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Abstract: In the field of underwater perception and detection, side-scan sonar (SSS) plays an indis-
pensable role. However, the imaging mechanism of SSS results in slow information acquisition and
high complexity, significantly hindering the advancement of downstream data-driven applications.
To address this challenge, we designed an SSS image generator based on diffusion models. We
developed a data collection system based on Autonomous Underwater Vehicles (AUVs) to achieve
stable and rich data collection. For the process of converting acoustic signals into image signals,
we established an image compensation method based on nonlinear gain enhancement to ensure
the reliability of remote signals. On this basis, we developed the first controllable category SSS
image generation algorithm, which can generate specified data for five categories, demonstrating
outstanding performance in terms of the Fréchet Inception Distance (FID) and the Inception Score (IS).
We further evaluated our image generator in the task of SSS object detection, and our cross-validation
experiments showed that the generated images contributed to an average accuracy improvement
of approximately 10% in object detection. The experimental results validate the effectiveness of the
proposed SSS image generator in generating highly similar sonar images and enhancing detection
accuracy, effectively addressing the issue of data scarcity.

Keywords: side-scan sonar; diffusion model; image generation; deep learning; gain enhancement;
object detection

1. Introduction

The oceanic realm accounts for approximately two-thirds of the Earth’s surface area,
yet human exploration has only mapped about five percent of it [1]. Consequently, the
majority of oceanic zones remain obscure, abysmal, and unknown to humankind. To gain
further insights into the oceans, more in-depth research on underwater environmental
perception technologies is imperative [2]. At present, underwater environment detection
technology mainly includes acoustic-based methods and optical-based methods. Due
to the significant attenuation of electromagnetic waves under water, optical signals only
have the capability to propagate over several tens of meters subaqueously. Should water
clarity be compromised, the effective range diminishes further, rendering optical detection
principally suitable for proximate inspection and verification [3]. Acoustic detection,
however, leverages the propagation laws of sound signals underwater for exploration and
monitoring purposes. It boasts a notable advantage over optical detection in terms of range;
thus, the bulk of underwater detection is predominantly conducted via acoustic means. A
Sound Navigation and Ranging (sonar) device is a type of sensor engineered based on the
transduction of sound waves and information processing exploiting the propagation and
reflection properties of acoustics in aquatic environments. Within this spectrum of tools, SSS
operates by projecting fan-shaped beams of acoustic pulses laterally downwards, and due
to its high resolution and cost-effective nature, it constitutes a vital element of underwater
acoustic detection. SSS is extensively applied in marine cartography [4,5], subaquatic
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geological surveying [6], underwater target detection and identification [7], and dam
foundation inspection [8]. Moreover, with the continued evolution of scientific technology,
deep learning-based SSS detection methods are increasingly superseding traditional expert
system-based approaches, thereby consistently increasing the precision of detection [9].
Nevertheless, data-driven detection models require an abundance of sample data and
labels to assure performance efficacy. During SSS data acquisition, the imaging principle
dictates that a subsequent acoustic wave is emitted only upon receipt of the returning echo
signal at the current moment, resulting in a data interval per ping typically exceeding 0.2 s.
This entails that during the data collection process, approximately five pings of sonar data
are generated per second. Acquiring a sonar image with a height of 400 pixels requires
a minimum of 80 s, which is considerably longer compared with the time required for
forward-looking sonars or optical cameras. Additionally, the carrier platform for a sonar
sensor may also host other hydroacoustic devices, such as Doppler velocimeters or Ultra-
Short Baseline (USBL) positioning systems. If the operational frequencies of these devices
are integer multiples of the working frequency of the SSS sensor, interference may occur,
resulting in striping noise artifacts on the sonar imagery.

In this study, we initially built an AUV-based SSS data acquisition device to achieve
efficient data acquisition. The AUV possessed a streamlined shape to significantly diminish
drag during subaquatic navigation and was powered by an electric propulsion system
to further reduce noise emissions from the platform. An SSS sensor was mounted on
the AUV, a vehicle used to perform constant-depth cruising missions in diverse marine
areas to collect data. Subsequently, for the raw SSS data, we developed a nonlinear
gain enhancement algorithm to compensate for the image features at the far end that
are generally weakened due to the propagation loss of sound waves underwater, thereby
obtaining sonar images with high contrast and clarity. Building on this, a sonar image
dataset containing five categories of information, which can provide authentic raw data for
subsequent research based on SSS imagery, was constructed. Furthermore, we developed a
diffusion model-based controllable category sonar image generator that obviates the need
for training additional classifiers. By balancing the labeled conditional diffusion model
with the unlabeled non-conditional diffusion model, we achieved the generation of both
high-quality and diverse images.Our study effectively addresses the present insufficiency
of SSS image datasets, supplying numerous exemplary samples for data-driven detection
models. The results of experiments conducted on publicly available target detection models
demonstrate the efficacy of the proposed SSS image generator in enhancing object detection
accuracy. In summary, the main contributions of this study are as follows:

• We established an SSS data collection platform based on an AUV and collected a large
number of raw sonar data from different marine areas. We developed a nonlinear gain
enhancement algorithm suitable for compensating for spherical wave propagation loss,
achieving balanced sonar image processing and improving the quality of SSS imaging.

• We created a five-category SSS image dataset that includes common seabed back-
grounds and targets. Based on this dataset, we established a controllable category SSS
image generator that can generate images of specified categories without relying on
additional classifiers, effectively expanding the SSS image dataset.

• We conducted both quantitative and qualitative evaluations of the SSS image generator,
using the FID, the IS, and Haralick texture features to assess the model. The generative
model was also applied to the task of target detection, and the cross-validation results
demonstrate its positive impact on improving detection accuracy, providing data
support for subsequent SSS image-based research.

2. Related Work
2.1. Basic Image Generation Model

The objective of image generation tasks is to obtain the probabilistic statistical dis-
tribution of the original data. Early image generation efforts predominantly relied on
feature representation methods to generate images which were only capable of handling
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simple and regular image generation tasks [10]. The advent of deep neural networks,
with their exceptional feature-learning capabilities and nonlinear expression abilities, has
significantly advanced the development of generative models [11]. To date, the primary
deep learning-based generative models include Variational Autoencoders (VAEs) [12],
Generative Adversarial Networks (GANs) [13], autoregressive models [14], and denoising
diffusion models.

VAEs, deep generative models based on the autoencoder structure [15], introduce con-
straints on the latent space during training, such as the Kullback–Leibler (KL) divergence,
to ensure that the latent variables follow a Gaussian distribution. However, constraining
the latent space to conform to a normal distribution is often overly challenging. Therefore,
Oord et al. [16] developed the Vector-Quantized Variational Autoencoder (VQVAE), which
constrains the VAE’s latent space to satisfy a discrete distribution and employs an autore-
gressive model to model the discrete codes, thus partially addressing the issue of fitting the
discrete space distribution. Subsequent work [17] developed hierarchical quantized VAEs
to encode images, which can more comprehensively address the issue of fitting the discrete
space distribution and diminish the decoder’s burden in reconstructing the image, thereby
enabling the generation of more realistic images.

GANs, previously the most widely used generative models, consist of a generator and
a discriminator. The former aims to fit the data distribution, while the latter distinguishes
between real and generated data. However, due to the effective fitting capabilities of both
the generator and the discriminator and the inability to guarantee optimal convergence
during iterations, these networks do not reach the Nash equilibrium state during actual
training [18]. Additionally, GANs often face issues such as training instability, mode
collapse, and gradient vanishing problems. To address these issues, Mao et al. [19]
developed the Least Squares GAN (LSGAN) to enhance the stability of adversarial training
and improve the quality of the synthesized images. The authors in [20] established WGAN,
further analyzed the reasons for training instability, and introduced the Lipschitz continuity
constraint on the discriminator, effectively enhancing training stability. DCGAN [21] is the
first network in which deep convolutional layers and batch normalization were introduced
to improve network stability. The authors in [22] developed SAGAN by incorporating
the self-attention mechanism into a GAN, which enhanced the network’s representational
capacity, improving the quality and diversity of the generated images. Furthermore,
PGGAN [23] represents a progressive growth strategy for image generation, increasing
the resolution, thereby making it possible to successfully generate 1024 × 1024-resolution
images for the first time. Inspired by image style transfer, StyleGAN [24] is based on
adjustable instance normalization to inject modulation signals, which greatly enhances the
network’s capabilities. StyleGAN2 [25], an improvement on the latter, enables end-to-end
training and achieves high-quality, high-resolution image generation.

Autoregressive models are commonly used generative models based on the idea that
subsequent variables in a sequence can be regressed from preceding variables. Different
autoregressive models employ various network structures for generation. PixelRNN [26]
uses the temporal concept of Recurrent Neural Networks (RNNs) for the prediction process,
where the RNN model is composed of multiple Long Short-Term Memory (LSTM) layers.
PixelCNN [27] approximates the RNN structure with masked convolutional layers and
eliminates the pooling layers. Subsequent work on PixelCNN further enhanced its compu-
tational efficiency and generation results [28]. In recent years, the Transformer [29] structure
has allowed for significant advances in natural language generation by introducing the
attention mechanism, which significantly strengthens the fitting capabilities of autoregres-
sive models. In the field of image generation, DALL-E [29] leverages the VQVAE to encode
images into discrete latent codes and then uses an autoregressive model based on the
Transformer structure to fit the distribution of these discrete codes. However, this approach
faces the following issues: (1) The efficiency of serially generating conditional distribution
probabilities is lower than directly generating joint distributions and sampling, resulting in
significant time consumption for image generation. (2) The assumption that each position
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in the autoregressive model depends on the previous positions is unreasonable for images,
as image patches are often related to various positions. Once a position is generated, it
cannot be modified based on subsequent positions, causing any errors in earlier positions
to propagate and affect subsequent results, leading to cumulative errors.

Denoising diffusion models are the latest advancement in image generation, compris-
ing a forward noise diffusion Markov process and a reverse denoising Markov process [30].
By incrementally adding noise in multiple steps, this approach decomposes the com-
plex distribution fitting problem into several simpler sub-problems. During the training
phase, the denoising network updates its parameters to fit the data distribution of the
noise-added process at each step. In the image generation phase, noise signals are first
sampled from a known distribution and then progressively denoised through multiple
steps by the denoising network, thereby sampling from the complex image distribution.
This method has garnered widespread attention since its introduction, with researchers
exploring its application in tasks such as unconditional image generation [31,32], class-
conditional generation [33], and text-to-image translation [34], achieving state-of-the-art
results across these domains.

2.2. SSS Image Generation Model

Due to the difficulty of data acquisition in side-scan sonar and the sparsity of the
target distribution, an important research direction in the field of SSS is image generation.
To mitigate the scarcity of SSS data, Jiang [35] proposed a GAN-based image generation
model that rapidly generates side-scan sonar images. However, this method can only
generate single-channel grayscale images, and since the generator and discriminator are
not equal in fitting ability, it is difficult to reach the Nash equilibrium, resulting in model
collapse. Bore [36] created a generation model with the environment as the input and the
side-scan sonar image as the output based on the conditional generation of adversarial
networks. However, this method has significant restrictions on implementation. Song [37]
suggested using Extreme Learning Machines for sonar image segmentation and synthesis,
employing a multi-path convolutional neural network to learn different image features,
thereby progressively synthesizing detailed side-scan sonar images. Wang [38] employed
transfer learning to introduce a style transfer approach between optical and SSS images,
effectively enhancing classification accuracy. Ge [39] also proposed the use of synthetic data
and transfer learning to convert optical images into side-scan sonar images for classification.
In the case of zero samples, Xu [40] proposed a multi-feature fusion self-attention network
(MFSANet) to generate SSS images of new categories, which transformed the problem
into a traditional supervised learning problem. By taking the optical image as the input to
the network, the Simplified Self-Attention Module (SSAM) is used to model the acoustic
image, so as to effectively generate virtual SSS samples. However, this transfer learning-
based method requires an additional photo, such as one taken on land, to be used as a
specification. In many cases, this extra requirement limits the application of the method.

With recent breakthroughs in diffusion models [30–33], more and more researchers are
turning to this approach for image generation. Yang [41] was the first to utilize a diffusion
model for SSS image modeling: they transformed the sonar image into random noise with
a Gaussian distribution and iteratively refined this noise in a reverse process to reconstruct
new samples that matched the prior data distribution. Similarly, Zhang [42] and Cheng [43]
applied diffusion models to expand the collected sonar data and created a hybrid dataset
composed of real and generated samples. Upon experimenting with various mainstream
target detection algorithms, they concluded that the generated samples could effectively
improve the accuracy of the detection models considered.

However, most of the aforementioned methods have been applied to the SCTD
dataset [44]. A significant portion of images in the SCTD dataset are not raw data (having
undergone text editing, watermarking, etc.), which disrupts the statistical distribution of
authentic data. In addition, previous work has not been able to achieve category-specific
image generation, which means that the generated images often require further manual
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selection before they can be employed for subsequent detection tasks. Therefore, the pri-
mary limitations of the current side-scan sonar image generation task include the following:
(1) the existing public datasets do not truly reflect the data distribution of sonar data, thus
hindering the development of generation models; (2) generators based on diffusion models
can only produce uncategorized images and necessitate extensive human effort to further
filter the generated images.

3. Materials and Methods
3.1. Data Acquisition and Processing

The quality of SSS data is influenced by various factors, including the motion of the
carrier, its speed, and its altitude above the seabed. Using an AUV equipped with an SSS
sensor for data collection offers advantages such as constant speed, continuously adjustable
altitude above the seabed, and minimal noise interference. Therefore, to obtain reliable
and sufficient underwater sonar images, we selected an AUV with a diameter of 324 mm,
equipped with the SS4590 module for SSS data collection, as shown in Figure 1. The
AUV had a modular design, allowing each section to be detached and replaced. The front
segment was equipped with a USBL for underwater communication. The forward and
aft auxiliary propulsion sections enabled the AUV to move horizontally and vertically,
respectively. The tail was fitted with rudders and a primary propulsor, providing the AUV
with a maximum cruising speed of 12 knots. The battery section contained lithium-ion
batteries, which could power the AUV for 10 h at a cruising speed of 3 knots. Additionally,
the AUV was equipped with a Global Positioning System (GPS) module and inertial
navigation components for self-localization. The sonar module section carried the SS4590
SSS sensor, which could emit both 450 kHz and 900 kHz frequency CW or Chirp signals,
with a maximum single-side detection range of 150 m.

Head 

Section

Auxiliary 

Thruster Ⅰ

Battery

Section

Carrying

Section

Navigation

Section

Auxiliary 

Thruster Ⅱ
Tail

Section

(a) AUV model diagram.

Side Scan Sonar

(b) AUV being deployed in the test area.

Figure 1. AUV overall layout structure and layout drawing.

To ensure the collection of representative and abundant data, we selected two marine
areas for our data acquisition missions. Additionally, we placed cylindrical objects with
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a base diameter of 100 cm and a height of 150 cm on the seabed to serve as targets. Due
to the side-scan sonar sensor’s installation angle of 20 degrees horizontally downwards
on the AUV, there were blind spots in its field of view; therefore, it was necessary to plan
the AUV’s route during data acquisition to ensure that the sonar beams could cover the
blind spots to avoid missing any targets. The AUV performed back-and-forth patrolling
detection tasks in the two preset marine areas (as shown in Figure 2); to collect clear images,
its cruising speed was set to 3 knots and the depth to 10 m. The distance between the
return paths was set to 100 m to guarantee that the sonar beams could cover the blind
spots. The experimental areas selected in the marine environment had depths ranging
from 30 to 50 m, ensuring the acquisition of seabed lines and background, along with
seabed terrain that exhibited significant depth variations. During the collection process,
Nvidia Jetson AGX Orin edge computing devices were utilized to control the SSS sensor and
store data. The AUV navigated for 1 h and 40 min across the two marine areas, respectively,
generating 2.29 GB of XTF files.

Sea Area Ⅰ Sea Area Ⅱ  Figure 2. Schematic diagram of AUV path planning in experimental sea areas.

After parsing the XTF files, it was necessary to convert the acoustic signals into image
signals. An SSS device emits sound waves from both sides of a moving platform, covering a
broad area and receiving echo signals, which are then processed and transformed into intensity
values. SSS images are created based on the variation in the grayscale intensity of the pixels
within each scan line, forming a grayscale contrast [45]. Areas with stronger grayscale intensity
depict the target image’s geometric shapes, and the intensity of the image’s grayscale directly
corresponds to the amplitude variations of the echo signal, which are primarily associated
with seabed topography, geomorphological features, and sediment types. The original data
sampling precision was 16-bit, and sonar data imaging typically requires quantizing the
received signal strength into a grayscale range of 0∼255. At this point, a model needed to
be established to convert the acoustic intensity information into the grayscale information
describing the image. The quantization formula for SSS data with 16-bit sampling precision is

G =
GB − GBmin

GBmax − GBmin
(Gmax − Gmin) (1)

G = C × e
now−close
f ar−close × G (2)

In Equation (1), G represents the quantized grayscale data; GB represents the pre-
quantization echo data; Gmax and Gmin are the maximum and minimum values of the
grayscale image, respectively, and GBmax and GBmin are the maximum and minimum

values of the echo data, respectively. In Equation (2), C is a constant, and e
now−close
f ar−close stands

for the distance dimension, where the gain is normalized in the exponential domain.
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Equations (1) and (2) enhance the echo intensity while converting it into grayscale
levels, making it suitable for sonar data with weaker sampling echo intensity. The advan-
tage of this technique lies in its ability to effectively compensate for the echo intensity in
the far field area of the image, thus making the targets in the distant area of the image dis-
tinctly visible. Once the data were converted into image signals, the images were cropped
into 256 × 256 pixel segments. These segments were then categorized into five classes
based on their specific content: targets, seabed lines, seabed backgrounds, seabed terrain,
and images with interference. The interference was caused by the AUV’s DVL and Ultra-
Short USBL, which can generate acoustic interference when their operating frequencies are
harmonically related to the frequency of the SSS device. This interference appeared in the
images as regular patterns of lines.

Following the aforementioned data collection and processing procedures, the final
authentic dataset comprised images for each category, as indicated in Table 1. Figure 3
provides a partial visual display of the dataset.

background topography
acoustic 

interference
submarine line target

Figure 3. Five-category SSS dataset based on raw images.

Table 1. Categories and quantities of SSS dataset images.

Background Topography Acoustic Interference Submarine Line Target

1317 342 402 1712 399

3.2. SSS Diffusion Model

Diffusion models have recently become popular machine learning algorithms, demon-
strating powerful representational learning capabilities. They have been widely applied
in bioinformatics [46], object detection [47], and image reconstruction [48]. A diffusion
model consists of a forward diffusion process and a reverse diffusion process, as shown in
Figure 4. In the forward process, noise is progressively added to the initial real data, and in
the reverse process, the original image is gradually recovered from the noise. Our diffusion
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model can be divided into two components: the objective modeling of the diffusion process
and the parameter estimation network.

Forward process q(xt|xt-1)

Reverse process pɵ (xt-1|xt)

Figure 4. Schematic of the principle of diffusion model.

3.2.1. Target Modeling

Given the initial SSS raw image data (x ∼ q(x)), the forward diffusion process consists
of T steps, with each step adding Gaussian noise to the data from the previous step (xt−1),
and this process constitutes a Markov chain. According to the modeling of denoising
diffusion probabilistic models (DDPMs) [30], the key equation for the forward process is
as follows:

q(xt|xt−1) = N
(

xt;
√

1 − βtxt−1, βt I
)

(3)

q(x1:T |x0) =
T

∏
t=1

q(xt|xt−1) (4)

q(xt|x0) = N
(

xt;
√

αtx0, (1 − αt)I
)

(5)

In the equation, the standard deviation of the noise added at each step is determined
by a fixed value, βt, and the mean is determined by βt and the current data, xt, at time t.
Moreover, we specify that αt = 1 − βt and αt = ∏ αi.

In the reverse process, the goal is to recover the original data from the Gaussian
noise. It is assumed that this is also a Gaussian distribution, but since it is not feasible to
sequentially fit the distribution, a parameterized distribution is constructed for estimation.
The reverse process is still a Markov chain, and its core formulas are as follows:

pθ(x0:T) = p(xT)
T

∏
i=1

pθ(xt−1|xt) (6)

pθ(xt−1|xt) = N

(
xt−1; µθ(xt, t), ∑

θ

(xt, t)

)
(7)

q(xt−1|xt, x0) = N
(

xt−1; µ̃(xt, x0), β̃t I
)

(8)

β̃t =
1 − αt−1

1 − αt
· βt (9)

µ̃t(xt, x0) =
1√
αt

(
xt −

βt√
1 − αt

ϵ

)
(10)

It can be observed that the variance in the posterior diffusion conditional probability
q(xt−1|xt, x0) does not contain any unknown parameters, while the mean includes a term
with a stochastic parameter, ϵ. Therefore, by continuously fitting a neural network to make
distribution pθ(xt−1|xt) as close to q(xt−1|xt, x0) as possible, pθ(xt−1|xt) can be used for
generation. It is important to note that the target of neural network estimation can be noise
ϵθ(xt) or the initial x0, or it can be predicted score ∇xt log pθ(xt) [49].

To achieve controllable category image generation, in addition to the given original
data, x, there is also the corresponding category information, y. Assuming that the forward
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noise addition process is still a Markov chain, its data distribution is x ∼ q(x). According
to the derivation by Dhariwal [33], it is evident that the forward process of the conditional
diffusion model is completely identical to that of a DDPM, which is

q̂(xt|xt−1, y) = q̂(xt|xt−1) = q(xt|xt−1) (11)

During the reverse denoising process, according to Bayes’ theorem, the following
relationship holds:

p(y|xt) =
p(xt|y)p(y)

p(xt)
(12)

We note that p(y) serves as the prior distribution; by taking the logarithm of the above
equation, deriving with respect to xt, and then incorporating the score function, we obtain

∇xt log p(y|xt) = − 1√
1 − αt

(ϵθ(xt|y)− ϵθ(xt)) (13)

By substituting the aforementioned equation into Dhariwal’s classifier gradient, the
estimated parameters can be derived:

ϵ̂θ(xt|y) = ϵθ(xt) + s[ϵθ(xt|y)− ϵθ(xt)] (14)

Thus, two models are trained: one is an unconditional generation model, like DDPMs,
and the other is a conditional generation model. The final results can be obtained by using
linear extrapolation from both the conditional and the unconditional generation models.
The quality of the generated output can be adjusted with the guidance coefficient, s, which
controls the balance between the realism and the diversity of the generated samples.

3.2.2. Parameter Estimation Network

We previously discussed controllable category generation based on diffusion models,
where the core is to train a noise prediction model. Since noise and the original data are
in the same dimensionality, we can opt for an autoencoder architecture [50] for the noise
prediction model. Specifically, we utilized a U-Net model [51] that incorporates attention
mechanisms and residual blocks, as shown in Figure 5.

The U-Net is composed of an encoder, a decoder, and their cross-layer connections. The
encoder consists of four stages, each of which includes two residual blocks, a linear attention
layer, and a downsampling module to reduce the size of the feature space. The linear
attention mechanism was utilized because its time and memory consumption are linearly
related to the sequence length, which is much more efficient than traditional attention
mechanisms with quadratic complexity. After passing through the linear attention layer,
the data are normalized with RMSNorm [52] to further improve computational efficiency.
With each stage in the encoder, the dimensions of the height and width of the feature
space are halved, while the channels are doubled. The structure of the decoder mirrors the
encoder, except for the final downsampling module, which is replaced with an upsampling
module to reverse the operation. In the decoder module, U-Net also introduces skip
connections, which concatenate the features of the same dimensionality obtained from the
encoder. This facilitates network optimization by allowing for the flow of information from
previous layers to the following layers, which helps to reconstruct the finer details in the
output image.

To differentiate among different time steps, inspired by the concept of positional
encoding in Transformers [29], we employed sinusoidal position embeddings to encode
the time (t). This enables the model to recognize which time step’s noise it is predicting in
the batch. Furthermore, to achieve controllable category generation, it is necessary to input
the category information (y). Hence, an embedding is utilized to embed y, and during
the training process, it is optimized to maximize the encoding differences among different
categories. As a result, we can train a single shared U-Net model to generate images of
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different categories. Specifically, in the various residual blocks of U-Net, both the time (t)
and category information (y) are introduced.

t

y

Sinusoidal 

Position

 Embedding

Embedding

t

y

Sinusoidal 

Position

 Embedding

Embedding

xt

Figure 5. Schematic diagram of parameter estimation network structure of controllable category SSS
image generator.

4. Experiments and Analysis

In this section, we present the experimental validation of the proposed method. First,
we compared the imaging results of the SSS device, analyzing the impact of different gain
factors on the nonlinear gain enhancement algorithm to determine suitable parameters.
Next, we tested the proposed SSS image generator, examining the effects of different scale
factors on the FID and IS. Additionally, we used Haralick texture features to further statisti-
cally assess the similarity between the real and generated images. Finally, we applied the
generator to an object detection task to verify the extent to which the generator improved
detection performance. For the experiments described in this chapter, the hardware used in-
cluded four RTX 3090 GPUs (NVIDIA Corporation, Santa Clara, CA, USA), 256 GB of RAM,
and an Intel Xeon Silver 4210 processor (Intel Corporation, Santa Clara, CA, USA). The
software environment consisted of the Ubuntu 20.04 LTS operating system, CUDA 11.6,
Python 3.9, PyTorch 1.12.1, and Matlab 2018. The data in the experiment were derived
from the sea trial data collected as described in Section 3.1.

4.1. SSS Imaging Results

The sonar images were obtained through the quantization of the original acoustic
signals, and the quality of imaging significantly impacted the subsequent experiments.
Therefore, an initial analysis of the imaging results was conducted, presenting the original
image and amplitude images with different C values, as shown in Figure 6.

By parsing the original data according to the Extended Triton Format (XTF) [53]
protocol and converting them into image signals by using Equation (1), we obtained the
initial image, as shown in Figure 7a. It was observed that at longer propagation distances,
the echo intensity decreased, resulting in darker images in distant areas, which hindered
the identification of detailed information within the images. To address this issue, we
applied nonlinear gain enhancement to the images based on Equation (2), experimenting
with five different values of C. As shown in the remaining subfigures of Figure 7, the
brightness of the images increased with larger values of C. However, the images exhibited
an overexposure-like effect when C = 4e, leading to reduced contrast. At a C value of 2e,
the intensity in distant areas was effectively compensated, making targets in those areas
more discernible. When the C value was less than e, it was difficult to identify any effective
information in the images. Based on this analysis, we selected C = 2e as the default value
for image conversion in the subsequent experiments.
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Figure 6. Amplitude comparison plots for different values of C and raw data.

(a) original (b) C=4e

(c) C=2e

(e) C=0.5e

(d) C=e

(f) C=0.25e

Figure 7. Comparison of imaging results with different gain values.

4.2. SSS Image Generation

Based on the analysis of the original image in the previous section, training was
conducted according to the method described in Section 3.2. Using the data in Table 1 as
the dataset, the images were randomly selected into training and testing sets with a ratio
of 0.8:0.2. After 40,000 iterations, we obtained the weight files for the model. By utilizing
this trained model, we generated 20,000 images each for the experiments by using different
scale factors (s); Figure 8 shows some samples of the generated images. To quantitatively
assess the performance of our generative model, we first selected the evaluation metrics. In
the domain of generative models, the FID and the IS [54] are commonly used as evaluation
criteria. The IS evaluates the model by measuring the diversity and quality of the generated
images, using a pre-trained Inception network [55] for classifying the generated images
and calculating the entropy of their distribution. The FID measures the statistical difference
between the generated and real images in the feature space, extracting image feature vectors
with a pre-trained Inception network and calculating the Fréchet distance between these
features for real and generated images. The FID not only considers pixel-level differences
but also considers the overall statistical distribution in the feature space, making it more
sensitive to capturing subtle differences in the generated images. However, considering that
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our study focused on the generation of side-scan sonar images, using the original Inception
pre-trained network directly would have rendered the results meaningless. Therefore,
we fine-tuned the existing pre-trained models to obtain classification networks based on
InceptionV3 and ResNet [56], which were used as feature extraction networks to calculate
the FID and the IS; the results are shown in Table 2.

Table 2. Generation evaluation metric scores for the model. A lower FID score and a higher IS
are better.

Scale
FID ↓ IS ↑

InceptionV3 ResNet InceptionV3 ResNet

s = 0.0 17.5257 27.7368 2.6612 2.5764
s = 0.2 17.5456 28.2699 2.8712 2.8424
s = 0.4 17.6471 29.3880 3.1743 3.1884
s = 0.5 17.5502 31.2412 3.4934 3.6395
s = 0.6 17.5741 32.4902 3.6551 3.9083
s = 0.8 17.7355 32.6387 3.7988 4.0885
s = 1.0 17.7328 33.2389 3.8120 4.1173
s = 2.0 18.2058 32.7953 3.8921 4.1597
s = 4.0 19.6987 33.3931 3.8971 4.2231
s = 6.0 20.0235 33.4207 3.9059 4.2294
s = 8.0 20.1990 32.9504 3.9128 4.2487

According to Equation (14), the essence of controlled category generation is achieved
through the linear extrapolation of conditional and unconditional generative models. It
was observed that as the value of s increased, both the FID and IS metrics exhibited a
gradual increase. The increase in the FID was primarily due to the increase in the s value
making the model more inclined towards conditional generation. As the s value increased,
the model’s controllability was enhanced and its uncertainty was reduced, leading to a
decrease in the diversity of the generated images. The increase in the IS was due to the
increase in the s value allowing the model to generate images of specified categories more
reliably, resulting in a more balanced distribution of generated image categories, thereby
increasing entropy. Additionally, it was noted that when S = 0, the model degenerated into
an unconditional generative model; when S was between 0 and 1, the model essentially
combined conditional and unconditional generative models; when S was greater than 1, it
manifested as the conditional generative model minus the unconditional generative model.

After considering the FID and IS results comprehensively, we chose S = 0.6 as the scale
factor for the generative model. Based on this, further statistical analysis was conducted
on the generated images. We calculated eight Haralick texture features [57] between the
real and generated images to quantify the texture differences in the two-dimensional
space between image pairs. Specifically, we first established the Gray-Level Co-occurrence
Matrices (GLCMs) [58] for the two sets and then calculated angular second moment,
contrast, correlation, inverse difference moment, sum entropy, entropy, difference variance,
and difference entropy. Subsequently, we employed the Multidimensional Scaling (MDS)
method [59] to measure the texture dissimilarities in two dimensions. To minimize the
impact of outliers in both sets on the overall results, we fitted the results with ellipses
in a 95% confidence interval. The final results are shown in Figure 9. It can be observed
that almost all ellipses representing the set of generated images encompass the ellipses
representing the set of real images and their centroids are very close. This indicates that the
generated images and the real images had high similarity in Haralick texture features.
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Figure 8. Generated SSS images of five categories (s = 0.6).
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Figure 9. Relative texture dissimilarity between generated and original data.

4.3. SSS Image Detection

An important application of generative models is supplementing the original dataset
to address the issue of insufficient data volume. Therefore, in this section, we describe
the use of the generated images to augment the dataset for object detection purposes.
Our generative model is capable of specifically generating sonar images of five categories,
among which the “target” category is the most commonly used for detection. Accordingly,
we first generated a substantial number of “target” category images by using the generative
model. To explore the impact of varying quantities of generated images on object detection
accuracy in real images, we prepared six different datasets, as shown in Table 3. All the
original data in the table were derived from the target category in Table 1. The test and
validation sets for all datasets were sourced from real images in order to genuinely reflect
the effect of different training sets on enhancing detection accuracy.
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Table 3. The six kinds of datasets used for the object detection experiments. The data of dataset B
were all real data. The training set of dataset A was entirely derived from the generated data. The
training sets of the remaining datasets were mixed datasets.

Dataset
Training Set Test Set Validation Set

Original Generated Original Generated Original Generated

A 0 1500 103 0 153 0
B 143 0 103 0 153 0
C 143 300 103 0 153 0
D 143 500 103 0 153 0
E 143 800 103 0 153 0
F 143 1000 103 0 153 0

In our object detection experiments, we utilized the state-of-the-art (SOTA) YOLOv10
detection model [60]. Due to its exceptional performance and low computational power
consumption, the YOLO series [61] has been a significant paradigm in the field of object
detection, now updated to its tenth version. YOLOv10 introduces a novel real-time object
detection method by improving the model architecture and eliminating Non-Maximum
Suppression (NMS). Based on varying computational power requirements, YOLOv10 is
further divided into six distinct model variants. We conducted cross-experiments on these
six model variants and six datasets under the same experimental conditions. The detection
accuracy results of the experiments are presented in Table 4.

Table 4. Average precision scores for different models and different datasets.

Dataset YOLOv10n YOLOv10s YOLOv10m YOLOv10b YOLOv10l YOLOv10x Average

A 0.629 0.597 0.625 0.633 0.669 0.602 0.626
B 0.723 0.718 0.743 0.739 0.728 0.777 0.738
C 0.785 0.759 0.793 0.777 0.761 0.781 0.776
D 0.838 0.813 0.851 0.850 0.831 0.834 0.836
E 0.757 0.812 0.788 0.805 0.805 0.800 0.795
F 0.815 0.820 0.801 0.802 0.806 0.805 0.808

The results for dataset A reveal that even in the absence of any real images in the
training set, the average precision of the six models is still high, 0.626, further confirming
the high consistency between the generated and real images. With the incremental addition
of generated images, the average precision could be enhanced by up to approximately
10%, significantly improving detection accuracy. However, when more than 800 generated
images were incorporated into the training set, a slight decline in the model’s average
detection precision was observed, but this metric was still higher than that for dataset B.
This phenomenon may be attributed to the inclusion of images located in the green area
but not in the blue area of Figure 9, introducing some noise. Overall, incorporating the
generated images into the real dataset effectively enhanced detection accuracy, especially
when the volume of added images was 3.5 times that of the original images, yielding
the most pronounced effect. Furthermore, we visualized the detection results based on
YOLOv10n (as shown in Figure 10). The results in the second row of Figure 10 were caused
by the training set being composed entirely of real images. Five targets were missed due to
insufficient data. Notice that there is one missed detection instance in the first row, but its
training set was entirely derived from the generated images. According to the results from
dataset C to dataset F, the model performed better in reducing missed detection instances
and false alarms, achieving better detection results.
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Figure 10. The detection results of the model trained on six datasets using YOLOv10n on the
validation set.

5. Conclusions

In this study, we developed a controllable category SSS image generator capable
of producing diverse and high-quality SSS images. To achieve this, we first established
a data collection platform based on an AUV and gathered raw datasets from multiple
marine areas. We also introduced a nonlinear gain enhancement algorithm for converting
acoustic signals into image signals, effectively compensating for the signal strength at
the far end of the sonar and enhancing the representation of target features. Based on
diffusion models, we performed controllable five-category image generation without the
need for additional classifiers and conducted comprehensive quantitative and qualitative
evaluations. Furthermore, we validated the practical application of our generative model
by using the YOLOv10 target detection algorithm. The experimental results indicate
that the generated images can effectively complement the original images, improving
target detection accuracy. Our work marks a significant milestone in the field of SSS data
generation, providing data support for subsequent SSS-based developments.

However, it is worth noting that our current generative model only generates images
and requires manual annotation when expanding the dataset. Therefore, our future research
will focus on label-based generative models to achieve image–label matching generation.

Author Contributions: Conceptualization, F.Z. and X.H.; methodology, F.Z., X.H. and Z.W.; val-
idation, Z.W., T.T. and X.H.; data collection, Z.W. and C.C.; writing—original draft preparation,
X.H.; writing—review and editing, F.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by National Key R&D Program of China (2023QYXX).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



J. Mar. Sci. Eng. 2024, 12, 1457 17 of 19

Data Availability Statement: The datasets generated and analyzed during the current study are
available from the corresponding author upon request.

Acknowledgments: We would like to acknowledge the Key Laboratory of Unmanned Underwater
Transport Technology for the facilities and technical assistance provided.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
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SSS side-scan sonar
AUV Autonomous Underwater Vehicle
FID Fréchet Inception Distance
IS Inception Score
Sonar Sound Navigation and Ranging
USBL Ultra-Short Baseline
VAEs Variational Autoencoders
GANs Generative Adversarial Networks
KL Kullback–Leibler
VQVAE Vector-Quantized VAE
LSGAN Least Squares GAN
RNNs Recurrent Neural Networks
LSTM Long Short-Term Memory
MFSANet multi-feature fusion self-attention network
SSAM Simplified Self-Attention Module
GPS Global Positioning System
DDPM denoising diffusion probabilistic model
XTF Extended Triton Format
GLCM Gray-Level Co-occurrence Matrices
MDS Multidimensional Scaling
SOTA state-of-the-art
NMS Non-Maximum Suppression
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