Continuous Field Determination and Ecological Risk Assessment of Pb in the Yellow Sea of China
Abstract
:1. Introduction
2. Experimental Design
2.1. Materials and Reagents
2.2. Instrumentations
2.3. Study Areas
2.4. Water Quality Assessment Methods
2.5. Ecological Risk Assessment
2.6. Software Used
3. Results and Discussion
3.1. Reproducibility and Stability of CAEDS
3.2. Continuous Monitoring of Dissolved Pb at Two Fixed Locations
3.3. Effects of Environmental Factors on the Dissolved Pb Concentration
3.4. Comparison with Other Coastal Waters
3.5. Water Quality Assessment and Risk Assessment
3.6. Limitations and Future Research Directions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hayes, F.; Spurgeon, D.; Lofts, S.; Jones, L. Evidence-based logic chains demonstrate multiple impacts of trace metals on ecosystem services. J. Environ. Manag. 2018, 223, 150–164. [Google Scholar] [CrossRef] [PubMed]
- Le Grand, A.; Maxime, V.; Kedzierski, M.; Duval, H.; Douzenel, P.; Sire, O.; Le Tilly, V. Assessment and monitoring of water quality of the gulf of Morbihan, a littoral ecosystem under high anthropic pressure. Mar. Pollut. Bull. 2017, 124, 74–81. [Google Scholar] [CrossRef]
- Liang, Y.; Pan, D.; Li, Y.; Han, H.; Wang, X.; Gai, G. Field determination and ecological health risk assessment of trace metals in typical mariculture area of China. Mar. Pollut. Bull. 2024, 199, 115957. [Google Scholar] [CrossRef] [PubMed]
- Chouvelon, T.; Strady, E.; Harmelin-Vivien, M.; Radakovitch, O.; Brach-Papa, C.; Crochet, S.; Knoery, J.; Rozuel, E.; Thomas, B.; Tronczynski, J.; et al. Patterns of trace metal bioaccumulation and trophic transfer in a phytoplankton-zooplankton-small pelagic fish marine food web. Mar. Pollut. Bull. 2019, 146, 1013–1030. [Google Scholar] [CrossRef] [PubMed]
- Gumpu, M.B.; Sethuraman, S.; Krishnan, U.M.; Rayappan, J.B.B. A review on detection of heavy metal ions in water—An electrochemical approach. Sens. Actuators B Chem. 2015, 213, 515–553. [Google Scholar] [CrossRef]
- Gutiérrez-Ravelo, A.; Gutiérrez, Á.J.; Paz, S.; Carrascosa-Iruzubieta, C.; González-Weller, D.; Caballero, J.M.; Revert, C.; Rubio, C.; Hardisson, A. Toxic Metals (Al, Cd, Pb) and Trace Element (B, Ba, Co, Cu, Cr, Fe, Li, Mn, Mo, Ni, Sr, V, Zn) Levels in Sarpa Salpa from the North-Eastern Atlantic Ocean Region. Int. J. Environ. Res. Public Health 2020, 17, 7212. [Google Scholar] [CrossRef]
- Nsabimana, A.; Kitte, S.A.; Fereja, T.H.; Halawa, M.I.; Zhang, W.; Xu, G. Recent developments in stripping analysis of trace metals. Curr. Opin. Electrochem. 2019, 17, 65–71. [Google Scholar] [CrossRef]
- Buffle, J.; Tercier-Waeber, M.L. Voltammetric environmental trace-metal analysis and speciation: From laboratory to in situ measurements. TrAC Trends Anal. Chem. 2005, 24, 172–191. [Google Scholar] [CrossRef]
- Creffield, S.; Tercier-Waeber, M.-L.; Gressard, T.; Bakker, E.; Layglon, N. On-Chip Antifouling Gel-Integrated Microelectrode Arrays for In Situ High-Resolution Quantification of the Nickel Fraction Available for Bio-Uptake in Natural Waters. Molecules 2023, 28, 12346. [Google Scholar] [CrossRef]
- Layglon, N.; Creffield, S.; Bakker, E.; Tercier-Waeber, M.-L. On-field high-resolution quantification of the cobalt fraction available for bio-uptake in natural waters using antifouling gel-integrated microelectrode arrays. Mar. Pollut. Bull. 2023, 189, 114807. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Lü, D.; Zheng, B.; Fang, Y.; Shen, G.; Liu, H. Distribution and pollution assessment of trace metals in seawater and sediment in Laizhou Bay. Chin. J. Oceanol. Limnol. 2015, 33, 1053–1061. [Google Scholar] [CrossRef]
- Tian, K.; Wu, Q.; Liu, P.; Hu, W.; Huang, B.; Shi, B.; Zhou, Y.; Kwon, B.-O.; Choi, K.; Ryu, J.; et al. Ecological risk assessment of heavy metals in sediments and water from the coastal areas of the Bohai Sea and the Yellow Sea. Environ. Int. 2020, 136, 105512. [Google Scholar] [CrossRef]
- Wheeler, J.; Grist, E.; Leung, K.; Morritt, D.; Crane, M. Species sensitivity distributions: Data and model choice. Mar. Pollut. Bull. 2002, 45, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Newman, M.C.; Ownby, D.R.; Mézin, L.C.; Powell, D.C.; Christensen, T.R.; Lerberg, S.B.; Anderson, B.A. Applying species-sensitivity distributions in ecological risk assessment: Assumptions of distribution type and sufficient numbers of species. Environ. Toxicol. Chem. Int. J. 2000, 19, 508–515. [Google Scholar] [CrossRef]
- Durán, I.; Beiras, R. Ecotoxicologically based marine acute water quality criteria for metals intended for protection of coastal areas. Sci. Total Environ. 2013, 463, 446–453. [Google Scholar] [CrossRef]
- Wang, J.; Chen, S.; Xia, T. Environmental risk assessment of heavy metals in Bohai Sea, North China. Procedia Environ. Sci. 2010, 2, 1632–1642. [Google Scholar] [CrossRef]
- Lu, J.; Jiang, J.; Li, A.; Ma, X. Impact of Typhoon Chan-hom on the marine environment and sediment dynamics on the inner shelf of the East China Sea: In-situ seafloor observations. Mar. Geol. 2018, 406, 72–83. [Google Scholar] [CrossRef]
- Li, L.; Pala, F.; Jiang, M.; Krahforst, C.; Wallace, G.T. Three-dimensional modeling of Cu and Pb distributions in boston harbor, massachusetts and cape cod bays. Estuar. Coast. Shelf Sci. 2010, 88, 450–463. [Google Scholar] [CrossRef]
- Tanner, P.A.; Leong, L.S.; Pan, S.M. Contamination of heavy metals in marine sediment cores from Victoria Harbour, Hong Kong. Mar. Pollut. Bull. 2000, 40, 769–779. [Google Scholar] [CrossRef]
- Eggleton, J.; Thomas, K.V. A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environ. Int. 2004, 30, 973–980. [Google Scholar] [CrossRef]
- Roberts, D.A. Causes and ecological effects of resuspended contaminated sediments (RCS) in marine environments. Environ. Int. 2012, 40, 230–243. [Google Scholar] [CrossRef] [PubMed]
- Herbeck, L.S.; Unger, D.; Krumme, U.; Liu, S.M.; Jennerjahn, T.C. Typhoon-induced precipitation impact on nutrient and suspended matter dynamics of a tropical estuary affected by human activities in Hainan, China. Estuar. Coast. Shelf Sci. 2011, 93, 375–388. [Google Scholar] [CrossRef]
- Liang, Y.; Pan, D.; Wang, C.; Lu, Y.; Fan, X. Distribution and ecological health risk assessment of dissolved trace metals in surface and bottom seawater of Yantai offshore, China. Front. Mar. Sci. 2022, 9, 993965. [Google Scholar] [CrossRef]
- Sallan, M.I.B.M.; Al-Hazmi, H.E.; Suratman, S.; Alkhadher, S.A.A.; Szeląg, B.; Majtacz, J.; Kowal, P.; Kurniawan, T.A.; Piechota, G. Anthropogenic trace metals in Setiu Wetland: Spatial and seasonal distribution and implications for environmental health. J. Water Process Eng. 2023, 55, 104172. [Google Scholar] [CrossRef]
- Lu, Y.; Pan, D.; Yang, T.; Wang, C. Distribution characteristics and controlling factors of typical heavy metals in Huanghe River estuary, China. J. Oceanol. Limnol. 2022, 41, 150–165. [Google Scholar] [CrossRef]
- Liu, H.; Ding, C.; Zhang, G.; Guo, Y.; Song, Y.; Thangaraj, S.; Zhang, X.; Sun, J. Dissolved and particulate heavy metal pollution status in seawater and sedimentary heavy metals of the Bohai Bay. Mar. Environ. Res. 2023, 191, 106158. [Google Scholar] [CrossRef]
- Lin, J.; Tang, D.; Alpers, W.; Wang, S. Response of dissolved oxygen and related marine ecological parameters to a tropical cyclone in the South China Sea. Adv. Space Res. 2014, 53, 1081–1091. [Google Scholar] [CrossRef]
- Yin, K.; Lin, Z.; Ke, Z. Temporal and spatial distribution of dissolved oxygen in the Pearl River Estuary and adjacent coastal waters. Cont. Shelf Res. 2004, 24, 1935–1948. [Google Scholar] [CrossRef]
- Zhou, W.; Yin, K.; Harrison, P.J.; Lee, J.H. The influence of late summer typhoons and high river discharge on water quality in Hong Kong waters. Estuar. Coast. Shelf Sci. 2012, 111, 35–47. [Google Scholar] [CrossRef]
- Du, J.; Park, K. Estuarine salinity recovery from an extreme precipitation event: Hurricane Harvey in Galveston Bay. Sci. Total Environ. 2019, 670, 1049–1059. [Google Scholar] [CrossRef]
- Reul, N.; Fournier, S.; Boutin, J.; Hernandez, O.; Maes, C.; Chapron, B.; Alory, G.; Quilfen, Y.; Tenerelli, J.; Morisset, S. Sea surface salinity observations from space with the SMOS satellite: A new means to monitor the marine branch of the water cycle. Surv. Geophys. 2014, 35, 681–722. [Google Scholar] [CrossRef]
- Wang, C.-C.; Pan, D.-W.; Han, H.-T.; Hu, X.-P. Distribution and contamination assessment of arsenic and mercury in surface sediments from the intertidal zone of Yantai Sishili Bay, China. Hum. Ecol. Risk Assess. Int. J. 2018, 24, 2024–2035. [Google Scholar] [CrossRef]
- Bilgrami, K.; Kumar, S. Effects of copper, lead and zinc on phytoplankton growth. Biol. Plant. 1997, 39, 315–317. [Google Scholar] [CrossRef]
- Tang, D.; Morel, F.M. Distinguishing between cellular and Fe-oxide-associated trace elements in phytoplankton. Mar. Chem. 2006, 98, 18–30. [Google Scholar] [CrossRef]
- Kim, Y.; Yang, H.-S. Scavenging of 234Th and 210Po in surface water of Jinhae Bay, Korea during a red tide. Geochem. J. 2004, 38, 505–513. [Google Scholar] [CrossRef]
- Sun, Q.; Gao, F.; Chen, Z.; Wang, Y.; Li, D. The content and pollution evaluation of heavy metals in surface seawater in Dalian Bay. IOP Conf. Ser. Earth Environ. Sci. 2019, 227, 062021. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, L.; Xu, H.; Zhang, X. Spatial and seasonal characteristics of dissolved heavy metals in the surface seawater of the Yellow River Estuary, China. Mar. Pollut. Bull. 2018, 137, 465–473. [Google Scholar] [CrossRef]
- Rittschof, D.; Li, X.; Chi, W.; Tian, H.; Zhang, Y.; Zhu, Z. Probabilistic ecological risk assessment of heavy metals in western Laizhou Bay, Shandong Province, China. PLoS ONE 2019, 14, e0213011. [Google Scholar]
- Wang, X.; Liu, L.; Zhao, L.; Xu, H.; Zhang, X. Assessment of dissolved heavy metals in the Laoshan Bay, China. Mar. Pollut. Bull. 2019, 149, 110608. [Google Scholar] [CrossRef]
- Jayaprakash, M.; Kumar, R.S.; Giridharan, L.; Sujitha, S.B.; Sarkar, S.K.; Jonathan, M.P. Bioaccumulation of metals in fish species from water and sediments in macrotidal Ennore creek, Chennai, SE coast of India: A metropolitan city effect. Ecotoxicol. Environ. Saf. 2015, 120, 243–255. [Google Scholar] [CrossRef] [PubMed]
- Achary, M.S.; Panigrahi, S.; Satpathy, K.K.; Prabhu, R.K.; Panigrahy, R.C. Health risk assessment and seasonal distribution of dissolved trace metals in surface waters of Kalpakkam, southwest coast of Bay of Bengal. Reg. Stud. Mar. Sci. 2016, 6, 96–108. [Google Scholar] [CrossRef]
Region | Pb Concentration (μg/L) | Reference |
---|---|---|
Yellow River Estuary, China | 5.61 (0.42–13.3) | [38] |
Laoshan Bay, China | 0.81 (0.16–9.13) | [40] |
Laizhou Bay, China | 1.91 (1.29–2.87) | [39] |
Dalian Bay, China | 0.3 (0.2–0.7) | [37] |
Yantai Offshore Area, China | 0.13–1.06 | [24] |
Macrotidal Ennore Creek, India | 13.89 | [41] |
Southwest coast of the Bay of Bengal, Bangladesh | 5.48 | [42] |
South Yellow Sea, China | 0.6 (0.29–1.57) | This study |
North Yellow Sea, China | 0.9 (0.32–2.28) | This study |
Date | Cf | The Pollution Levels | |
---|---|---|---|
Surface seawater of the South Yellow Sea, China | 13 August 2023 | 0.94 (0.90–0.98) | Low |
14 August 2023 | 1.07 (1.03–1.18) | Moderate | |
15 August 2023 | 1.26 (1.17–1.46) | Moderate | |
17 August 2023 | 0.59 (0.58–0.65) | Low | |
18 August 2023 | 0.48 (0.46–0.51) | Low | |
19 August 2023 | 0.50 (0.46–0.55) | Low | |
21 August 2023 | 0.53 (0.49–0.56) | Low | |
22 August 2023 | 0.40 (0.37–0.42) | Low | |
23 August 2023 | 0.39 (0.33–0.43) | Low | |
24 August 2023 | 0.53 (0.49–0.55) | Low | |
25 August 2023 | 0.39 (0.33–0.46) | Low | |
26 August 2023 | 0.37 (0.34–0.45) | Low | |
27 August 2023 | 0.33 (0.28–0.40) | Low | |
28 August 2023 | 0.28 (0.27–0.29) | Low | |
29 August 2023 | 0.48 (0.46–0.52) | Low | |
30 August 2023 | 0.39 (0.34–0.46) | Low | |
Surface seawater of the North Yellow Sea, China | Date | Cf | The pollution levels |
13 September 2023 | 1.22 (1.21–1.24) | Moderate | |
14 September 2023 | 1.34 (1.29–1.39) | Moderate | |
15 September 2023 | 1.40 (1.39–1.42) | Moderate | |
16 September 2023 | 1.46 (1.24–1.56) | Moderate | |
17 September 2023 | 1.65 (1.27–1.86) | Moderate | |
18 September 2023 | 1.71 (1.25–2.03) | Moderate | |
24 September 2023 | 0.43 (0.41–0.44) | Low | |
25 September 2023 | 0.42 (0.38–0.50) | Low | |
26 September 2023 | 0.42 (0.35–0.49) | Low | |
27 September 2023 | 0.38 (0.32–0.51) | Low | |
28 September 2023 | 0.43 (0.42–0.46) | Low | |
29 September 2023 | 0.47 (0.40–0.54) | Low | |
30 September 2023 | 0.45 (0.41–0.53) | Low | |
Grade-one seawater quality standard (Pb μg/L) | ≤1.00 | ||
Grade-two seawater quality standard (Pb μg/L) | 1.00–5.00 | ||
Grade-three seawater quality standard (Pb μg/L) | 5.00–10.00 | ||
Low pollution (Pb) | Cf < 1 | ||
Moderate pollution (Pb) | 1 ≤ Cf < 3 | ||
Considerable pollution (Pb) | 3 ≤ Cf < 6 | ||
High pollution (Pb) | Cf ≥ 6 |
Date | RQ | The Ecological Risk Level | |
---|---|---|---|
Surface seawater of the South Yellow Sea, China | 13 August 2023 | 0.12 (0.12–0.13) | Moderate |
14 August 2023 | 0.14 (0.13–0.15) | Moderate | |
15 August 2023 | 0.16 (0.15–0.19) | Moderate | |
17 August 2023 | 0.08 (0.07–0.08) | Low | |
18 August 2023 | 0.06 (0.06–0.07) | Low | |
19 August 2023 | 0.06 (0.06–0.07) | Low | |
21 August 2023 | 0.07 (0.06–0.07) | Low | |
22 August 2023 | 0.05 | Low | |
23 August 2023 | 0.05 (0.04–0.05) | Low | |
24 August 2023 | 0.07 (0.06–0.07) | Low | |
25 August 2023 | 0.05 (0.04–0.06) | Low | |
26 August 2023 | 0.05 (0.04–0.06) | Low | |
27 August 2023 | 0.04 (0.04–0.05) | Low | |
28 August 2023 | 0.04 (0.03–0.04) | Low | |
29 August 2023 | 0.06 (0.06–0.07) | Low | |
30 August 2023 | 0.05 (0.04–0.06) | Low | |
Surface seawater of the North Yellow Sea, China | Date | RQ | The ecological risk level |
13 September 2023 | 0.16 | Moderate | |
14 September 2023 | 0.17 (0.17–0.18) | Moderate | |
15 September 2023 | 0.18 | Moderate | |
16 September 2023 | 0.19 (0.16–0.20) | Moderate | |
17 September 2023 | 0.21 (0.16–0.24) | Moderate | |
18 September 2023 | 0.22 (0.16–0.26) | Moderate | |
24 September 2023 | 0.05 (0.05–0.06) | Low | |
25 September 2023 | 0.05 (0.05–0.06) | Low | |
26 September 2023 | 0.05 (0.05–0.06) | Low | |
27 September 2023 | 0.05 (0.04–0.07) | Low | |
28 September 2023 | 0.06 (0.05–0.06) | Low | |
29 September 2023 | 0.06 (0.05–0.07) | Low | |
30 September 2023 | 0.06 (0.05–0.07) | Low | |
Low ecological risk (Pb) | <0.1 | ||
Moderate ecological risk (Pb) | 0.1–1.0 | ||
High ecological risk (Pb) | >1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Pan, D.; Liang, Y.; Rahman, M.A.; Wang, X. Continuous Field Determination and Ecological Risk Assessment of Pb in the Yellow Sea of China. J. Mar. Sci. Eng. 2024, 12, 1452. https://doi.org/10.3390/jmse12081452
Zhang Z, Pan D, Liang Y, Rahman MA, Wang X. Continuous Field Determination and Ecological Risk Assessment of Pb in the Yellow Sea of China. Journal of Marine Science and Engineering. 2024; 12(8):1452. https://doi.org/10.3390/jmse12081452
Chicago/Turabian StyleZhang, Zhiwei, Dawei Pan, Yan Liang, Md. Abdur Rahman, and Xiaofeng Wang. 2024. "Continuous Field Determination and Ecological Risk Assessment of Pb in the Yellow Sea of China" Journal of Marine Science and Engineering 12, no. 8: 1452. https://doi.org/10.3390/jmse12081452
APA StyleZhang, Z., Pan, D., Liang, Y., Rahman, M. A., & Wang, X. (2024). Continuous Field Determination and Ecological Risk Assessment of Pb in the Yellow Sea of China. Journal of Marine Science and Engineering, 12(8), 1452. https://doi.org/10.3390/jmse12081452