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Abstract: Natural gas hydrate (NGH) is considered as a type of clean energy to replace coal and
oil. During exploitation, permeability is one of the key parameters controlling production efficiency,
reservoir stability, and greenhouse gas sequestration. Limited by experimental and numerical
simulation tools, in current research, the directionality of permeability is usually ignored. In this work,
a DEM–CFD coupling simulation method is developed to compute the anisotropic permeability. The
sedimentary process of reservoir sediments is reconstructed, enabling the acquisition of numerical
models that possess pore structures consistent with the actual fabric characteristics. The fluid
transport process in various directions can be simulated with a finite element method. Taking
the natural gas hydrate reservoir in the Shenhu area of the South China Sea as an example, the
proposed method is validated and applied to explore the effect of compaction stress on permeability
anisotropy. With the increase in compaction stress, the permeability anisotropy exhibited a rapid
initial increase, followed by a sustained stabilization. The primary cause is the rearrangement of
sediment particles. The non-spherical particles are driven to align in a predominantly horizontal
orientation, thereby enhancing anisotropy. The proposed method provides a tool for the efficient
exploitation of hydrate resources.

Keywords: natural gas hydrate; permeability; anisotropy; numerical simulation; computational
fluid dynamics

1. Introduction

The problem of energy shortage has emerged as a formidable impediment that ham-
pers and jeopardizes the progress of human society, in light of the rapid advancement of
economy and society [1]. The natural gas, as a clean energy source, possesses the advan-
tages of being safe and reliable, having ample storage capacity, thus enabling extensive
utilization [2]. The existence of several potential challenges and difficulties, however, cannot
be overlooked, such as forecasting the expected production volume; restoring the history
of an already developed field; choosing the optimal technology for field development; gas
extraction from hydrate; and ensuring the safety of people and structures and analyzing
the environmental consequences of field development [3–6]. The presence of substantial
natural gas reserves in natural gas hydrates (NGHs) has been substantiated by the previous
research [7,8]. As a kind of ice-like crystalline compound, natural gas hydrate exists in a
stable region controlled by certain temperature and pressure conditions [9]. Under stan-
dard conditions, 1 m3 of hydrate decomposition can release about 180 m3 of natural gas,
which is a kind of clean energy with large energy density [10]. At present, many drilling,
geophysical exploration, and test production for natural gas hydrate have been carried
out in the world, and the main target reservoirs are located at permafrost and continental
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shelves [11–13]. Some production technologies have been developed like depressurization,
heat injection, and hydraulic fracturing [14–17]. However, the gas production efficiency
and stability of these trial production work are far from that of commercial production,
and the key factors restricting the gas production efficiency are the seepage characteristics
of hydrate reservoirs [18]. Permeability, defined as the volume of fluid passage under a
given pressure gradient, is a key parameter to evaluate the economic properties of hydrate
reservoirs, and the study of reservoir permeability and its evolution is very important for
the safe and efficient exploitation of hydrate resources [19].

From a sedimentological perspective, the NGH reservoirs predominantly pertain to
unconsolidated sediments [20]. During deposition, mineral particles are arranged in the
direction of water flow or maximum principal stress. Moreover, the variation in mineral
composition and particle size will result in sedimentary stratification of the reservoir, which
also affect the hydrate distribution [21]. These geological factors will induce primary
anisotropy in the permeability of reservoir sediments [22–24]. In the process of hydrate
exploitation, the increase in effective stress and the decomposition of hydrates lead to
the compaction of the pore structure and further change the permeability anisotropy, i.e.,
horizontal permeability is higher than vertical due to compaction [24,25]. A thorough
understanding of the control mechanism and variation law of reservoir permeability
anisotropy is of guiding significance to the optimization of production flow. However,
most current studies have simplified hydrate reservoirs into isotropic media, focusing on
the overall permeability of sediments, and rarely involving the anisotropy characteristics
and evolution mechanism of permeability [26–28].

In this work, a DEM–CFD coupling simulation method is developed to determine
the anisotropic permeability of a hydrate reservoir. The sedimentary process of reservoir
sediments is reconstructed by a discrete element method, and a numerical model of pore
structure consistent with the actual fabric characteristics is obtained. The fluid transport
process in various directions can be simulated using geometric models, and the anisotropic
permeability can be determined through the application of the finite element method.
Taking the natural gas hydrate reservoir in the Shenhu area of the South China Sea as an
example, the proposed method is validated and applied to explore the effect of compaction
stress on permeability anisotropy.

2. Materials and Methods

Methodologically, theoretical analysis, experimental testing, and numerical simulation
are the main methods to determine the permeability of hydrate reservoir [29]. Theoretically,
a number of theoretical models are proposed to describe the permeability–saturation
relationship [30–32]. In these theoretical models, the pore flow process is often idealized
and approximated as parallel capillary tubes to obtain analytical solutions [32]. However,
the variation in pore size, tortuosity, and non-uniform distribution of the hydrate in the
actual pore structure can significantly affect permeability, which poses limitations on
the application of theoretical models, particularly when anisotropy is considered [23].
The experimental tests, in comparison with the theoretical models, offer a more direct
means of determining the sediment permeability and can be categorized into two types:
in situ testing and laboratory testing. Among them, the object of in situ testing is the
whole reservoir, and the common methods include formation testing and nuclear magnetic
resonance logging [32,33]. The objects of the laboratory tests are pressure core samples or
artificially prepared samples. Morphologically, the standard samples are predominantly
cylindrical and can only be tested along the axial direction, making it challenging to obtain
anisotropic properties [34,35]. Moreover, the sample sediments are often disturbed and
cannot maintain the in situ fabric characteristics. Accordingly, some sample reconstruction
methods are employed to reproduce the in situ characteristics of reservoir sediments. For
example, the pluviation method is widely employed due to its ability to replicate the
sediment deposition process in natural environments, thereby yielding artificial samples
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with comparable fabric [36,37]. The experimental tests generally demonstrate a high level
of reliability. However, they do involve substantial testing costs and technical intricacies.

For conventional theoretical and experimental methods, it is difficult to characterize the
control mechanism of micro-pore characteristics on sediment permeability. The microscopic
numerical simulation based on the pore morphology provides a new way to solve this
problem [38]. The numerical simulation includes 2 steps: (1) modeling of pore space and
(2) simulation of seepage progress. With numerical or experimental tools like the discrete
element method (DEM), CT scanning, and four-parameter random growth, the geometric
model containing pore structure information can be constructed to restore in situ reservoir
characteristics [38–40]. The fluid transport is simulated based on the principle of fluid
mechanics. For pore-scale simulation, the most widely used method is the pore network
model (PNM). This method simplifies the porous media into a ball–stick combination, and
then performs flow simulation in the simplified pore network. All the seepage channels
are considered to be straight pipes (stick), and the flow rate is calculated by analytical
solutions [41–43]. However, the simplified geometric pore network fails to fully capture the
intricate pore structure, and the assumption of circular tube flow does not align with reality,
thus rendering it inadequate for practical applications [44]. Based on the real pore geometry,
the computational fluid dynamics (CFD) method can restore the seepage process more
accurately [45,46]. Methodologically, there are two categories of CFD simulation, i.e., mesh-
based methods and particle-based methods [47]. The mesh-based methods, including finite
difference method (FDM), finite volume method (FVM), finite element method (FEM), and
Lattice Boltzmann Method (LBM), discretize the fluid into meshes to solve Navier–Stokes
equations [48,49]. While the particle-based methods mainly include smoothed particle
hydrodynamics method (SPH) and molecular dynamics method, which discretize the fluid
into particles or molecules to solve the motion trajectory of each particle [50,51]. The CFD
method possesses the advantage of exhibiting high levels of accuracy, albeit at the expense
of necessitating extensive computational resources.

3. DEM–CFD Coupling Simulation

Theoretically, permeability is defined as the fluid-passing ability of a specific pore
medium. Therefore, the numerical determination of permeability for the hydrate reservoir
requires the simulation of the pore fluid transport process. In this work, a DEM–CFD
coupling simulation method is developed to compute the anisotropic permeability. The
first step, technically, involves the modeling of reservoir sediments. The DEM is used
to generate sediment particles and apply in situ stress conditions. After that, the pore
space can be extracted and 3D geometric models can be constructed. With the geometric
models, the CFD method can be applied to simulate the fluid transport process in different
directions, and the anisotropic permeability can be determined.

3.1. Reservoir Sediment Modeling According to Geological Origins

Naturally, hydrates often occur in unconsolidated and weakly consolidated sediments.
In the process of formation, these sediments mainly experienced hydrodynamic carrying,
deposition, compaction, and cementation, which form a complex directional pore structure.
In order to restore the fabric characteristics of reservoir sediments, it is necessary to simulate
the natural formation process of sediments in the construction of numerical model, so as to
obtain a numerical model consistent with the in situ characteristics. Experimentally, some
sample reconstruction methods, like pluviation, tamping, and vibration, have been applied
to the sample preparation of anisotropic permeability tests. Among them, the pluviation
method could reproduce the natural deposition processes by releasing sediment particles
at a certain height in water [36]. By adopting this approach, the particle arrangement of the
sample closely resembles its in situ state and exhibits significant directional characteristics,
thereby leading to anisotropy in the physical properties.

For the pluviation method, the physical process mainly includes the following: (1) par-
ticle release, where sand particles are released through the screen and freely fall from a
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certain height; (2) particle descent, where sand particles descend in water under the action
of gravity and medium resistance; (3) particle collision and rebound, where sediment
particles collide and bounce off each other upon contact, and specific collision angles and
particle shapes cause the particles to rotate and rearrange; (4) sedimentation stabilization,
where the kinetic energy of the particles gradually dissipates during the process of collision–
rebound–collision, leading to a continuous decrease in particle velocity until it reaches 0 at
a specific location.

Based on the concept of pluviation, the discrete element method (DEM) is employed
to numerically construct sediment models with realistic fabric. As a prominent framework
for distinct-element modeling, the particle flow method (PFC 5.0) possesses the capability
to analyze mechanical problems under both quasi-static and dynamic conditions. The
macroscopic mechanical behavior of materials is characterized by employing particle aggre-
gates. All particles are treated as rigid bodies with a specific mass, capable of independent
movement, translation, and rotation. Forces and moments occur upon contact between
particles [52,53].

In this work, all sediment particles are simplified into ball and clump units. A clump
is a rigid collection of several rigid pebbles (balls) and has the ability to customize shapes to
characterize irregular sediment particles. For irregular, non-spherical particles, 2 methods
with different precision are developed: (1) Identify the shape of each particle and model
each particle separately. Some microscopic tools, like CT, SEM, etc., can be employed to
identify the shape of sediment particles and construct geometric models for each particle.
In the PFC method, these geometric models can be used as templates for clump generation,
so as to obtain high-precision models; (2) Identify the shape of limited particles and model
random particles according to the statistical shape parameters. A classic indicator, known
as the Zingg diagram, can be utilized to quantitatively assess particle shape based on
the elongation ratio (a/b) and flatness ratio (b/c), where a, b, and c represent the long,
intermediate, and short orthogonal axes of a specific particle [54,55]. Mathematically, as
the elongation ratio increases, the particles tend to approach an acicular shape, while a
higher flatness ratio indicates a tendency towards a flake shape. Based on the statistical
data of the Zingg diagram, ellipsoid templates are constructed and ellipsoid particles are
randomly generated (Figure 1). The shape parameter distribution for numerical particles is
set to match the statistical data of actual sediment particles. The latter method is generally
considered more practical as it entails less computational complexity and enables the
inclusion of a larger number of particles.
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After particle generation, the process of pluviation is simulated with the particle flow
method (Figure 2). Theoretically, for the descent of particles, Newton’s second law is
employed to depict the translational motion of particles [40]:

Fi = mi
d2ri
dt2 (1)

where Fi represents the resultant force on the ith particle; mi is the mass of ith particle; ri
represents the position of ith particle.
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The rotation of a particle after collision is described by Euler’s equation, which can be
formulated as follows [40]:

τi =
d
dt
(I · ωi) (2)

where τi is the collision moment on the ith particle; I is the inertia tensor; ωi is the angular
velocity of ith particle.

Contact models are utilized to compute the contact force and contact moment. For
particle collision, rebound, and energy dissipation during deposition, a linear model can
be employed to calculate the force–displacement relationship. The contact force Fc can be
decomposed into linear and dashpot components [56,57]:

Fc = Fl + Fd (3)

where Fl is the linear component, which provides the linear elastic and frictional behavior;
Fd is the dashpot component, which provides the viscous behavior [56,57].

3.2. Geometric Model of Pore Space

The extraction of pore space and construction of geometric models are essential for
simulating the seepage progress. Theoretically, the CFD computation with finite element
method (FEM) is grounded on the geometric representation of mesh (use software of
COMSOL Multiphysics 5.6). However, for the PFC models, the geometric representation is
based on the ball and clump units. Therefore, an interface program needs to be developed
to connect the geometric models of these two methods. In this work, the CFD computation
is conducted with COMSOL Multiphysics, and MATLAB is used to program the interface.
Specifically, the programming of the interface is based on the following steps: (1) Export the
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position and size data of all particles (balls and clumps) in PFC and store them in a binary
file; (2) Read the particle data with Matlab and identify the shape of each clump. When the
non-spherical particles are treated as ellipsoids, they can be directly generated according to
the clump size data (i.e., long, intermediate, and short orthogonal axes, a, b, c). While when
the real shape of each non-spherical particle is needed, the 3D templates from microscopic
tools are employed to build particles with complex geometries; (3) Determine the attitude
angle of each particle. For the non-spherical particles, the attitude angle controls their
arrangement. Three pebbles from one clump are selected to calculate the normal vector
and further determine the attitude angle (Figure 3a); (4) According to the size, position,
shape, and attitude angle for a specified particle, a geometric model can be established by
COMSOL Multiphysics with MATLAB, and the combination of all particles constitutes a
specific fabric (Figure 3b); (5) Boolean operation is applied to cut sediment particles from a
cube to obtain a cubic geometric model of pore space.
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3.3. Pore-Scale Seepage Simulation

The CFD simulation in pore space is conducted using COMSOL Multiphysics based
on the finite element method. The first step, technically, is the mesh generation of geometric
models. In the default meshing tool, mesh parameters, including maximum size, minimum
size, maximum growth rate, curvature factor, and narrow area resolution are used to
control mesh precision. Moreover, the meshes in angles are refined to ensure the calculation
accuracy of the pore throat flow (Figure 4a). By adjusting these parameters, the mesh quality
is ensured to be greater than 0.65. After that, a mesh independence test should be conducted
for each model by changing the mesh precision and comparing the solution results.
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After the generation of mesh, the simulation of fluid transport in pore space is con-
ducted. By applying the principles of momentum conservation and mass conservation, the
motion of fluid can be governed by the Navier–Stokes equation as follows:

ρ ∂u
∂t + ρ(u · ∇)u = ∇ · (−pI + K) + F

ρ∇ · u = 0
(4)

where ρ is fluid density; p is pressure; u is velocity vector; I is identity matrix; K is viscous
stress tensor; and F is the volume force vector.

The viscous stress tensor K for an incompressible Newtonian fluid can be derived
as follows:

K = µ(∇u + (∇u)T) (5)

where µ is dynamic viscosity.
According to the definition of Darcy’s law, the flow in pore space should exhibit

creeping flow, characterized by a significantly higher viscous stress compared to inertial
stress. Therefore, Equation (5) can be simplified to Stokes equations as follows:

ρ ∂u
∂t = ∇ · (−pI + K)

ρ∇ · u = 0
(6)

The significance of the inertial effect, particularly for gas media, should be emphasized
when the flow rate is excessively high. Under such circumstances, the relationship between
flow rate and pressure gradient becomes non-linear. To obtain absolute permeability, it is
necessary to correct the apparent permeability calculated using actual flow rates. However,
in this study, we can circumvent the inertial effects on permeability by disregarding inertial
stress in the Stokes equations.

To obtain the permeability anisotropy, seepage simulations are conducted in the three
orthogonal directions of the cubic model. The top and bottom boundaries are designated
as in-flow and out-flow boundaries with constant pressure, while the four sides and all
particle surfaces are defined as walls with zero flow velocity and no-slip conditions (refer
to Figure 4b). The test fluid could be liquid or gas. The permeability is determined using
Darcy’s law. In the case of a liquid medium, the fluid is assumed to be incompressible.
Hence, Darcy’s law can be formulated as follows:

k =
UoutµL

Pin − Pout
(7)

where Uout is outlet velocity; L is side length of geometric model; Pin is inlet pressure; and
Pout is outlet pressure.

In the case of a gas medium, the fluid is assumed to be compressible. Darcy’s law can
be formulated as follows:

k =
2UoutµLP0

P2
in − P2

out
(8)

where P0 is the reference pressure, which takes the value of 1 atm.

4. Case Studies
4.1. Homogeneous Model Consisting of Identically Sized Spherical Particles

Serving as a typical case, the permeability of identically sized spherical particles is
frequently employed to validate the precision of the proposed methodology. In this work,
a sediment model is constructed with spherical particles (diameter of 9 µm, see Figure 5).
All the particles are liberated at a height of 200 µm and subsequently deposited at the
base of the model. To mitigate the disturbance of the boundary effect, particles located
at the core of each specimen are selectively employed to extract the pore space. A cubic
region measuring 30 µm along each edge is strategically positioned at the center of the
packing model. Ensuring a minimum distance of 35 µm from any boundary, the associated
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boundary effects are found to be trivially insignificant. Subsequently, all particles contained
within or in physical contact with the cubic region are meticulously identified based on
their spatial coordinates, dimensions, and orientation angles to extract the geometric model
of pore space (see Figure 5). The porosity of this case is 0.408.
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The flow field in the pore space of each sample can be obtained by solving all the
governing equations in COMSOL Multiphysics (refer to Figure 6). Water is selected as the
test fluid. The outlet velocity Uout is calculated through fluid mass integral, which can then
be inserted into Equation (7) to determine the permeability in each direction.
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With the above CFD simulation method, the flow field in pore space of each sample
can be obtained by solving all the governing equations in COMSOL Multiphysics (see
Figure 6). Water is chosen to be the test fluid with the physical parameters shown in Table 1.
The outlet velocity Uout is determined through the integration of fluid mass, which can then
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be utilized in Equation (7) for the calculation of permeability in each direction. According
to the simulation results, the horizontal permeability kh and vertical permeability kv are
84.33 and 81.45 mD, respectively, resulting in kv/kh = 0.97. Therefore, the porous media
consisting of identically sized spherical particles exhibits limited anisotropy in permeability.
The seepage in the pore space is governed by the prevailing channels, with flow lines being
concentrated within the larger pores.

Table 1. Parameters in CFD simulation.

Parameter Value

Density (kg/m3) 1000
Dynamic viscosity (Pa·s) 0.001

L (µm) 30
Pin (Pa) 1
Pout (Pa) 0

The analytical solutions for permeabilities of idealized simple cubic (SC), body-
centered cubic (BCC), and face-centered cubic (FCC) arrays of spheres have been provided
as representations of idealized packing structures [58,59]:

k =
L2

GπaCd
(9)

where L is the size of cubic sample; G is a coefficient and is assigned values of 6, 12, and
24 for the SC, BCC, and FCC arrays of spheres, respectively; a is particle size; Cd is the drag
coefficient and was introduced by Sangani and Acrivos [60].

Additionally, previous studies have reported more experimental and numerical results.
For instance, Maier et al. and Garcia et al. conducted experiments to test the normalized
permeabilities P (P = k/a2), with a porosity of 0.37, yielding results of 7.48 × 10−4 and
8.24 × 10−4, respectively [40,61]; Lin and Chen [59], Prasad and Bucha [62] computed the
permeabilities at different porosities using the Lattice Boltzmann method. The analytical,
experimental, and numerical findings from these studies exhibit a high level of consistency
with this work (see Figure 7). Therefore, the proposed method has a considerable level of
accuracy and applicability.
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4.2. Heterogeneous Model Consisting of Plate-Shaped, Elongated, and Spherical Particles

The numerical samples are established based on the microstructure and mineral char-
acteristics of hydrate-bearing sediments in the Shenhu area, South China Sea, incorporating
plate-shaped, elongated, and spherical particles (for more details, refer to our previous
study by Li, Zhang [23]). The predominant minerals present in this reservoir comprise
calcite (foraminifer), clay minerals, quartz, and plagioclase [63]. The distinguishing min-
eral characteristic of this reservoir, in comparison to other hydrate reservoirs, lies in its
substantial clay component, which often exhibit elongated and plate-shaped geometrical
shapes [64,65]. The horizontal permeability kh and vertical permeability kv for uncompacted
sediments are, respectively, 24.31 mD and 13.72 mD with kv/kh = 0.56. As comparisons, the
permeability anisotropy for cores from India’s National Gas Hydrate Program Expedition
02 exhibits kv/kh = 0.54, while the result for pressure-core sediments recovered from the
Krishna–Godavari Basin, offshore India, is 0.25 [26,66]. It has been indicated that the plate-
shaped is the cause of permeability anisotropy. In this work, the impact of compaction
is further investigated. According to the theoretical calculation, the in situ compaction
stress has the potential to reach 15.24 MPa [67]. Therefore, loads are applied to the model
in stages from 0 to 16 MPa (1 MPa per stage) with a servo wall boundary (see Figure 8). At
each stage, seepage simulation is conducted and the evolution of permeability anisotropy
is computed.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 11 of 15 
 

 

piecewise mathematical model is constructed. Within the pressure range of 0 to 3 MPa, 
the decline rate of the anisotropy index is 0.059/MPa, while within the pressure range of 3 
to 16 MPa, the decline rate of the anisotropy index is 0.001/MPa.  

2

2

1 / 0.059 1.798  3MPa   0.87
1 / 0.001 1.961  3MPa   0.77

AI P P R
AI P P R

 = + < =


= + ≥ =
 (10)

Servo Wall

 
Figure 8. Compaction of model with servo wall. 

1.75

1.8

1.85

1.9

1.95

2

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

kh kv AI

k 
(m

D
)

1/
AI

P (MPa)

1/  = 0.059  + 1.798   = 0.87AI P R2

1/  = 0.001  + 1.961   = 0.77AI P R2

 
Figure 9. Permeability and anisotropy evolution with increasing compaction stress. 

Theoretically, the permeability anisotropy is controlled by the directional arrange-
ment of the plate-shaped particles [23]. The average inclination angles for elongated and 
plate-shaped particles are calculated (Figure 10). Within the pressure range of 0 to 2 MPa, 
the particle position is rotatable in a relatively high porosity, and the compaction stress 
can drive particle rearrangement. All the non-spherical particles tend to be arranged hor-
izontally to reduce inclination angles. Therefore, at this stage, the average inclination an-
gles for elongated and plate-shaped particles decrease sharply. Nevertheless, as the stress 
increases, the porosity decreases rapidly, and the particle system forms a tight packing, 
which limits particle rotation. At this stage, the deceleration in average inclination angles 
for elongated and plate-shaped particles slows down. The decrease in the inclination an-
gle indicates a more horizontal arrangement of particles, resulting in an enhanced 

Figure 8. Compaction of model with servo wall.

According to the simulation results, both horizontal and vertical permeability decrease
with increasing compaction stress. Moreover, the decrease in the lower stress interval
is considerably more pronounced compared to the reduction observed in the relatively
high stress interval. Within the pressure range of 0 to 3 MPa, the horizontal permeability
decreases from 24.31 mD to 13.11 mD (46.07%), and the vertical permeability decreases from
13.72 mD to 6.67 mD (51.38%) (Kv/Kh from 0.56 to 0.52). While within the pressure range of
3 MPa to 16 MPa, the horizontal permeability decreases from 13.11 mD to 12.67 mD (1.81%),
and the vertical permeability decreases from 6.67 mD to 6.42 mD (1.82%) (Kv/Kh from 0.52
to 0.51). The reduction in permeability is more significant in the vertical direction compared
to the horizontal direction, resulting in an increase in permeability anisotropy. Defining the
ratio of vertical to horizontal permeability (Kv/Kh) as the anisotropy index (AI), the value
of AI decreases from 0.56 to 0.51 with increasing compaction stress. Meanwhile, the rise
of anisotropy also presents a piecewise feature. The increase of 1/AI in the lower stress
interval is significantly greater than that in the relatively high stress interval (see Figure 9).
To predict the change in anisotropy with compaction stress, a piecewise mathematical
model is constructed. Within the pressure range of 0 to 3 MPa, the decline rate of the
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anisotropy index is 0.059/MPa, while within the pressure range of 3 to 16 MPa, the decline
rate of the anisotropy index is 0.001/MPa.{

1/AI = 0.059P + 1.798 P < 3MPa R2 = 0.87
1/AI = 0.001P + 1.961 P ≥ 3MPa R2 = 0.77

(10)
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Theoretically, the permeability anisotropy is controlled by the directional arrangement
of the plate-shaped particles [23]. The average inclination angles for elongated and plate-
shaped particles are calculated (Figure 10). Within the pressure range of 0 to 2 MPa, the
particle position is rotatable in a relatively high porosity, and the compaction stress can drive
particle rearrangement. All the non-spherical particles tend to be arranged horizontally
to reduce inclination angles. Therefore, at this stage, the average inclination angles for
elongated and plate-shaped particles decrease sharply. Nevertheless, as the stress increases,
the porosity decreases rapidly, and the particle system forms a tight packing, which limits
particle rotation. At this stage, the deceleration in average inclination angles for elongated
and plate-shaped particles slows down. The decrease in the inclination angle indicates a
more horizontal arrangement of particles, resulting in an enhanced permeability anisotropy.
Moreover, the piecewise function of the evolution for inclination angle is also consistent
with the variation in permeability anisotropy.
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5. Conclusions

In this study, a DEM–CFD coupling simulation method is developed to numerically
determine the permeability of an unconsolidated hydrate reservoir. Based on the mi-
crostructure and mineral characteristics of hydrate-bearing sediments in the Shenhu area,
South China Sea, two typical cases are tested, and the model accuracy is verified. Mainly,
the following conclusions are obtained:

(1) According to the physical process of sedimentation, a reservoir sediments-modeling
method is developed based on the DEM framework, which has the ability to restore
the anisotropy of physical properties. An interface program is designed to connect
the geometric models of DEM and FEM, and pore-scale computational fluid mechanics
simulation is conducted to obtain the anisotropic permeability for the hydrate reservoir.

(2) An idealized homogeneous model consisting of identically sized spherical particles
are constructed, and the permeability is obtained with DEM–CFD coupling simulation.
The analytical, experimental, and numerical results from previous studies exhibit a
high level of consistency with this study, which verifies the accuracy and applicability
of the proposed method.

(3) With the increase in compaction stress, the permeability anisotropy exhibited a rapid
initial increase, followed by a sustained stabilization. The primary cause is the
rearrangement of sediment particles. The non-spherical particles are driven to align
in a predominantly horizontal orientation, thereby enhancing anisotropy. A piecewise
mathematical model is developed to accurately predict the evolution of permeability
anisotropy with a turning point of 3 MPa.

In the future work, more true-shaped particles will be investigated to build more
accurate numerical models. Moreover, experimental verification of the proposed numerical
method is also the focus of the next work.
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