensen’s Model. Renew. Sustain. Energy Rev. 2016, 58, 1048–1059. [Google Scholar] [CrossRef]
- Gao, X.; Yang, H.; Lu, L. Optimization of Wind Turbine Layout Position in a Wind Farm Using a Newly-Developed Two-Dimensional Wake Model. Appl. Energy 2016, 174, 192–200. [Google Scholar] [CrossRef]
- Franchina, N.; Persico, G.; Savini, M. 2D-3D Computations of a Vertical Axis Wind Turbine Flow Field: Modeling Issues and Physical Interpretations. Renew. Energy 2019, 136, 1170–1189. [Google Scholar] [CrossRef]
- Lanzafame, R.; Mauro, S.; Messina, M. 2D CFD Modeling of H-Darrieus Wind Turbines Using a Transition Turbulence Model. Energy Procedia 2014, 45, 131–140. [Google Scholar] [CrossRef]
- Tian, L.; Zhu, W.; Shen, W.; Song, Y.; Zhao, N. Prediction of Multi-Wake Problems Using an Improved Jensen Wake Model. Renew. Energy 2017, 102, 457–469. [Google Scholar] [CrossRef]
- Guo, N.Z.; Zhang, M.-M.; Li, B. A Data-Driven Analytical Model for Wind Turbine Wakes Using Machine Learning Method. Energy Convers. Manag. 2022, 252, 115130. [Google Scholar] [CrossRef]
- Doekemeijer, B.M.; Boersma, S.; Pao, L.Y.; Knudsen, T.; van Wingerden, J.-W. Online Model Calibration for a Simplified LES Model in Pursuit of Real-Time Closed-Loop Wind Farm Control. Wind Energy Sci. 2018, 3, 749–765. [Google Scholar] [CrossRef]
- Doekemeijer, B.M.; Boersma, S.; Pao, L.Y.; van Wingerden, J.W. Joint State-Parameter Estimation for a Control-Oriented LES Wind Farm Model. J. Phys. Conf. Ser. 2018, 1037, 032013. [Google Scholar] [CrossRef]
- Zhao, H.; Zhao, J.; Qiu, J.; Liang, G.; Dong, Z.Y. Cooperative Wind Farm Control With Deep Reinforcement Learning and Knowledge-Assisted Learning. IEEE Trans. Ind. Inf. 2020, 16, 6912–6921. [Google Scholar] [CrossRef]
- Chen, K.; Lin, J.; Qiu, Y.; Liu, F.; Song, Y. Deep Learning-Aided Model Predictive Control of Wind Farms for AGC Considering the Dynamic Wake Effect. Control Eng. Pr. 2021, 116, 104925. [Google Scholar] [CrossRef]
- Doekemeijer, B.M.; Boersma, S.; Pao, L.Y.; van Wingerden, J.W. Ensemble Kalman Filtering for Wind Field Estimation in Wind Farms. In Proceedings of the 2017 American Control Conference (ACC), Seattle, WA, USA, 24–26 May 2017; pp. 19–24. [Google Scholar]
- Wu, Z.; Li, Y. Optimal Control of Wind Farm Power Output with Delay Compensated Nested-Loop Extreme Seeking Control. J. Renew. Sustain. Energy 2023, 15, 043301. [Google Scholar] [CrossRef]
- Howland, M.F. Wind Farm Yaw Control Set-Point Optimization under Model Parameter Uncertainty. J. Renew. Sustain. Energy 2021, 13, 043303. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, T.; Zhang, L.; Yang, Z.; McLoone, S.; Menhas, M.I.; Guo, Y. A Novel Dynamic Opposite Learning Enhanced Jaya Optimization Method for High Efficiency Plate–Fin Heat Exchanger Design Optimization. Eng. Appl. Artif. Intell. 2023, 119, 105778. [Google Scholar] [CrossRef]
- Yang, Q.; Huang, G.; Li, T.; Xu, Y.; Pan, J. A Novel Short-Term Wind Speed Prediction Method Based on Hybrid Statistical-Artificial Intelligence Model with Empirical Wavelet Transform and Hyperparameter Optimization. J. Wind Eng. Ind. Aerodyn. 2023, 240, 105499. [Google Scholar] [CrossRef]
- Song, D.; Shen, G.; Huang, C.; Huang, Q.; Yang, J.; Dong, M.; Joo, Y.H.; Duić, N. Review on the Application of Artificial Intelligence Methods in the Control and Design of Offshore Wind Power Systems. J. Mar. Sci. Eng. 2024, 12, 424. [Google Scholar] [CrossRef]
- Iungo, G.V.; Maulik, R.; Renganathan, S.A.; Letizia, S. Machine-Learning Identification of the Variability of Mean Velocity and Turbulence Intensity for Wakes Generated by Onshore Wind Turbines: Cluster Analysis of Wind LiDAR Measurements. J. Renew. Sustain. Energy 2022, 14, 023307. [Google Scholar] [CrossRef]
- Dong, H.; Xie, J.; Zhao, X. Wind Farm Control Technologies: From Classical Control to Reinforcement Learning. Prog. Energy 2022, 4, 032006. [Google Scholar] [CrossRef]
- Choi, D.; Shin, W.; Ko, K.; Rhee, W. Static and Dynamic Yaw Misalignments of Wind Turbines and Machine Learning Based Correction Methods Using LiDAR Data. IEEE Trans. Sustain. Energy 2019, 10, 971–982. [Google Scholar] [CrossRef]
- Papi, F.; Bianchini, A. Technical Challenges in Floating Offshore Wind Turbine Upscaling: A Critical Analysis Based on the NREL 5 MW and IEA 15 MW Reference Turbines. Renew. Sustain. Energy Rev. 2022, 162, 112489. [Google Scholar] [CrossRef]
- Boersma, S.; Gebraad, P.M.O.; Vali, M.; Doekemeijer, B.M.; van Wingerden, J.W. A Control-Oriented Dynamic Wind Farm Flow Model: “WFSim”. J. Phys. Conf. Ser. 2016, 753, 032005. [Google Scholar] [CrossRef]
- Gebraad, P.M.O.; Teeuwisse, F.W.; van Wingerden, J.W.; Fleming, P.A.; Ruben, S.D.; Marden, J.R.; Pao, L.Y. Wind Plant Power Optimization through Yaw Control Using a Parametric Model for Wake Effects-a CFD Simulation Study. Wind Energy 2016, 19, 95–114. [Google Scholar] [CrossRef]
- Li, Y.; She, L.; Wen, L.; Zhang, Q. Sensitivity Analysis of Drilling Parameters in Rock Rotary Drilling Process Based on Orthogonal Test Method. Eng. Geol. 2020, 270, 105576. [Google Scholar] [CrossRef]
- Wang, B.; Lin, R.; Liu, D.; Xu, J.; Feng, B. Investigation of the Effect of Humidity at Both Electrode on the Performance of PEMFC Using Orthogonal Test Method. Int. J. Hydrogen Energy 2019, 44, 13737–13743. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
Area size (km2) | 6.600 × 3.095 | Rotor diameter of wind turbine, D (m) | 126.4 |
Number of meshes | 100 × 50 | Wind turbine layout | 3 × 3 |
Unit size (m2) | 66 × 61.9 | Atmospheric density, ρ (kg/m3) | 1.2 |
Longitudinal incoming wind speed, ub (m/s) | 12 | Turbulence model | d = 1000 d′ = 140 m ls = 0.05 |
Parameter | Value | Parameter | Value |
---|---|---|---|
Area size (km2) | 1.686 × 0.500 | Rotor diameter of wind turbine, D (m) | 126.4 |
Number of meshes | 40 × 20 | Wind turbine layout | 2 × 1 |
Unit size (m2) | 42.15 × 25 | Atmospheric density, ρ (kg/m3) | 1.2 |
Longitudinal incoming wind speed, ub (m/s) | 12 | Turbulence model | d = 1000 d′ = 140 m ls = 0.05 |
Parameter | Value | Parameter | Value |
---|---|---|---|
Area size (km2) | 1.686 × 0.800 | Rotor diameter of wind turbine, D (m) | 126.4 |
Number of meshes | 40 × 20 | Yaw angle (°) | 35 |
Unit size (m2) | 42.150 × 40 | Atmospheric density, ρ (kg/m3) | 1.2 |
Longitudinal incoming wind speed, ub (m/s) | 12 | Turbulence model | d = 1000 d′ = 140 m ls = 0.05 |
Change the Arrangement of Wind Farms | Change the Yaw Setting | ||||||||
---|---|---|---|---|---|---|---|---|---|
Longitudinal Spacing xxt | Wind Farm Spacing xwf | Yaw Angle γ, (°) | Yaw Rate ω, (rad/s) | Yaw Wind Turbine n | |||||
Working conditions | Value | Working conditions | Value | Working conditions | Value | Working conditions | Value | Working conditions | Value |
Case 1-1 | 4.5D | Case 2-1 | 9D | Case 3-1 | 5 | Case 4-1 | 0.007 | Case 5-1 | R1 + R2 |
Case 1-2 | 5.0D | Case 2-2 | 10D | Case 3-2 | 10 | Case 4-2 | 0.009 | Case 5-2 | R1 + R4 |
Case 1-3 | 5.5D | Case 2-3 | 11D | Case 3-3 | 15 | Case 4-3 | 0.011 | Case 5-3 | R1 + R5 |
Case 1-4 | 6.0D | Case 2-4 | 12D | Case 3-4 | 20 | Case 4-4 | 0.012 | Case 5-4 | R2 + R4 |
Case 1-5 | 6.5D | Case 2-5 | 13D | Case 3-5 | 25 | Case 4-5 | 0.014 | Case 5-5 | R2 + R5 |
Case 1-6 | 7.0D | Case 2-6 | 14D | Case 3-6 | 30 | Case 4-6 | 0.016 | Case 5-6 | R3 + R4 |
Case 1-7 | 7.5D | Case 2-7 | 15D | Case 3-7 | 35 | Case 4-7 | 0.018 | Case 5-7 | R3 + R5 |
No. | A (xxt) | B (xwf) | C (γ) (°) | D (ω) (rad/s) | E (n) |
---|---|---|---|---|---|
1 | 4.5D | 9.0D | 5 | 0.00698 | R1 R2 |
2 | 5.0D | 10.0D | 10 | 0.00873 | R1 R4 |
3 | 5.5D | 11.0D | 15 | 0.0105 | R1 R5 |
4 | 6.0D | 12.0D | 20 | 0.0122 | R2 R4 |
5 | 6.5D | 13.0D | 25 | 0.014 | R2 R5 |
6 | 7.0D | 14.0D | 30 | 0.0157 | R3 R4 |
7 | 7.5D | 15.0D | 35 | 0.0175 | R3 R5 |
Test No. | A | B | C | D | E | F | Average Power (MW) |
---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 1 | 1 | 30.100 |
2 | 1 | 2 | 3 | 4 | 5 | 6 | 30.693 |
3 | 1 | 3 | 5 | 7 | 2 | 4 | 32.942 |
4 | 1 | 4 | 7 | 3 | 6 | 2 | 31.670 |
5 | 1 | 5 | 2 | 6 | 3 | 7 | 31.438 |
6 | 1 | 6 | 4 | 2 | 7 | 5 | 31.691 |
7 | 1 | 7 | 6 | 5 | 4 | 3 | 32.926 |
8 | 2 | 1 | 7 | 6 | 5 | 4 | 30.533 |
9 | 2 | 2 | 2 | 2 | 2 | 2 | 30.639 |
10 | 2 | 3 | 4 | 5 | 6 | 7 | 31.095 |
11 | 2 | 4 | 6 | 1 | 3 | 5 | 32.988 |
12 | 2 | 5 | 1 | 4 | 7 | 3 | 31.168 |
13 | 2 | 6 | 3 | 7 | 4 | 1 | 31.886 |
14 | 2 | 7 | 5 | 3 | 1 | 6 | 35.140 |
15 | 3 | 1 | 6 | 4 | 2 | 7 | 32.659 |
16 | 3 | 2 | 1 | 7 | 6 | 5 | 30.287 |
17 | 3 | 3 | 3 | 3 | 3 | 3 | 31.499 |
18 | 3 | 4 | 5 | 6 | 7 | 1 | 31.377 |
19 | 3 | 5 | 7 | 2 | 4 | 6 | 32.416 |
20 | 3 | 6 | 2 | 5 | 1 | 4 | 32.211 |
21 | 3 | 7 | 4 | 1 | 5 | 2 | 31.978 |
22 | 4 | 1 | 5 | 2 | 6 | 3 | 30.667 |
23 | 4 | 2 | 7 | 5 | 3 | 1 | 32.821 |
24 | 4 | 3 | 2 | 1 | 7 | 6 | 30.823 |
25 | 4 | 4 | 4 | 4 | 4 | 4 | 31.837 |
26 | 4 | 5 | 6 | 7 | 1 | 2 | 34.703 |
27 | 4 | 6 | 1 | 3 | 5 | 7 | 31.443 |
28 | 4 | 7 | 3 | 6 | 2 | 5 | 30.188 |
29 | 5 | 1 | 4 | 7 | 3 | 6 | 31.755 |
30 | 5 | 2 | 6 | 3 | 7 | 4 | 31.209 |
31 | 5 | 3 | 1 | 6 | 4 | 2 | 30.981 |
32 | 5 | 4 | 3 | 2 | 1 | 7 | 33.104 |
33 | 5 | 5 | 5 | 5 | 5 | 5 | 31.983 |
34 | 5 | 6 | 7 | 1 | 2 | 3 | 33.760 |
35 | 5 | 7 | 2 | 4 | 6 | 1 | 32.281 |
36 | 6 | 1 | 3 | 5 | 7 | 2 | 30.909 |
37 | 6 | 2 | 5 | 1 | 4 | 7 | 32.123 |
38 | 6 | 3 | 7 | 4 | 1 | 5 | 34.225 |
39 | 6 | 4 | 2 | 7 | 5 | 3 | 31.434 |
40 | 6 | 5 | 4 | 3 | 2 | 1 | 33.114 |
41 | 6 | 6 | 6 | 6 | 6 | 6 | 32.988 |
42 | 6 | 7 | 1 | 2 | 3 | 4 | 32.275 |
43 | 7 | 1 | 2 | 3 | 4 | 5 | 30.957 |
44 | 7 | 2 | 4 | 6 | 1 | 3 | 33.625 |
45 | 7 | 3 | 6 | 2 | 5 | 1 | 31.909 |
46 | 7 | 4 | 1 | 5 | 2 | 6 | 31.329 |
47 | 7 | 5 | 3 | 1 | 6 | 4 | 32.119 |
48 | 7 | 6 | 5 | 4 | 3 | 2 | 33.145 |
49 | 7 | 7 | 7 | 7 | 7 | 7 | 32.438 |
Parameters | A | B | C | D | E | F |
---|---|---|---|---|---|---|
K1 | 221.460 | 217.580 | 217.583 | 223.890 | 233.108 | 223.487 |
K2 | 223.449 | 221.397 | 219.782 | 222.701 | 224.631 | 224.025 |
K3 | 222.427 | 223.473 | 220.398 | 225.032 | 225.921 | 225.079 |
K4 | 222.482 | 223.739 | 225.095 | 226.007 | 223.126 | 223.126 |
K5 | 225.073 | 226.941 | 227.376 | 223.273 | 219.973 | 222.319 |
K6 | 227.068 | 227.123 | 229.382 | 221.130 | 221.106 | 225.142 |
K7 | 225.520 | 227.226 | 227.862 | 225.446 | 219.615 | 224.301 |
k1 | 31.637 | 31.083 | 31.083 | 31.984 | 33.301 | 31.927 |
k2 | 31.921 | 31.628 | 31.397 | 31.814 | 32.090 | 32.004 |
k3 | 31.775 | 31.925 | 31.485 | 32.147 | 32.274 | 32.154 |
k4 | 31.783 | 31.963 | 32.156 | 32.287 | 31.875 | 31.875 |
k5 | 32.153 | 32.420 | 32.482 | 31.896 | 31.425 | 31.760 |
k6 | 32.438 | 32.446 | 32.769 | 31.590 | 31.587 | 32.163 |
k7 | 32.217 | 32.461 | 32.552 | 32.207 | 31.374 | 32.043 |
R | 0.801 | 1.378 | 1.685 | 0.697 | 1.928 | 0.403 |
Order | E > C > B > A > D > F | |||||
Optimal combination | A6B7C6D4E1 |
Source | Sum of Squares | Degree of Freedom | Mean Square | F | p | Significance |
---|---|---|---|---|---|---|
A | 3.482 | 6 | 0.580 | 3.823 | 0.063695 | |
B | 11.015 | 6 | 1.836 | 12.097 | 0.003957 | ++ |
C | 18.339 | 6 | 3.057 | 20.141 | 0.000985 | ++ |
D | 2.515 | 6 | 0.419 | 2.762 | 0.120869 | |
E | 18.798 | 6 | 3.133 | 20.644 | 0.000919 | ++ |
e | 6.911 | 6 | 0.152 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Zhang, L.; Zhang, D.; Yang, S.; Zhao, Y.; Tao, Y.; Han, J.; Wang, Y.; Zhang, T. Utilizing WFSim to Investigate the Impact of Optimal Wind Farm Layout and Inter-Field Wake on Average Power. J. Mar. Sci. Eng. 2024, 12, 1353. https://doi.org/10.3390/jmse12081353
Li G, Zhang L, Zhang D, Yang S, Zhao Y, Tao Y, Han J, Wang Y, Zhang T. Utilizing WFSim to Investigate the Impact of Optimal Wind Farm Layout and Inter-Field Wake on Average Power. Journal of Marine Science and Engineering. 2024; 12(8):1353. https://doi.org/10.3390/jmse12081353
Chicago/Turabian StyleLi, Guohao, Lidong Zhang, Duanmei Zhang, Shiyu Yang, Yuze Zhao, Yongzheng Tao, Jie Han, Yanwei Wang, and Tengyu Zhang. 2024. "Utilizing WFSim to Investigate the Impact of Optimal Wind Farm Layout and Inter-Field Wake on Average Power" Journal of Marine Science and Engineering 12, no. 8: 1353. https://doi.org/10.3390/jmse12081353
APA StyleLi, G., Zhang, L., Zhang, D., Yang, S., Zhao, Y., Tao, Y., Han, J., Wang, Y., & Zhang, T. (2024). Utilizing WFSim to Investigate the Impact of Optimal Wind Farm Layout and Inter-Field Wake on Average Power. Journal of Marine Science and Engineering, 12(8), 1353. https://doi.org/10.3390/jmse12081353