An Experimental Investigation of the Effect of Interfacial Waves on the Evolution of Sliding Zones in a Liquefied Seabed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wave Flume Experiment
2.2. Measurement of the Interfacial Waves
3. Results and Analysis
3.1. Development of the Sliding Zone during the Wave Flume Experiment
3.2. Characteristics of the Liquified Interfacial Wave
4. Discussion
4.1. The Evolution of Sliding Zone
4.2. The Effect of Interfacial Waves
5. Conclusions
- (1)
- Liquefaction-induced interfacial waves are formed on the seabed surface due to wave-induced liquefaction, with a slightly smaller period than surface waves. The size of the interfacial waves is mainly controlled by the amplitude.
- (2)
- The growth of interfacial waves is significantly affected by the strength of the seabed. In low-strength original seabed, interfacial waves can continue to grow until they are suppressed and recede after the formation of high-strength reconsolidated sediment.
- (3)
- The development of sliding zones under the influence of interfacial waves shows a pattern from non-existence to existence, and the influence of interfacial wave height on the evolution rate of sliding zones gradually decreases with the development of liquefaction.
- (4)
- In a homogeneous silty seabed, the maximum ratio of the interfacial wave height to surface wave height is 0.175, corresponding to the maximum longitudinal width ratio of sliding zones of 0.25. Combined with geophysical data in the study area, the depth and range of sliding zones can be determined.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, X.S.; Liu, X.L.; Zheng, T.Y.; Zhang, H.; Lu, Y.; Li, T.T. A mass transfer-based LES modelling methodology for analyzing the movement of submarine sediment flows with extensive shear behavior. Coast. Eng. 2024, 191, 104531. [Google Scholar] [CrossRef]
- Fan, N.; Jiang, J.X.; Nian, T.K.; Dong, Y.K.; Guo, L.; Fu, C.W.; Tian, Z.C.; Guo, X.S. Impact action of submarine slides on pipelines: A review of the state-of-the-art since 2008. Ocean Eng. 2023, 286, 115532. [Google Scholar] [CrossRef]
- Liu, X.L.; Wang, Y.Y.; Zhang, H.; Guo, X.S. Susceptibility of typical marine geological disasters: An overview. Geoenviron. Disasters 2023, 10, 10. [Google Scholar] [CrossRef]
- Jamil, M.; Siddiqui, N.A.; Umar, M.; Usman, M.; Ahmed, N.; Rahman, A.H.; Zaidi, F.K. Aseismic and seismic impact on development of soft-sediment deformation structures in deep-marine sand-shaly Crocker fan in Sabah, NW Borneo. J. King Saud Univ. Sci. 2021, 33, 101522. [Google Scholar] [CrossRef]
- Chen, Q.; Cui, D.S.; Chen, Y.; Tao, X.Y.; Xiang, W. Effect of prior cyclic loading on triaxial compression strength of sliding zone soil of the Huangtupo landslide. Adv. Civ. Eng. 2021, 2021, 9924995. [Google Scholar] [CrossRef]
- Elger, J.; Berndt, C.; Rüpke, L.; Krastel, S.; Gross, F.; Geissler, W.H. Submarine slope failures due to pipe structure formation. Nat. Commun. 2018, 9, 715. [Google Scholar] [CrossRef] [PubMed]
- Jamil, M.; Siddiqui, N.A.; Umar, M.; Usman, M.; Ahmed, N.; Rahman, A.H.; Zaidi, F.K. Facies analysis and distribution of Late Palaeogene deep-water massive sandstones in submarine-fan lobes, NW Borneo. Geol. J. 2022, 57, 4489–4507. [Google Scholar] [CrossRef]
- Yin, M.; Rui, Y. Laboratory study on submarine debris flow. Mar. Georesour. Geotechnol. 2018, 36, 950–958. [Google Scholar] [CrossRef]
- Zhang, W.C.; Randolph, M.F.; Puzrin, A.M.; Wang, D. Transition from shear band propagation to global slab failure in submarine landslides. Can. Geotech. J. 2019, 56, 554–569. [Google Scholar] [CrossRef]
- Prior, D.B.; Suhayda, J.N.; Lu, N.Z.; Bornhold, B.D.; Keller, G.H.; Wiseman, W.J. Storm wave reactivation of a submarine landslide. Nature 1989, 341, 47–50. [Google Scholar] [CrossRef]
- Quartau, R.; Ramalho, R.S.; Madeira, J.; Santos, R.; Rodrigues, A.; Roque, C. Gravitational, erosional and depositional processes on volcanic ocean islands: Insights from the submarine morphology of Madeira Archipelago. Earth Planet. Sci. Lett. 2018, 482, 288–299. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, Y.; Liu, X.; Li, X.; Wang, Z.; Ji, C. Morphology and origin of liquefaction-related sediment failures on the Yellow River subaqueous delta. Mar. Petrol. Geol. 2023, 153, 106262. [Google Scholar] [CrossRef]
- Zen, K.K.; Yamazaki, H. Mechanism of wave-induced liquefaction and densification in seabed. Soils Found. 1990, 30, 90–104. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S. Wave-induced instability of seabed: Mechanism and conditions. Mar. Georesour. Geotechnol. 1991, 10, 277–299. [Google Scholar] [CrossRef]
- Ulker, M.B.C.; Rahman, M.S.; Jeng, D.-S. Wave-induced response of seabed: Various formulations and their applicability. Appl. Ocean Res. 2009, 31, 12–24. [Google Scholar] [CrossRef]
- Qi, W.; Li, C.; Jeng, D.; Gao, F.; Liang, Z. Combined wave-current induced excess pore-pressure in a sandy seabed: Flume observations and comparisons with theoretical models. Coast. Eng. 2019, 147, 89–98. [Google Scholar] [CrossRef]
- Tong, L.; Zhang, J.; Zhao, J.; Zheng, J.; Guo, Y. Modelling study of wave damping over a sandy and a silty bed. Coast. Eng. 2020, 61, 103756. [Google Scholar] [CrossRef]
- Ren, Y.P.; Xu, G.H.; Xu, X.B.; Zhao, T.L.; Wang, X.Z. The initial wave induced failure of silty seabed: Liquefaction or shear failure. Ocean Eng. 2020, 200, 106990. [Google Scholar] [CrossRef]
- De Wit, P.J.; Kranenburg, C. The wave-induced liquefaction of cohesive sediment beds. Estuar. Coast. Shelf Sci. 1997, 45, 261–271. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X.L.; Jia, Y.G.; Du, Q.Z.; Sun, Y.F.; Yin, P.; Shan, H.X. Rapid consolidation characteristics of Yellow River-derived sediment: Geotechnical characterization and its implications for the deltaic geomorphic evolution. Eng. Geol. 2020, 270, 105578. [Google Scholar] [CrossRef]
- Dimitrova, R.S.; Yanful, E.K. Factors affecting the shear strength of mine tailings/clay mixtures with varying clay content and clay mineralogy. Eng. Geol. 2012, 125, 11–25. [Google Scholar] [CrossRef]
- Wang, H.; Liu, H.J. Evaluation of storm wave-induced silty seabed instability and geo-hazards: A case study in the Yellow River delta. Appl. Ocean Res. 2016, 58, 135–145. [Google Scholar] [CrossRef]
- Mathew, J.; Baba, M.; Kurian, N.P. Mudbanks of the southwest coast of India. I: Wave characteristics. J. Coast. Res. 1995, 11, 168–178. [Google Scholar]
- Yu, H.Y.; Liu, X.L.; Lu, Y.; Li, W.J.; Gao, H.; Wu, R.Y.; Li, X.Y. Characteristics of the sediment gravity flow triggered by wave-induced liquefaction on a sloping silty seabed: An experimental investigation. Front Earth Sci. 2022, 10, 909605. [Google Scholar] [CrossRef]
- Lamb, H. Hydrodynamics; Cambridge University Press: Cambridge, UK, 1932. [Google Scholar]
- Sassa, S.; Sekiguchi, H.; Miyamoto, J. Analysis of progressive liquefaction as a moving-boundary problem. Geotechnique 2001, 51, 847–857. [Google Scholar] [CrossRef]
- Eric, M.; Robert, A.D. Experimental observation of standing interfacial waves induced by surface waves in muddy water. Phys. Fluids 2011, 23, 096603. [Google Scholar] [CrossRef]
- Guo, X.S.; Fan, N.; Zheng, D.F.; Fu, C.W.; Wu, H.; Zhang, Y.J.; Song, X.L.; Nian, T.K. Predicting impact forces on pipelines from deep-sea fluidized slides: A comprehensive review of key factors. Int. J. Min. Sci. Technol. 2024, 34, 211–225. [Google Scholar] [CrossRef]
- Hsu, W.Y.; Hwung, H.H.; Yang, R.Y.; Liu, C.M. Interfacial wave motion caused by wave-mud interaction. J. Vis. 2012, 15, 215–224. [Google Scholar] [CrossRef]
- Miyamoto, J.; Sassa, S.; Sekiguchi, H. Progressive solidification of a liquefied sand layer during continued wave loading. Geotechnique 2004, 54, 617–629. [Google Scholar] [CrossRef]
- Ren, Y.P.; Xu, X.B.; Xu, G.H.; Liu, Z.Q. Measurement and calculation of particle trajectory of liquefied soil under wave action. Appl. Ocean Res. 2020, 101, 102202. [Google Scholar] [CrossRef]
- Zen, K.K.; Jeng, D.S.; Hsu, J.R.C.; Ohyama, T. Wave-induced seabed instability: Difference between liquefaction and shear failure. Soils Found. 1998, 38, 37–47. [Google Scholar] [CrossRef]
- Egan, G.; Cowherd, M.; Fringer, O.; Monismith, S. Observations of Near-Bed Shear Stress in a Shallow, Wave- and Current-Driven Flow. J Geophys. Res. Oceans 2019, 124, 6323–6344. [Google Scholar] [CrossRef]
- Michallet, H.; Mory, M.; Piedra-Cueva, I. Wave-induced pore pressure measurements near a coastal structure. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Phillips, O.M. Wave interactions- the evolution of an idea. J. Fluid Mech. 1981, 106, 215. [Google Scholar] [CrossRef]
- Jamali, M.; Lawrence, G. Viscous wave interaction due to motion of a surface wave over a sediment bed. J. Offshore Mech. Arct. Eng. 2006, 128, 276. [Google Scholar] [CrossRef]
- Elgar, S.; Raubenheimer, B. Wave dissipation by muddy seafloors. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Wang, B.; Zen, K.; Chen, G.Q.; Zhang, Y.B.; Kasama, K. Excess pore pressure dissipation and solidification after liquefaction of saturated sand deposits. Soil Dyn. Earthq. Eng. 2013, 49, 157–164. [Google Scholar] [CrossRef]
- Tzang, S.Y. Unfluidized soil responses of a silty seabed to monochromatic waves. Coast. Eng. 1998, 35, 283–301. [Google Scholar] [CrossRef]
- Cui, L.; Jeng, D.S. Seabed liquefaction around breakwater heads at a river mouth: An integrated 3D model. Ocean Eng. 2021, 242, 110036. [Google Scholar] [CrossRef]
- Aleebrahim, M.A.; Jamali, M. Experimental investigation of instability of fluid mud layer under surface wave motion. Phys. Fluids 2022, 34, 036602. [Google Scholar] [CrossRef]
- Xu, G.H.; Liu, Z.Q.; Sun, Y.F.; Wang, X.; Lin, L.; Ren, Y.P. Experimental characterization of storm liquefaction deposits sequences. Mar. Geol. 2016, 382, 191–199. [Google Scholar] [CrossRef]
- Yang, Z.N.; Zhu, Y.M.; Liu, T.; Sun, Z.Q.; Ling, X.Z.; Yang, J.M. Pumping effect of wave-induced pore pressure on the development of fluid mud layer. Ocean Eng. 2019, 189, 106391. [Google Scholar] [CrossRef]
Density (kg/m3) | Water Content (%) | Liquid Limit | Plastic Index | Grain Composition | ||
---|---|---|---|---|---|---|
Clay (%) | Silt (%) | Sand (%) | ||||
1870 | 33 | 27 | 11 | 15 | 54.2 | 30.8 |
Wave Height/h (m) | Wavelength/λ (m) | Period/T (s) | Density/ρ (kg/m3) | Wave Number/k | Fluid Depth/d (m) | Shear Stress/τ (Pa) | |
---|---|---|---|---|---|---|---|
Surface wave | 0.120 | 2.28 | 1.27 | 1025 | 2.76 | 0.55 | 697 |
Stage 1 | 0.004 | 1.32 | 1.33 | 2104 | 4.76 | 0.11 | 172 |
Stage 2 | 0.005 | 1.48 | 1.33 | 2093 | 4.25 | 0.14 | 184 |
Stage 3 | 0.007 | 1.61 | 1.33 | 2091 | 3.90 | 0.17 | 228 |
Stage 4 | 0.020 | 1.72 | 1.33 | 2081 | 3.65 | 0.20 | 578 |
Stage 5 | 0.010 | 1.69 | 1.33 | 2067 | 3.72 | 0.19 | 299 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Li, X.; Zhang, H.; Wang, Y.; Zhang, Q.; Wei, H.; Guo, X. An Experimental Investigation of the Effect of Interfacial Waves on the Evolution of Sliding Zones in a Liquefied Seabed. J. Mar. Sci. Eng. 2024, 12, 1355. https://doi.org/10.3390/jmse12081355
Liu X, Li X, Zhang H, Wang Y, Zhang Q, Wei H, Guo X. An Experimental Investigation of the Effect of Interfacial Waves on the Evolution of Sliding Zones in a Liquefied Seabed. Journal of Marine Science and Engineering. 2024; 12(8):1355. https://doi.org/10.3390/jmse12081355
Chicago/Turabian StyleLiu, Xiaolei, Xingyu Li, Hong Zhang, Yueying Wang, Qiang Zhang, Haoqiang Wei, and Xingsen Guo. 2024. "An Experimental Investigation of the Effect of Interfacial Waves on the Evolution of Sliding Zones in a Liquefied Seabed" Journal of Marine Science and Engineering 12, no. 8: 1355. https://doi.org/10.3390/jmse12081355
APA StyleLiu, X., Li, X., Zhang, H., Wang, Y., Zhang, Q., Wei, H., & Guo, X. (2024). An Experimental Investigation of the Effect of Interfacial Waves on the Evolution of Sliding Zones in a Liquefied Seabed. Journal of Marine Science and Engineering, 12(8), 1355. https://doi.org/10.3390/jmse12081355