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Abstract: With growing concerns about the danger of global climate change and worldwide demand
for energy, the interest in the investigation and construction of renewable energy technologies
has increased. Fixed platforms are a type of support structure for wind turbines composed of
different types of tubular joints. These structures are under different kinds of cyclic loadings in ocean
environmental conditions, which must be designed and reinforced against fatigue. In the present
paper, the relationships between the parameters in DKT-joints reinforced with FRP under axial loads
are investigated using several models, under 16 axial loading cases, with different nondimensional
parameters and different FRP materials, and orientations were generated in ANSYS (total 5184) and
analyzed. The four loading conditions that cause the maximum stress concentration factors were
selected. After analyzing the 1296 reinforced models, relevant data were extracted, and possible
samples were created. The extracted data were used in a multivariate data analysis of maximum
stress concentration factors. The Pearson correlation coefficient is utilized to study the relationship
between parameters and subsequently to make predictions. To reduce the number of variables and to
group the data points into clusters based on certain similarities, hierarchical and non-hierarchical
classifications are used, respectively.

Keywords: tubular DKT connection; classification; fiber-reinforced polymer (FRP); non-hierarchical
classification (NHC); stress concentration factor (SCF); multiple regression

1. Introduction

Tubular steel joints (TSJs), as seen in Figure 1, are common and usually the main
components of the steel structures used in offshore structures, bridges, buildings, and
other applications [1–4]. These TSJs, whether applied offshore or in onshore areas, are
connected by welding, which is sensitive to the type of loads, especially cyclic loadings,
like wind and waves [5–7], which can cause fatigue damage. Thus, to ensure structural
integrity in these types of structures, the joints must be designed considering fatigue. The
stress method [4,7–9] is mostly applied to calculate the fatigue resistance of TSJs. For
this purpose, the SCF [10–15] is a key parameter for studying fatigue. The common way
to predict the fatigue of joints is through empirical and numerical studies [16–18]. As an
example, Bao et al. [19] worked on Y-three-planner-joints under axial loading and proposed
equations to calculate SCFs. Rahmanli and Becque [20] worked on two-planner KT-joints
with the help of SolidWorks under balanced axial loading. Their results revealed that
among the different non-dimensional parameters, γ and τ are critical parameters for SCFs,
so increasing them results in an increase in SCFs. In addition, the maximum SCF on the
chord member took place in the sectors around 180◦ and 225◦ < φ < 270◦. Ahmadi et al.
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and Zavvar et al. [21,22] worked on multiplanar KT-joints in ANSYS APDL 2024 to derive
equations to calculate SCF values. They proposed a set of equations with higher R2, which
indicates their accuracy. Kuang et al. [23] developed formulae to calculate SCFs in some
types of joins, including the T/Y-, K-, and KT-joints. The authors did not model the weld
profile thanks to the capability of the shell element used in their approach.
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Some methods are used to reinforce steel structures and joints, such as internal
and external steel ring plates [15,24–32], fiber-reinforced polymer (FRP) [33–39], doubler
plates [40–47], and concrete and grout [48–50]. In FRP methods, Zavvar et al. and Hosseini
et al. [51,52] performed an investigation on KT-joints against axial loadings and bending
moments. More than 3000 FE models were created and analyzed in ABAQUS to derive
formulae to calculate the value of SCFs. Zavvar et al. [53] conducted an investigation
on uniplanar DKT-joints to calculate the maximum SCF using FE modeling. The solid
element in ANSYS was used to create and analyze the models. SPSS was used to derive
the formulae. The proposed formulae (with a high R2, i.e., >0.9) were considered accurate
enough to calculate the maximum SCF. Zhao et al. [54] conducted a study on rectangular
section joints reinforced with CFRP. The authors concluded that the crippling web capacity
can be increased with CFRP.

In this research, finite element (FE) models of uniplanar KT-joints reinforced with
FRP (which were previously verified in [16,55–57]) are used to extract data to calculate the
maximum SCF. ANSYS v24 was utilized to generate the FE models and perform analysis
under 16 axial loading conditions with different non-dimensional parameters (Table 1).
Later, among all loading conditions, the four parameters leading to the maximum SCF were
selected (details in Section 2). In the models with four loading conditions, FRP combined
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with five types of material was used. A collection of sample databases was generated in
accordance with the findings of the FE investigation. SPSS and MATLAB were used to
apply the statistical methods to the obtained data.

Table 1. The non-dimensional parameters.

Parameter Definition Value(s)

β d/D 0.4, 0.5, 0.6, 0.7
γ D/2T 12, 18, 24
τ t/T 0.4, 0.7, 1.0
θ - 30◦, 45◦, 60◦

N Number of FRP sheets 4, 8, 12, 16
ξ EFRP/ESteel 0.14–0.87
η TFRP/Tchord 0.3–1.20
β d/D 0.4, 0.5, 0.6, 0.7
γ D/2T 12, 18, 24

2. Models Characterization

In this section, the properties of the models and the modeling process are described.
The models were created with different dimensions (e.g., diameters, length, and thickness).
The combination of those dimensions created some well-known dimensionless parameters
(Table 1). The selected specifications include a diverse range of tubular connectors that
are often used in marine structures [58]. SOLID 186 and SHELL 281 were used to model
the DKT-joints in ANSYS; the solid elements were used for modeling the weld profile and
members whereas SHELL 281 was used for FRP. The main purpose of the FE modeling
in ANSYS is to extract the HSS from the weld toe. Therefore, there is no need to have a
fine mesh in all parts of the members, which would increase analysis time significantly.
It is sufficient to have a fine mesh in the HSS region (International Institute of Welding
(IIW) [59] recommendations) and weld profile. To this end, the sub-zone method is utilized
to control the meshing quality (Figure 2).
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In total, 16 possible loading conditions were applied to uniplanar KT-joints. The four
loading conditions that create the maximum SCFs are presented in Table 2. A convergence
investigation was performed on the meshing through the chord thickness and two elements
were selected. Additional information is included in the references [12,13,53,60].

Table 2. Loading conditions.

No
Loading

Brace

A B C D E F

1 1 1 1 1 1 1
2 −1 1 −1 1 1 1
3 −1 −1 1 1 1 1
4 1 1 1 −1 −1 −1

1 = Compression, −1 = Tension

To model the weld profile, AWS [61] recommendations are used. An important
parameter for the weld design is the dihedral angle (Ψ). It can be calculated as indicated in
Figure 3 [22,50,62].
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FRP is like a sheet of paper. Hence, the best option to model it is using shell elements.
Members are modeled with solid elements, and FRP is modeled with shell elements. In
order to simulate the interaction between the solid members and the FRP, an accurate
method is using the contact capability of ANSYS. In this technique, the contact is applied
to the joint outer surfaces (element contact 174), and the target is applied to the FRP (target
170). Regarding the length of the selected FRP, previous research [63] indicated that having
an FRP longer than 6

√
DT for the chord members and 6

√
dt for the brace members is not

necessary (Figure 4).
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Based on previous studies [51,52], fiber orientations of 90◦ and 0◦ have been used.
Table 3 provides information on the FRP materials. The third scheme was selected [51,52].
Additional information is provided in the references [12,13,53].
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Table 3. Materials of FRP.

Name E1 (MPa) υ32 G23 (MPa)

Glass/vinyl ester 28,000 0.38 2540
Kevlar 9/Epoxy 76,000 0.37 2010

Carbon T300/5208 181,000 0.59 3240

SCFs are calculate as follows [9,12,64]:

SCF = σHSS/σn (1)

where σn is the nominal stress. The hot-spot stress (HSS) is defined as the largest value of
stress around the weld toe. The HSS is determined according to IIW [59]. Hence, HSS is
achieved from two points, 0.4 T and 1.4 T (Figure 5). The nominal stress for these types of
loading patterns is calculated as follows [12]:

σn =
F
A

(2)

where σn represents the nominal stress, F is the axial load, and A is the cross-section area of
the loaded brace. The stress σ is determined as follows:

σhss = 1.4σ1 − 0.4σ2 (3)

where the 1st point is represented by σ1, and the 2nd point is indicated by σ2.
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3. Statistical Procedures

The statistical analysis of the FRP-retrofitted two-planar KT-Joint under AX loading
is described in this section. The models were generated considering seven parameters,
namely the joint traditional non-dimensional and FRP parameters (β, γ, τ, θ, η, and ξ)
and the resulting SCFs. The processing of sample data involves a quantitative statistical
analysis aimed at determining global indicators across six dimensions. This procedure
allowed for the creation of five sample databases that present the values of SCF for this type
of joint. Then, using software such as SPSS v29 and MATLAB v24, the statistical analysis
was conducted. Finally, the samples were submitted to detailed statistical procedures and
methods.

3.1. Applied Methods

The statistical methods applied to the created datasets focus on six quantitative indi-
cators. In the first step, with the help of univariate analysis, each parameter is described



J. Mar. Sci. Eng. 2024, 12, 1451 6 of 23

individually using some graphical representations, such as box plots. In the second step,
the bivariate analysis, Pearson’s correlation coefficient is applied to analyze the linear
relationships between the variables. Finally, in the multivariate analysis, two approaches,
including multiple regression [65–67] and hierarchical classification (HC) [68,69] are used
to create classes of data and classes of indicators.

HC, often referred to as Agglomerative Hierarchical Clustering (AHC), is a method
used to classify a set of elements by grouping them into a smaller number of classes.
This classification is based on the principle that elements within the same class share
similarities with each other and exhibit differences from elements in other classes. Unlike
some other clustering methods, the number of classes in AHC is not predetermined but is
determined as part of the clustering process itself. This iterative approach builds the classes
gradually, merging similar objects into clusters until a stopping criterion is met, resulting
in a hierarchical structure of clusters.

The hierarchical classification (HC) method involves two critical decisions. The first
one being the determination of the measure of comparison between the pairs of elements
to be classified. This choice depends on whether the elements being classified are vari-
ables (similarity type) or individuals (dissimilarities). The second consists of selecting the
criterion to measure the proximity between two classes. It is essential to recognize that
these two choices are pivotal factors as they can significantly influence the outcome of the
clustering process. Careful consideration of these choices is crucial since they play a vital
role in shaping the final clustering results.

3.2. Univariate Analysis

The models were analyzed to obtain SCFs, which were then categorized into five
distinct samples for further analysis. The 1st sample comprised the SCFs from the 1st
loading condition, while the 2nd sample included SCFs from the 2nd loading condition.
Similarly, the third and fourth samples consisted of SCFs from the 3rd and 4th loading
conditions, respectively. The fifth sample contained the maximum SCFs of all the 16 loading
conditions. Table 4 displays, for each sample, the SCFs’ descriptive measures. A positive
skewness indicates that the distribution tail is skewed towards higher values; therefore,
all samples show positive asymmetry. Moreover, the kurtosis value in the third sample
surpasses that of the other samples, suggesting a probability distribution with a pronounced
peak. In contrast, the kurtosis value in the fourth sample is lower than that of the other
four, indicating a probability distribution with a less pronounced peak for this sample. In
this research, the number of the considered parameters is 6 (Table 1).

Table 4. SCF descriptive statistics for samples.

1 2 3 4 5

Mean 20.51 13.55 11.85 10.45 20.56
Median 17.92 12.14 11.08 10.19 18.02
Mode 13.42 9.89 12.24 5.39 9.05

Skewness 0.89 0.85 0.97 0.41 0.89
Kurtosis 3.23 3.15 3.95 2.63 3.25

Standard deviation 10.50 6.62 5.62 4.31 10.47
Variance 110.12 43.82 31.60 18.52 109.51

Max 56.76 35.01 34.49 25.45 56.76
Min 5.12 4.03 3.68 2.98 5.12

Count 1296 1296 1296 1296 1296
1st quartile 12.67 8.64 7.89 6.49 12.73
3rd quartile 26.94 17.31 14.75 13.72 26.94

Thus, looking at the 5 samples in Table 4, sample 1 and sample 5 have higher values:
sample 1 has an average of 20.51, a variance of 110.1, a mode of 13.42, a standard deviation
of 10.50, and a maximum of 56.76; sample 5 has a median of 18.02. Sample 2 (the second
loading condition) has a skewness of 0.85 and the maximum is 34.49.
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Figure 6 displays box plots illustrating the distributions of sample 1 through sample
5. Each box plot is composed of the minimum, first quartile, median, 3rd quartile, and
maximum, dividing the distribution into four intervals, each showing 25 percent of the
respective distribution. This set of box plots enables comparisons between sample 1 and
sample 5 within each dimension, as well as comparisons of indicators across dimensions.
The samples demonstrate significant concentrations in the lower range of the distribution.
(positive asymmetry). The sample 1 and sample 5 box plots reveal an accentuated negative
asymmetry of the distribution. Sample 1 and sample 5 have a significant concentration
between the first quartile and the median. Other samples (2, 3, and 4) are symmetrical.
Upon comparing the samples, it can be inferred that sample 1 and 5 exhibit the widest
range of values, while sample 4 has the narrowest range. The sample 4 box plot displays a
few lower–moderate outliers. Figure 6 also shows the behavior of the samples. Sample 5
has the widest range of values, and sample 4 has the lowest. Furthermore, sample 5 and
sample 1 have values that are greater than the values of the other samples.
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3.3. The Histograms

In order to construct a density histogram, it is necessary to partition the range (R) into
many classes. There are several suggestions to calculate the number of classes, such as the
Sturges [70] and Freedman–Diaconis (FD) [71–74] method.

In this study, the FD [71] rule was used to calculate the number of classes. It is
determined as follows:

nc =
2(interquartile range)

3
√

n
(4)

Table 5 indicates the FD values for each sample. Figure 7 indicates the histograms
with normal distribution. According to the skewness and kurtosis values (Table 5), it can
be inferred that the histograms exhibit a larger right tail compared to the left tail. Figure 7
indicates that the values of the kurtosis are higher than 3 for four samples, including 1, 2,
3, and 5 (Table 4), hence suggesting a leptokurtic distribution thinner than the standard
normal distribution. Only for sample 4 is the kurtosis value smaller than 3, indicating a
platykurtic distribution.

Table 5. Values of FD.

Sample 1 2 3 4 5

FD (nc) 20 19 24 17 20
Significance level 0.05 0.05 0.05 0.05 0.05
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3.4. Bivariate Analysis

This section addresses the bivariate analysis, which involves examining the relation-
ship between two variables. Measures of association are very common for this analysis,
and one of the most popular methods is the Pearson correlation coefficient (PCC), which
can involve two or more variables. Correlation simply measures the linear association
between variables without any implication of cause and effect. The sign of the correlation
coefficient indicates the direction of the relationship, a positive correlation signifies that the
variables fluctuate in the same direction, while a negative correlation signifies that they
vary in opposite directions. The Pearson coefficient is defined as follows:

R(a, b) =
cov(a, b)√

var(a)× var(b)
(5)

Therefore, the Pearson correlation coefficient is a standardized covariance between
−1 and +1. When it is close to 1 it indicates the best positive correlation. In this section,
instead of presenting all sample results, just the results of sample 5 are presented for the
sake of brevity.
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In the bivariate analysis of the samples, Pearson’s correlation determines correlation
values for samples and parameters (Tables 6 and 7). This analysis indicates that γ values
are correlated with the η values in each dimension and also between them. The γ-SCF
and τ-SCF correlation values are higher than for the others. The correlation between the
β-SCF, θ-SCF, and ξ-SCF is weak between all parameters, while the η with other indicators
is the lowest.

Table 6. Pearson’s correlation coefficient of sample 5.

Confidence Intervals

Pearson Correlation Sig. (2-Tailed)
95% Confidence Intervals (2-Tailed)

Lower Upper

β-SCF −0.111 0.058 −0.002 0.107
τ-SCF 0.693 0.000 0.511 0.587
θ-SCF 0.134 0.000 0.082 0.189
η-SCF 0.082 0.000 −0.152 −0.044

γ-η 0.506 0.000 0.465 0.546
ξ-SCF −0.161 0.082 −0.103 0.006
γ-SCF 0.559 0.000 −0.153 −0.046

Table 7. Pearson’s correlation matrix of sample 5.

β τ θ η ξ γ SCF

β 1 0.000 0.000 0.000 0.000 0.000 −0.111
τ 0.000 1 0.000 0.000 0.000 0.000 0.693
θ 0.000 0.000 1 0.000 0.000 0.000 0.134
η 0.000 0.000 0.000 1 0.000 .506 0.082
ξ 0.000 0.000 0.000 0.000 1 0.000 −0.161
γ 0.000 0.000 0.000 0.506 0.000 1 0.559

SCF −0.111 0.693 0.134 0.082 −0.161 0.559 1

Tables 6 and 7 indicate that parameters γ and τ have the best correlation with the
SCF and that parameters γ and ξ have a high correlation together. Furthermore, it shows
that, among other parameters, these three are important and have significant roles in
predicting SCF. The lowest correlation is related to θ; hence, it means that this parameter
has no relevant effect on the structure’s behavior against fatigue. Therefore, the thickness
of the braces and the chord are much more important than the other variables in protecting
tubular joints against fatigue.

4. Scatter and P-P Plots

Figure 8 indicates P-P and scatter plots of the samples. P-P plots (Figure 8 left) are
typically used in regression analysis to assess the assumption of normality of the residuals.
The X-axis represents the cumulative probability of the observed residuals, and the Y-axis
represents the cumulative probability that would be expected. Deviations from the line
indicate departures from normality. Large deviations can suggest problems with the model
or the need for transformation of the dependent variable. The scatter plots (Figure 8, right)
provide the relationship between the regression standardized residuals and the SCF (for all
samples) values. The X-axis indicates the regression standardized residuals, whereas the
Y-axis indicates the SCF values. Scatter plots with independent and dependent variables
are presented. The joint parameters (β, γ, τ, θ, η, and ξ) are the independent variables,
whereas SCF is defined as the dependent variable. In all samples, it can be seen from P-P
plots (Figure 8 left) that the points closely follow the diagonal line, which presents that the
data are approximately normally distributed. Any major deviations from the line might
indicate a problem with normality, but in plots, the points seem to be well-aligned with the
line, suggesting that the normality assumption is acceptably met.
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The scatter plots (Figure 8, right) show that, for example, in sample 5, distribution
seems to be a fan-shaped pattern, suggesting heteroscedasticity (variance of residuals
increases with the predicted values). In the lower range of the SCF (up to about 20),
the data are more tightly clustered around zero, but as the SCF increases, the spread of
residuals increases, forming a distinct pattern. There are clusters of points, particularly
in the mid-range of SCF values, indicating that certain ranges of SCF values have more
residual variation than others. The presence of outliers can be seen at both ends of the SCF
values, with some points far from the main cluster of data.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 10 of 23 
 

 

SCF (for all samples) values. The X-axis indicates the regression standardized residuals, 
whereas the Y-axis indicates the SCF values. Scatter plots with independent and depend-
ent variables are presented. The joint parameters (β, γ, τ, θ, η, and ξ) are the independent 
variables, whereas SCF is defined as the dependent variable. In all samples, it can be seen 
from P-P plots (Figure 8 left) that the points closely follow the diagonal line, which pre-
sents that the data are approximately normally distributed. Any major deviations from 
the line might indicate a problem with normality, but in plots, the points seem to be well-
aligned with the line, suggesting that the normality assumption is acceptably met. 

The scatter plots (Figure 8, right) show that, for example, in sample 5, distribution 
seems to be a fan-shaped pattern, suggesting heteroscedasticity (variance of residuals in-
creases with the predicted values). In the lower range of the SCF (up to about 20), the data 
are more tightly clustered around zero, but as the SCF increases, the spread of residuals 
increases, forming a distinct pattern. There are clusters of points, particularly in the mid-
range of SCF values, indicating that certain ranges of SCF values have more residual var-
iation than others. The presence of outliers can be seen at both ends of the SCF values, 
with some points far from the main cluster of data. 

 
 

Sample 1 

 
 

Sample 2 

Figure 8. Cont.



J. Mar. Sci. Eng. 2024, 12, 1451 11 of 23J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 11 of 23 
 

 

 
 

Sample 3 

 
 

Sample 4 

 
 

Sample 5 

Figure 8. P-P plots (left) and scatter diagrams (right). 

5. Multiple Regression 
In this section, the multiple regression analysis is explained with the joint geometry 

parameters, FRP, and SCF. Several key parameters are important in the multiple regres-
sion analysis, such as R2 and adjusted R2 which can be calculated as follows: 

Figure 8. P-P plots (left) and scatter diagrams (right).



J. Mar. Sci. Eng. 2024, 12, 1451 12 of 23

5. Multiple Regression

In this section, the multiple regression analysis is explained with the joint geometry
parameters, FRP, and SCF. Several key parameters are important in the multiple regression
analysis, such as R2 and adjusted R2 which can be calculated as follows:

R2 = 1 −
∑n

i=1

(
bi − b̂i

)2

∑n
i=1

(
bi − bi

)2 (6)

Adjusted R2 = 1 −

(
1 − R2

)
(n − 1)

n − k − 1
(7)

where bi represents the actual values of the dependent variable, b̂i represents the predicted
values from the model, and bi represents the mean of the actual values; n indicates the
sample size, and k presents the number of predictors.

Table 8 indicates the summary information of the samples. Samples 1 and 5 both
have the highest R2 values of 0.903, indicating that these models explain 90.3% of the SCF.
Sample 4 has the lowest standard error of the estimate (2.03349), suggesting the predictions
for this sample are the closest to the actual values. All samples show high R and R2 values,
suggesting that the samples fit the data well. Sample 5 is the most important sample,
presenting the SCFmax in FRP-reinforced two-planar KT-joints subjected to AX loads. The
results indicate that the model performs well across all samples, with strong correlations
and high R2 values, though the accuracy of predictions (as measured by the standard error)
varies somewhat between samples. It shows that samples 1 and 5 demonstrate the best
overall performance with the highest R and R2 values.

Table 8. Model summary.

Samples R R2 Adjusted R2 Std. Error of the Estimate

1 0.950 0.903 0.902 3.27270
2 0.938 0.880 0.879 2.30080
3 0.913 0.834 0.833 2.29590
4 0.882 0.778 0.777 2.03349
5 0.950 0.903 0.902 3.27276

Table 9 provides the variance analysis (ANOVA). The ANOVA table details the analysis
of variance for five different regression models (Sample 1 to Sample 5). The sum of squares
(SS) (regression) represents the variability explained by the regression model, and a higher
value presents that the model explains a significant portion of the total variability. The
sum of squares (residual) represents the variability not explained by the model, and a
lower value shows that the model fits the data well. The degrees of freedom (DoFs) for the
regression are 6, and for the residuals, there are 1289. The mean square (MS) is the sum of
squares (SS) divided by the respective degrees of freedom. It is used in the calculation of
the F-statistic. A higher F-value proves that the model is significantly more appropriate at
determining the outcome than a model with no predictors. A value of <0.001 demonstrates
that the regression model is significant.
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Table 9. Coefficients.

Model

Unstandardized
Coefficients

Standardized
Coefficients

t Sig.

95% Confidence
Interval for B

B Std. Error Beta Lower
Bound

Upper
Bound

Sample 1

(Constant) −18.621 0.719 −25.893 <0.001 −20.032 −17.210
β −10.353 0.813 −0.111 −12.733 <0.001 −11.948 −8.758
τ 29.591 0.371 0.693 79.730 <0.001 28.862 30.319
θ 6.572 0.425 0.134 15.454 <0.001 5.738 7.407
η −14.611 0.545 −0.270 −26.816 <0.001 −15.679 −13.542
ξ −5.453 0.295 −0.161 −18.513 <0.001 −6.031 −4.875
γ 1.487 0.022 0.696 69.078 <0.001 1.444 1.529

Sample 2

(Constant) −4.548 0.506 −8.996 <0.001 −5.540 −3.556
β −10.085 0.572 −0.170 −17.642 <0.001 −11.206 −8.963
τ 18.217 0.261 0.674 69.818 <0.001 17.705 18.729
θ −1.145 0.299 −0.037 −3.830 <0.001 −1.732 −0.559
η −7.854 0.383 −0.230 −20.504 <0.001 −8.605 −7.102
ξ −4.182 0.207 −0.195 −20.197 <0.001 −4.588 −3.776
γ 0.919 0.015 0.680 60.742 <0.001 0.889 0.949

Sample 3

(Constant) −4.431 0.504 −8.783 <0.001 −5.421 −3.441
β −8.859 0.570 −0.176 −15.530 <0.001 −9.978 −7.740
τ 15.596 0.260 0.680 59.901 <0.001 15.085 16.107
θ 2.184 0.298 0.083 7.319 <0.001 1.598 2.769
η −8.000 0.382 −0.275 −20.931 <0.001 −8.750 −7.250
ξ −3.519 0.207 −0.193 −17.030 <0.001 −3.924 −3.114
γ 0.723 0.015 0.630 47.888 <0.001 0.693 0.753

Sample 4

(Constant) −2.680 0.447 −5.999 <0.001 −3.557 −1.804
β 1.255 0.505 0.033 2.484 0.013 0.264 2.246
τ 13.995 0.231 0.797 60.687 <0.001 13.542 14.447
θ .091 0.264 0.005 0.344 0.731 −0.427 0.609
η −5.802 0.339 −0.261 −17.139 <0.001 −6.466 −5.138
ξ −2.609 0.183 −0.187 −14.257 <0.001 −2.968 −2.250
γ 0.325 0.013 0.370 24.327 <0.001 0.299 0.352

Sample 5

(Constant) −18.620 0.719 −25.892 <0.001 −20.031 −17.210
β −10.353 0.813 −0.111 −12.732 <0.001 −11.948 −8.758
τ 29.591 0.371 0.693 79.730 <0.001 28.863 30.319
θ 6.572 0.425 0.134 15.453 <0.001 5.738 7.406
η −14.610 0.545 −0.270 −26.815 <0.001 −15.679 −13.541
ξ −5.452 0.295 −0.161 −18.512 <0.001 −6.030 −4.875
γ 1.486 0.022 0.696 69.075 <0.001 1.444 1.529

Table 10 proves that all models have a p-value (sig.) less than 0.001 and that the
predictors collectively have a considerable influence on the SCF. The F-statistics are very
high for all samples, further confirming the models’ overall significance. Higher F-values
indicate that the model explains a substantial proportion of the variability in the SCF. For
example, samples 1, 2, and 3 have a substantial proportion of the variability (F = 1993.656,
p < 0.001 and F = 1573.234, p < 0.001). Samples 3 and 4 are significant with an F-value of
1080.158 (p < 0.001) and F = 752.596 (p < 0.001). The consistently high F-values and low
p-values across all samples indicate that the regression models are effective in explaining
the variability in the dependent variable for each sample.

The standardized coefficients are shown in Table 10. Standardized coefficients help to
evaluate the effects of the other materials on the SCF. All the p-values are less than 0.001,
indicating that all predictors are statistically significant at the 0.05 level. The variable τ has
the highest standardized coefficient, suggesting it has the strongest effect on the dependent
variable. The variable β has a negative influence on the dependent variable. For example,
in sample 1, β, η, and ξ are negative, indicating a negative relationship with the dependent
variable. τ has a high value, indicating a strong positive relationship. γ and θ are positive,
showing a positive relationship. Based on the Beta values in Table 10, it can be seen that
two parameters, including γ and τ, have considerable effects on the SCF. The lowest effects
for variables belong to the inclination angle (θ). For example, the value of the θ in samples
is close to zero, especially in samples 2, 3, and 4.
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Table 10. ANOVA.

Model SS Df (Degree
of Freedom) MS F Significance

Sample 1
Regression 128,119.296 6 21,353.216 1993.656 <0.001
Residual 13,805.937 1289 10.711

Total 141,925.233 1295

Sample 2
Regression 49,969.295 6 8328.216 1573.234 <0.001
Residual 6823.568 1289 5.294

Total 56,792.863 1295

Sample 3
Regression 34,162.051 6 5693.675 1080.158 <0.001
Residual 6794.515 1289 5.271

Total 40,956.566 1295

Sample 4
Regression 18,672.310 6 3112.052 752.596 <0.001
Residual 5330.127 1289 4.135

Total 24,002.437 1295

Sample 5
Regression 128,118.641 6 21,353.107 1993.576 <0.001
Residual 13,806.424 1289 10.711

Total 141,925.065 1295

6. Hierarchical and Non-Hierarchical Classification

The importance of clustering in multivariate statistical analysis is that it allows for the
identification of patterns in the data that may not be readily apparent from the raw data and
to group similar data points together, reducing the dimensionality of the data and making
it easier to interpret and visualize. In this case, considering the huge dataset available, with
more than 1296 observations, this classification is essential for the multivariate analysis of
these data.

The classification of observations in each of the clusters is, in general, more rigorous
in non-hierarchical methods; however, it is advisable in a cluster analysis problem to start
with hierarchical methods for the purpose of exploration and then proceed with the non-
hierarchical, in the case of k-means, to refine and interpret the cluster solution. In this work,
the hierarchical method was not fully successful due to the size of the dataset, making it
impossible to apply this method to the entire set, but instead only to a minimal part, for the
learning and understanding criteria of the method. The k-means method was able to be
applied to the entire dataset, resulting in a very useful analysis.

A good distance method is one that results in a clear separation of groups in the
dendrogram, with similar samples forming a single branch and different samples forming
separate branches. The Euclidean distance (it is known that the comparison criterion has
more effect on the classification than the distance measure used) was used, and the results
are presented in the dendrograms below (Figures 9 and A1). This type of graph makes
it possible to easily understand the connections made between individuals and identify
those who are more similar, which are used as the final result obtained via this hierarchical
classification system.
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In this case, the first observations show a peculiar behavior, which is the clusters of
housing pairs with indices very close to each other. For the sake of brevity, only data
from sample 5 are represented. When comparing the dendrograms resulting from the
four comparison criteria mentioned, it can be observed that only the two formed via ward
and single linkage present a tree that is quite different from the others. Therefore, the
method of average distance between clusters, or average between groups, was used with
the Euclidean distance measure. The proximity matrix, Table 11, reveals the dissimilarity
between the cases, while the agglomeration scheme indicates the order of aggregation of
individuals in the respective clusters. The first cluster to be formed contains individuals
with indexes 1153 and 1156, which have a smaller average distance between them. In the
second step, the cluster is formed with subjects 901 and 904, and so on.
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Table 11. Proximity matrix.

Agglomeration Schedule

Stage
Cluster Combined

Coefficients

Stage Cluster
First Appears Next Stage

Cluster 1 Cluster 2 Cluster 1 Cluster 2

1 1153 1156 0.1 0 0 145
2 901 904 0.1 0 0 615
3 160 163 0.1 0 0 73
4 975 978 0.1 0 0 429
5 893 896 0.1 0 0 716
6 830 833 0.1 0 0 231

1290 1 2 8.443 1255 1285 1292
1291 14 26 8.460 1284 1287 1293
1292 1 13 10.484 1290 1288 1294
1293 14 15 12.317 1291 1289 1294
1294 1 14 17.291 1292 1293 1295
1295 1 27 29.821 1294 1286 0

The dendrogram was omitted due to its long length. In the initial stages, clusters are
combined at very low coefficients (0.1), indicating they are quite similar or close together.
The “Coefficients” column contains the proximities shown in Table 11. As the process
continues, these coefficients increase, reflecting the growing dissimilarity between the
clusters being combined. As we move down the table to higher stages, the coefficients
increase, indicating that clusters being combined are becoming less similar. For example, by
stage 1294, the coefficient is 17.291, and by stage 1295, it increases significantly to 29.821. The
last stages (1293–1295) involve the combination of larger clusters, resulting in significantly
higher coefficients. This suggests that in the final stages, the clusters being merged are
quite distinct from one another. Table 11 provides a detailed view of the hierarchical
agglomerative clustering process, showcasing how clusters are incrementally combined
from initial stages with low dissimilarity to final stages where the clusters are significantly
different. This progressive increase in coefficients reflects the growing differences between
clusters as the clustering process consolidates more diverse groups.

It can be seen in Table 11 that most of the combined clusters were the result of close
index pairs, with a few exceptions. This is due to the previously mentioned fact that data
are very similar from one time to the next, and therefore tend to be grouped together.

(a) Non-hierarchical cluster (NHC) grouping

NHC grouping approaches are intended to exclusively group individuals, or obser-
vations, into a set of clusters where the number is defined by the analyst. This is very
useful when working with very large datasets. The method used for this classification is the
k-means method, which starts from a previously defined number of classes (in this case, the
number of classes used is that resulting from the application of the previously presented
hierarchical classification, and the respective cutoff of the dendrogram in k classes, that
is, 16 classes), and each of the classes is assigned an individual who will function as the
center of the respective class. Table A1 presents the average of each variable in each of the
10 clusters.

The analysis carried out with SPSS, using 10 clusters with 10 iterations, proved to
be reasonably appropriate for the purpose of this work. However, for the purpose of
comparison, a second analysis was carried out using the MATLAB programming language,
which allows for more iterations without compromising the computer’s memory, like SPSS.
Therefore, an analysis was carried out with the same clusters but with 300 iterations, as
seen in Table 12.
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Table 12. Centroids of k-means cluster analysis with MATLAB, sample 5.

Cluster
Number θ τ γ β η ξ SCF

0 0.5236 0.4 12 0.4 0.192 0.3671 7.9351
1 1.0472 0.7 24 0.7 0.576 0.8744 12.456
2 0.7854 1 18 0.5 0.096 0.1353 16.2223
3 1.0472 0.7 12 0.6 0.384 0.8744 29.9557
4 1.0472 0.7 12 0.7 0.768 0.8744 52.8629
5 1.0472 0.7 12 0.7 0.288 0.8744 39.703
6 1.0472 0.7 12 0.7 0.432 0.8744 46.0828
7 1.0472 0.7 12 0.7 0.144 0.8744 25.1819
8 1.0472 0.7 12 0.7 0.576 0.8744 20.6465
9 1.0472 0.7 12 0.7 0.576 0.8744 34.5585

Table 13 shows the variation in the center of the clusters at each step of the iteration. It
would be possible to increase the number of iterations, but this requires a high-performance
computer. The parameters like β, τ, and γ have more uniform values across clusters,
suggesting these are more consistent features. Other parameters like η, ξ, and SCF show
more variability, indicating these are more distinctive features that differentiate the initial
clusters. The values show the initial conditions or centers from which the clustering
process starts. Some variables have a wide range (e.g., SCF from 5.12 to 56.76), indicating
heterogeneity among initial clusters. Others are more constrained (e.g., β between 0.4 and
0.7), suggesting some homogeneity.

Table 13. Initial Cluster Centers.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

β 0.50000 0.40000 0.50000 0.70000 0.50000 0.40000 0.50000 0.40000 0.60000 0.70000 0.50000 0.40000 0.50000 0.70000 0.40000 0.60000
τ 1.00000 1.00000 1.00000 0.40000 1.00000 1.00000 1.00000 0.70000 1.00000 0.40000 1.00000 0.70000 0.40000 0.70000 1.00000 1.00000
θ 1.04720 1.04720 0.78540 0.52360 1.04720 0.78540 1.04720 0.78540 0.78540 0.52360 1.04720 0.52360 0.52360 0.52360 0.78540 0.78540
η 0.0960 0.7680 0.2880 0.5760 0.1920 0.1920 0.7680 0.3840 0.3840 0.3840 0.1440 0.5760 0.5760 0.5760 0.5760 0.3840
ξ 0.13527 0.87440 0.87440 0.36715 0.13527 0.36715 0.87440 0.87440 0.36715 0.87440 0.13527 0.87440 0.87440 0.36715 0.87440 0.87440
γ 12.00 24.00 18.00 18.00 24.00 24.00 24.00 12.00 12.00 12.00 18.00 24.00 24.00 18.00 18.00 24.00

SCF 24.14 26.22 30.92 8.31 56.76 48.83 35.10 11.55 17.91 5.12 41.27 18.65 11.74 15.12 21.76 42.51

Table 14 shows the number of cases assigned to each of the 16 clusters after the initial
clustering process. The total of 1296 cases being valid and with none missing indicates
the completeness and integrity of the dataset used for clustering. The number of cases per
cluster ranges from as few as 14 cases (Cluster 5) to as many as 147 cases (Cluster 10). There
is considerable variability in cluster sizes, indicating a diverse spread of data across clusters.
The largest cluster, Cluster 10, has 147 cases, making it the most populous, but the smallest
cluster, Cluster 5, has 14 cases, making it the least populous. Clusters with a large number
of cases (e.g., Cluster 10 and Cluster 9) may represent more common patterns or groupings
within the data. Clusters with a small number of cases (e.g., Cluster 5 and Cluster 6) might
represent outliers or less common groupings, which could be significant depending on the
context. The presence of clusters with moderate sizes (e.g., Clusters 1, 2, 3, 4, 7, 8, 11, 12, 13,
14, and 15) suggests a balance between common and less common patterns.

It can be seen from Table 14 that θ, τ, γ, β, η, and ξ represent the average of the
respective features within each cluster. For example, for cluster 0, the average θ is 0.5236,
τ is 0.4, etc. SCF shows the average SCF (presumably some important metric or feature)
for each cluster. For instance, cluster 0 has an average SCF of 7.9351. The SCF values
show significant variation across clusters, indicating this feature plays a crucial role in
differentiating the clusters. For instance, cluster 4 has the highest SCF value (52.8629),
while cluster 0 has the lowest (7.9351). The centroids provide a summary of each cluster’s
central tendency, highlighting the average values for each feature within the clusters. This
information helps to understand the characteristics and differences between clusters.
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Table 14. Number of Cases in each Cluster.

Cluster

1 80

2 82

3 82

4 96

5 14

6 36

7 74

8 88

9 117

10 147

11 54

12 84

13 91

14 86

15 114

16 51

Valid 1296

Missing 0

7. Conclusions

A total of 5184 analyses were carried out on two-planar KT-joints under 16 AX loadings,
and 1296 models were selected and analyzed under four loading conditions which created
maximum stress. In the first stage, an FE analysis was conducted, and then a univariate
analysis was carried out, dealing with the descriptive statistics of each variable, making it
possible to identify important information such as measures of dispersion and location, such
as mean, median, and standard deviation, as well as histograms to verify the distribution
of their values and box plots to identify possible outliers and distribution of quartiles. A
bivariate analysis was then carried out, where the correlations between the variables were
identified using the Pearson coefficient and also multiple forms of regression to verify the
degree of linearity between pairs of variables.

Among three angles, including 0◦, ±45◦, and 90◦, for FRP orientation, the effective
fiber orientations are 90◦ and 0◦ in the chord, while FRP orientations on the brace have no
effects on chord SCFs. The highest and lowest SCFs were 56.76 and 0.012, respectively. The
SCFmax was located at the saddle point of the central brace under the 1st loading condition.

In the multivariate analysis stage, the analysis of the main components was first
carried out, where it was possible to decrease the size of the dataset into two variables that
contained more than 80% of the initial information, proving to be an efficient approach to
reducing size in this case, a variable housed the direction variables, and another housed
the height and period variables.

Bivariate analysis shows that θ has the lowest correlation and τ and γ have the
highest correlation among others. Hence, it means that θ has no effects on the structure’s
behavior against fatigue. However, the thickness of the braces and the chord are much
more important in tubular joints against fatigue.

Hierarchical and non-hierarchical classification analyses of the observations were
carried out. The first proved to be incapable of being carried out on such an extensive set of
data, compromising the computer’s memory, but based on knowledge of the methodology,
dendrograms and tables were created using a smaller subset of data. The non-hierarchical
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approach, using the k-means clustering technique, proved capable of being applied to a
large dataset and to be quite efficient in grouping representative SCF samples.

Multivariate data analysis provides a theoretical and practical framework for studying
complex data by examining relationships between multiple variables simultaneously, by
reducing the number of variables
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Abbreviations

θ Angle between outer braces and the chord
AWS American Welding Society
AX Axial load
d Brace diameter
l Brace length
t Brace thickness
τ Brace thickness to the chord thickness t/T
D Chord diameter
γ Chord diameter to twice the thickness of chord D/(2T)
L Chord length
T Chord thickness
β Diameter of brace to diameter of chord d/D
Ec Elastic modulus of concrete
FRP Fiber-reinforced polymer
FE Finite element
FEM Finite element model
HSS Hot spot stress
IIW International Institute of Welding
IPB In-plane bending
OPB Out-of-plane bending
SCF Stress concentration factor
τ The brace thickness to the chord thickness t/T
ξ The ratio of Es to EFRP
Es Young’s modulus for steel
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Table A1. Change in cluster centers.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1.879 1.036 0.551 1.873 2.242 0.450 0.950 0.453 0.586 1.994 3.039 0.809 0.790 0.926 0.920 0.768
2 0.700 0.000 0.502 0.360 1.098 1.088 0.150 0.687 0.615 0.430 1.180 0.080 0.123 0.299 0.085 0.514
3 0.310 0.000 0.576 0.210 0.561 0.862 0.097 0.261 0.159 0.110 0.721 0.054 0.079 0.277 0.028 0.596
4 0.175 0.040 0.399 0.135 0.000 0.071 0.342 0.089 0.094 0.049 0.289 0.055 0.077 0.141 0.142 0.457
5 0.099 0.081 0.346 0.111 0.000 0.169 0.135 0.000 0.069 0.000 0.283 0.056 0.075 0.120 0.112 0.200
6 0.096 0.080 0.268 0.065 0.000 0.087 0.089 0.018 0.086 0.000 0.069 0.029 0.037 0.076 0.174 0.066
7 0.062 0.040 0.207 0.000 0.000 0.083 0.044 0.036 0.081 0.000 0.205 0.086 0.106 0.000 0.057 0.068
8 0.031 0.000 0.163 0.000 0.000 0.000 0.089 0.055 0.074 0.000 0.129 0.153 0.163 0.000 0.058 0.134
9 0.060 0.000 0.045 0.000 0.000 0.000 0.045 0.058 0.096 0.000 0.064 0.096 0.094 0.000 0.000 0.065
10 0.030 0.080 0.000 0.000 0.000 0.000 0.088 0.019 0.039 0.000 0.000 0.065 0.062 0.000 0.000 0.000
11 0.000 0.041 0.000 0.000 0.000 0.000 0.087 0.038 0.034 0.000 0.000 0.066 0.060 0.000 0.000 0.065
12 0.031 0.000 0.000 0.000 0.000 0.000 0.045 0.045 0.039 0.016 0.000 0.033 0.030 0.000 0.000 0.063
13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.063 0.033 0.017 0.000 0.000 0.000 0.000 0.000 0.000
14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.085 0.049 0.016 0.000 0.000 0.000 0.000 0.000 0.000
15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.041 0.032 0.000 0.000 0.000 0.000 0.000 0.000 0.000
16 0.031 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.022 0.000 0.000 0.000 0.000 0.000 0.000 0.000
17 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.042 0.032 0.000 0.000 0.000 0.000 0.000 0.000 0.000
18 0.031 0.000 0.000 0.000 0.000 0.000 0.000 0.021 0.037 0.000 0.000 0.000 0.000 0.000 0.000 0.000
19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.021 0.016 0.000 0.000 0.000 0.000 0.000 0.000 0.000
20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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