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Abstract: Apart from the mechanisms of ice structure interactions under various scenarios of sea
ice conditions and structural configurations, the selection of probabilistic models is crucial in order
to cope with the loading uncertainty. Sea ice is the primary contributor to design loads in cold
regions. In many cases, ice loads present the highest magnitude. In recent years, the probabilistic
study of ice thickness, ice strength coefficient, flexural strength, ice drift speed, etc., has significantly
increased, corresponding to the increasing activity of offshore operations in cold regions as well
as the development of instrument technology for sea ice observation. This paper reviews existing
probabilistic modes of sea ice, which are used to estimate the uncertainty of ice loading with various
types of offshore structures, including vertical structures, sloping structures, and stations with floating
vessels. The ISO 19906 standard is employed for the probabilistic assessment of vertical and sloping
structures. The interactions between ice and structures on sloping structures are considered in both
the upward and downward directions. The ice resistance method is applied for station-keeping
floating vessels in ice. The key parameters of sea ice properties to estimate the design loads are
studied. The effect of correlation between the key parameters of ice loads is investigated. This review
shows that most existing probabilistic models are proposed for the estimation of ice loading on the
various types of offshore structures.

Keywords: probabilistic assessment; ice loading; offshore structures

1. Introduction

The development of offshore structures capable of enduring ice loading in the Arctic
and Subarctic necessitates access to both physical and mechanical data regarding sea ice,
which can be independently gathered. Concerning the physical attributes of sea ice, the
predominant factor affecting ice loading for structures, whether vertical or sloping, is ice
thickness. Various techniques, including satellites, submarines, upward-looking sonars
(ULS), and helicopter-borne electromagnetic instruments (HEMs), among others, can mea-
sure this dimension of ice thickness. Each method offers differing levels of accuracy based
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on its unique attributes. For example, satellite measurements cover broad areas but lack pre-
cision, whereas HEMs provide ice thickness details solely along the helicopter’s flight path,
with accuracy dependent on instrument noise and flying altitude [1]. Furthermore, the com-
bination of average daily air temperatures from local measurement stations with ice growth
models enables the estimation of nearby level ice thickness [2]. Conversely, the mechanical
properties of sea ice, such as flexural strength, uniaxial strength, and ice strength coefficient,
can only be obtained through experiments or field and laboratory measurements.

Zvyagin [3] implemented an analytical framework for vertical structures with the
aim of probabilistically modeling ice pressure in accordance with the ISO standard formu-
lation [4]. This methodology treats sea ice thickness and strength coefficient as random
variables, employing a lognormal distribution to address the inherent uncertainty in the
calculated ice pressure. Similarly, for sloping structures, a corresponding analysis may
be conducted, focusing on the identification of influential parameters governing the com-
putational outcomes. Ranta et al. [5] conducted an exhaustive examination of the failure
mechanisms of level ice against inclined structures through discrete finite element analyses.
Their study, encompassing both deterministic and probabilistic methodologies, elucidated
the pronounced influence of ice thickness on resultant ice loading. Within deterministic
analyses, the initial condition of incoming ice velocity in simulation models emerged as
a significant determinant of ice load estimation. Conversely, in probabilistic analyses, it
was observed that the sample size of simulated ice data significantly impacted estimated
ice loads. This underscores the pivotal role of sample size in determining key statistical
parameters such as mean ice load, standard deviation, and maximum load, as derived from
time domain simulations [6].

Ida et al. [7] conducted a study investigating the connections between loads on various
segments and the correlation between global and local loads. They discovered that the
highest local line loads were caused by narrow local peak load events, with both the
intensity and occurrence of these events increasing as ice strength grew. Notably, these
narrow events produced local line loads that were up to four times greater than the global
line load, defined as the total load on the structure divided by its width.

The management of ship and floating offshore structure positioning in cold regions
presents formidable challenges. Predicting the stresses imposed on mooring systems by
sea ice is particularly difficult due to the complex interplay of sea ice properties and failure
mechanisms. These intricate factors introduce significant uncertainty into calculating global
ice loads. A comprehensive understanding of ice dynamics, ice–structure interactions, and
ship responses to ice loads is crucial for enhancing the planning and execution of ship
operations. Such advancements can significantly improve the safety, structural integrity,
cost-effectiveness, and operational regularity of maritime activities in icy environments.
Precise vessel positioning is critical for a wide range of offshore tasks, including lifting,
installation, crew transfers, emergency evacuations, drilling, tanker loading, and subsea
equipment maintenance [8,9].

The drift of sea ice carries the potential to engender ice loads surpassing the operational
threshold of station-keeping systems, thereby precipitating potential failures across critical
components including the mooring system, dynamic positioning (DP) apparatus, ship
structures, and operational equipment. To counteract these hazards, ice management
strategies, such as the strategic deployment of icebreakers upstream to facilitate the creation
of a continuous corridor of fragmented ice floes, are deployed. This tactical intervention
seeks to curtail ice loads exerted on stationary vessels to levels deemed tolerable [9].
Nevertheless, it is imperative to acknowledge the paucity of comprehensive data stemming
from diverse full-scale testing scenarios pertaining to ice management systems, with limited
accessibility to such information within the public domain [10,11].

Regarding the design of the mooring system, it is imperative to consider both the
potential overloading stemming from extreme environmental circumstances and the grad-
ual accrual of fatigue-induced damage [10]. For transient operational phases, analysis
focuses solely on extreme response scenarios. Conventionally, mooring system design
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adopts a limit state methodology, wherein the probability of overloading can be gauged
by extrapolating extreme values corresponding to a designated return period, indicative
of the anticipated operational duration [12]. Moreover, adherence to ISO 19906 standards
(Petroleum and natural gas industries—Arctic offshore structures) permits a design ap-
proach grounded in comprehensive field experiments to accurately quantify the impact
of ice actions [4]. Pertinently, in the context of enduring operations, the quantification
of fatigue accumulation in mooring lines becomes requisite, particularly if the system
remains static in a singular location for a duration exceeding five years [10]. The fatigue
capacity of the mooring system is intricately linked to the resilience of its constituent
elements such as chains, wire ropes, fiber ropes, and connecting links, often delineated
through TN curves (Tension–Number curves) or SN curves (Stress–Number curves) for
comprehensive assessment [10,12].

The most effective approach for creating a uniform reduction in floe sizes within
drifting ice using the ice management system involves operating the icebreaker in various
systematic patterns, such as circular, orbital, elliptical, linear, racetrack, etc. The icebreaker
moves in the updrift direction to safeguard the stationary vessel. The primary factors
influencing the choice of pattern include the speed of ice drift, thickness of the ice, rate of
turning of incoming ice, and the maneuverability of the icebreaker. Employing two or more
icebreakers with the same pattern can enhance the efficiency of reducing floe sizes [9].

This work reviews the uncertainty and probabilistic models involved in the interaction
between ice and structures across various configurations and scenarios involving stationary
vessels in ice. For fixed offshore structures, the key parameters for estimating ice loads
are examined, employing random variables to describe sea ice properties. For stationary
vessels in ice, the formulations used to describe ice loads during stationary periods are
analyzed. Various ice management scenarios are implemented, and the different models
for extreme loading on mooring lines are explored.

This work provides a comprehensive study and review of the uncertainty and prob-
abilistic models associated with the interaction between ice and structures, focusing on
a range of configurations and scenarios involving stationary vessels in ice. The study
delves into the key parameters critical for estimating ice loads on fixed offshore structures,
employing random variables to characterize sea ice properties such as thickness, strength
coefficient, flexural strength, etc. It investigates various probabilistic models to capture the
uncertainty associated with these parameters on ice load predictions. Additionally, this
study explores methodologies for estimating extreme ice loads on stationary vessels, analyz-
ing formulations used during periods when vessels are immobilized in ice. The discussion
encompasses various ice management strategies implemented to mitigate ice-induced risks,
including proactive measures to manage ice accumulation and control ice interactions. This
study investigates different models for assessing extreme loading conditions on mooring
lines, considering factors such as level ice, ice ridges, ice drift speed, and others. By com-
paring and contrasting these models, the study highlights advancements in predictive
capabilities and identifies areas for future research and improvement in understanding
stationary vessels in ice.

2. Ice Loading on Fixed and Floating Offshore Structures

In cold regions, the phenomenon of ice loading poses a critical challenge to the struc-
tural integrity of both vertical and sloping structures. Sea ice growth results in thickness
accumulation. It significantly increases the ice load on the structures. Understanding the
mechanisms of ice formation, the factors influencing ice accumulation, and the effects of
ice loading is essential for engineers and designers tasked with ensuring the safety and
resilience of infrastructure in cold climates. This paper examines the impact of ice loading
on vertical and sloping structures, considering various factors such as climate conditions,
surface characteristics, and structural design principles. By exploring the challenges posed
by ice loading and the strategies for mitigating its effects, this study aims to provide insights
into the effective management of structural risks in icy environments.
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2.1. Vertical Structures

The ice-crushing failure mechanism typically occurs when ice interacts with a vertical
structure. The ISO 19906 standard specifies the ice pressure (PG) and the global ice load
(FG) in Equations (1) and (2). Crushing against a vertical structure, which is perpendicular
to the contact surface, is referred to as the limit mechanism, as illustrated in Figure 1.

PG = CR

(
h
h1

)n(w
h

)m
(1)

FG = PG·h·w (2)

where h is the ice thickness and h1 is a reference thickness. It is typically assigned as
1 m. CR is the ice strength coefficient, w is the width of the structure, n is an empirical
coefficient equal to (−0.5 + h/5) for h < 1.0 m and equal to −0.30 for h ≥ 1.0 m, and m is an
empirical coefficient equal to −0.16 [4]. The analysis includes different structural widths,
namely 1 m, 4 m, and 10 m. This investigation is part of a probabilistic assessment using
Monte Carlo simulation.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 4 of 35 
 

 

surface characteristics, and structural design principles. By exploring the challenges posed 

by ice loading and the strategies for mitigating its effects, this study aims to provide in-

sights into the effective management of structural risks in icy environments. 

2.1. Vertical Structures 

The ice-crushing failure mechanism typically occurs when ice interacts with a vertical 

structure. The ISO 19906 standard specifies the ice pressure (
GP ) and the global ice load (

G
F ) in Equations (1) and (2). Crushing against a vertical structure, which is perpendicular 

to the contact surface, is referred to as the limit mechanism, as illustrated in Figure 1. 

1

n m

G R

h w
P C

h h

   =    
  

  (1)

G G
F P h w= ⋅ ⋅   (2)

where h is the ice thickness and 
1

h  is a reference thickness. It is typically assigned as 1 m. 

R
C  is the ice strength coefficient, w  is the width of the structure, n  is an empirical co-

efficient equal to (−0.5 + h/5) for h < 1.0 m and equal to −0.30 for h ≥ 1.0 m, and m  is an 

empirical coefficient equal to −0.16 [4]. The analysis includes different structural widths, 

namely 1 m, 4 m, and 10 m. This investigation is part of a probabilistic assessment using 

Monte Carlo simulation. 

 

Figure 1. A vertical-sided structure under sea ice action (side view). MWL: Mean Water Level, Ts: 

Surface temperature, Tw: Water temperature, 
i

v : ice drift velocity, 
w

τ : Air stress [The force per unit 

area exerted by the wind on the surface], 
c

τ : Water stress [The force per unit area exerted by the 

water on the boGom surface]. 

2.2. Sloping Structures 

The primary emphasis of this study is on evaluating ice loading through the applica-

tion of the formula prescribed by the ISO 19906 standard, which is grounded in the theo-

retical framework of elastic beam bending on an elastic foundation [4,12]. Inclined slope 

configurations can be categorized into two primary groups, depicting upward and down-

ward slopes as depicted in Figures 2 and 3, respectively. 

Figure 1. A vertical-sided structure under sea ice action (side view). MWL: Mean Water Level, Ts:
Surface temperature, Tw: Water temperature, vi: ice drift velocity, τw: Air stress [The force per unit
area exerted by the wind on the surface], τc: Water stress [The force per unit area exerted by the water
on the bottom surface].

2.2. Sloping Structures

The primary emphasis of this study is on evaluating ice loading through the appli-
cation of the formula prescribed by the ISO 19906 standard, which is grounded in the
theoretical framework of elastic beam bending on an elastic foundation [4,12]. Inclined
slope configurations can be categorized into two primary groups, depicting upward and
downward slopes as depicted in Figures 2 and 3, respectively.
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Figure 3. Ice–structure interaction in the case of a downward slope.

For downward-sloping structures, the weight of ice fragments or rubble resulting from
ice sheet fractures is treated as submerged weight, accounting for buoyancy effects.

The principal constituents of the global ice loads can be segregated into horizontal
and vertical components. These components are upon the normal force (N) exerted by the
ice on the structure, the angle of inclination (α), and the friction coefficient (µst) charac-
terizing the roughness interface between sea ice and the structure. Equations (3) and (4)
delineate the mathematical expressions for the horizontal ice force (FH) and vertical ice
force (FV), respectively.

FH = N sin α + µstN cos α (3)

FV = N cos α − µstN sin α (4)

The loading ratio (ξ) derived from the horizontal and vertical ice load components is
formulated in Equation (5).

ξ =
FH
FV

=
sin α + µst cos α

cos α − µ sin α
(5)

In the ISO 19906 standard, the horizontal global ice load is categorized into five
components based on the interaction mechanism.

These include:

• Breaking load (HB).
• The load component required to push the sheet ice through the ice rubble (HP).
• The load required in order to push the ice blocks up the slope through the ice rubble (HR).
• The load required to lift the ice rubble on top of the advancing ice sheet prior to

breaking it (HL).
• The load needed to turn the ice block at the top of the slope (HT).

This formulation is expressed by means of Equation (6).

FH =
HB + HP + HR + HL + HT

1 − HB
σf ·lc ·h

(6)

where lc represents the total length of the circumferential crack. The breaking load compo-
nent (HB) is the primary load factor, involving the bending of the ice sheet and influencing
its flexural strength, σf This relationship is expressed as follows:

HB = 0.68·ξ·σf

(
ρw·g·h5

E

)0.25

·
(

w +
π2·Lc

4

)
(7)

Here, ρw represents the density of seawater, g denotes gravitational acceleration, and
w signifies the width of the structure. In ice–structure interactions, the length of the ice
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sheet from the interaction zone to the fracture location is termed the critical length (Lc).
The theoretical expression for the critical length is derived from elastic plate bending,
represented by Equation (8):

Lc =

[
E·h3

12·ρw·g·(1 − ε2)

]1/4

(8)

Here, E represents the elastic modulus and ε denotes the Poisson ratio.
To facilitate the movement of the advancing ice sheet through the ice rubble, the load

component Hp emerges, formulated as follows:

HP = w·h2
r ·µi·ρi·g·(1 − e)·

(
1 − tan θ

tan α

)2 1
2 tan θ

(9)

Here, hr stands for the rubble height, µ denotes the friction coefficient between ice-
to-ice rubble, ρi represents the density of sea ice, and θ signifies the angle that the rubble
forms with the horizontal plane.

The extra force needed to push the ice blocks uphill through the ice rubble is repre-
sented by the load component HR, defined in Equation (10):

HR = w·Pslp
1

cos α − µst sin α
(10)

The parameter P is formulated by Equation (11).

Pslp = 0.5·µi(µi + µst)·ρi·g·(1 − e)·h2
r · sin α·

(
1

tan θ −
1

tan α

)
·
(

1 − tan θ
tan α

)
+ . . .

. . . + 0.5(µi + µst)·ρi·g·(1 − e)·h2
r · cos α

tan α ·
(

1 − tan θ
tan α

)
+ hr·h·ρi·g·

sin α+µst cos α
sin α

(11)

Equation (12) provides the formulation for the load component HL.

HL = 0.5·w·h2
r ·ρi·g(1 − e)·ξ·

(
1

tan θ −
1

tan α

)
·
(

1 − tan θ
tan α

)
+ . . .

. . . + 0.5·w·h2
r ·ρi·g(1 − e)·ξ· tan ϕ·

(
1 − tan θ

tan α

)2
+ ξ·c·w·hr·

(
1 − tan θ

tan α

) (12)

Here, c represents the cohesion of the ice rubble, and ϕ denotes the corresponding
friction angle. The load component HT arises from the rotation of the ice block at the slope’s
summit, as described by Equation (13).

HT = 1.5·w·h2·ρi·g
cos α

sin α − µst cos α
(13)

During the interaction between ice and the sloping structure, the accumulation of ice
fragments substantially enlarges the extent of the rubble pile’s ride-up. Empirical formulas
derived from data collected at the Kemi-I Lighthouse and the Confederation Bridge are
employed to calculate the height of the rubble pile [13]. The elevation of ice ride-up or
rubble pile-up correlates with the water level or the level of the ice surface. At the Kemi-I
Lighthouse, the height of rubble pile-up exhibits a linear increase, detailed in Equation (14).
Meanwhile, at the Confederation Bridge, the rubble pile-up height adheres to a power law
function, as specified in Equation (15).

hr = 3 + 4·h (14)

hr = 7.64·h0.64 (15)
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2.3. Ice Load on Vessel Station-Keeping

The temporal fluctuations in mooring line tension are intricately tied to the dynamics
of ship–ice interactions. Estimating the cumulative ice-induced loads on the vessel during
station-keeping involves employing the resistance method. This method, often referenced
in the ice mechanics literature [14], serves to characterize the comprehensive ice loads
arising from the interaction between the vessel and ice and to compute the propulsive force
necessary for ships navigating through sea ice [15]. For stationary vessels, the method
substitutes ice drift speed [16] for relative ship speed to gauge total mooring loads. The
resistance method encompasses the summation of forces originating from two primary
mechanisms [17]: level ice resistance and ridge resistance, depicted in Figure 4.
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Figure 4. Illustrates the processes of ice and ship interaction mechanisms.

The total ice load, Fice(t), on the vessel comprises the level ice component at the
bow, Fi(t), the ridge component at the bow, Fb(t), and the ice load on the midship area
due to the ridge rubble, Fm(t), and is defined by Equation (16). Currently, hydrody-
namic loading is neglected, as it is considered minor compared to ice loading during the
station-keeping experiment [17].

Fice(t) = Fi(t) + Fb(t) + Fm(t) (16)

Fi(t) represents the resistance component due to the breaking of level ice, which can
be computed using the ice resistance method developed by Riska [14]. Riska derived a
simplified expression based on foundational formulations by Kämäräinen [18], Ionov [19],
and Lindquist [20]. The expression by Riska [14] was calibrated using data from full-scale
experiments conducted on ten Finnish merchant vessels with Baltic ice classes operating in
the same region. Level ice resistance is assumed to be linearly dependent on ship speed, as
depicted in Equation (17).

Fi(t) = C1(t) + C2(t)·v(t) (17)

The coefficient C1(t), which varies with speed, and the coefficient, C2(t), which is
independent of speed, are defined by Equations (18) and (19), respectively.
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C1(t) = f1·
(

2T
B

+ 1
)
·B·Lmhi(t) + (1 + 0.021ϕ)×

(
f2·B·hi(t)

2 + f3·Lb·hi(t)
2 + f4·B·Lb·hi(t)

)
(18)

C2(t) = (1 + 0.063·ϕ)×
(

g1·hi(t)
1.5 + g2·B·hi(t)

)
+ g3·

(
1 +

1.2·T
B

)
· B2
√

L
(19)

The variables hi, B, L, Lb, Lm, and ϕ represent the level ice thickness, ship breadth at
waterline, ship length at waterline, ship length at bow entrance, ship length at midship
parallel, and stem angle, respectively. The parameters f 1, f 2, and f 3 are 230, 4580, and
1470 N/m3, and g1, g2, and g3 are 1890 N/(m2.5/s), 670 N/(m3/s), and 1550 N/(m3.5/s) [14].

The ridge resistance component is calculated using the method of Mellor [21], which
applies Rankine’s plasticity model to characterize the ridge rubble as a cohesive-less
continuum material. The material’s plastic behavior is characterized by the internal friction
angle ϕ. Equation (20) expresses the resistance component [20,22] due to displacing the
ridge keel at the bow section.

Fb = Cp·hr(t)·(0.5B + hr(t) tan ψ cos α)× (µi cos α + sin ψ sin α) (20)

where hr represents the local ridge thickness, ψ is the normal angle to horizontal at the bow,
and Cp is a constant determined by the internal friction angle of the ridge rubble, as defined
in Equation (21).

Cp = (1 − pro)ρ∆·g
1 + sin ϕr

1 − sin ϕr
(21)

where the parameter ρ∆ signifies the density disparity between seawater and ice. p denotes
the porosity of the ridge, typically ranging from 0.25 to 0.4, while the internal friction angle
ϕr varies between 47 and 58 degrees. Sea ice density ranges between 890 and 930 kg/m3,
with a seawater density of approximately 1025 kg/m3 [21].

The midship resistance component Fm of Equation (16) is expressed by Equation (22) [19].

Fm = Cm·T
∫

Lm

(
hr(x) +

(
hr(x)

T
− 0.5

)
·B
)

dx (22)

The integration is conducted over the parallel midship area, extending from the bow
shoulder to the stern shoulder (i.e., Lm), and the term (hr(x)/T – 0.5)·B is included only
when hr(x) > 0.5T·Cm, where Cm is a constant contingent upon Poisson’s ratio, v, for the
ridge rubble, as defined by

Cm = µi·(1 − pro)ρ∆g
ν

1 − ν
(23)

The parameter µi represents the friction coefficient between the ship and the ice. The
variable g denotes the acceleration due to gravity. Poisson’s ratio, v, ranges between 0.21
and 0.3. The limit depth of ridge keels for the Baltic Sea can be estimated using the method
proposed by Hopkins, Hibler III, and Flato [23], as described in Equation (24).

limhr = 17.64
√

hi (24)

2.4. Detection of Load Peaks in Measured Data

The time series data of measured ice-induced mooring loads typically exhibit a se-
quence of sharp peak impulses. The process of ice-induced loading is characterized by three
distinct stages: approach, crushing, and disengagement. During the full-scale experiments,
the ice concentration was exceptionally high, reaching approximately 9.5 out of 10. In cases
of peak ice concentration, the approach stage of the ice-induced mooring load is very brief,
as depicted in Figure 5a. This three-stage pattern of mooring load persists continuously as
the ship hull encounters successive ice edges.
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Figure 5. (a) Illustration of the three stages involved in the ice load generation process. (b) Visualiza-
tion of the process for detecting peaks using prominence.

The peaks in mooring line tension are identified using the peaks prominence method
implemented in a Matlab 2020 toolbox. This method is based on measuring the shortest
vertical distance from each peak to the lowest neighboring valley. Its application helps
exclude small peaks resulting from signal noise in the recorded time series. Figure 5b
demonstrates a sequence of peak detections using this method.

3. Probabilistic Assessment

The probabilistic assessment methodology concerning ice–structure interactions initi-
ates by scrutinizing foundational ice data specific to the site -, including parameters such as
ice thickness, ice strength coefficient, and flexural strength. These essential ice datasets are
then subjected to fitting with probabilistic models. In this study, a spectrum of correlation
coefficients, ranging from minimum to maximum values, is applied in conjunction with
the Nataf model. Monte Carlo simulation (MCS) techniques are subsequently employed to
generate comprehensive samples of random variables for the key parameters.

3.1. Monte Carlo Simulation

Monte Carlo simulation (MCS) is employed to conduct a probabilistic assessment of
the loads induced by ice–structure interactions. For vertical structures, the simulations
involve varying ice thickness and ice strength coefficient values to examine uncertainties
associated with horizontal ice pressure and overall ice loads. In contrast, for sloping
structures, the simulations focus on the flexural strength values of sea ice instead of the ice
strength coefficient. The values for level ice thickness, xi, flexural strength, xj, and the ice
strength coefficient, xk, are generated using the inverse cumulative distribution function
(CDF) of the Normal distribution and Weibull distribution, respectively. These sample
values are derived from random numbers drawn from a uniform distribution, xu, denoted
by U(0,1). The specific sample values are expressed by Equations (25)–(27) below, with the
current sample size set at n = 10,000.

For ice thickness : xi = F−1
thickness(xu) (25)

For flexural strength : xj = F−1
f lexural(xu) (26)

For the ice strength coefficient : xk = F−1
crushing(xu) (27)

This study also explores the implications of introducing correlations between the
principal parameters. In vertical structures, these parameters involve the ice thickness and
ice strength coefficient, whereas in sloping structures, they encompass the ice thickness and
flexural strength.

The condition of independence among the fundamental variables is characterized by
setting the correlation coefficient ρ to zero, which serves as the initial input for the MCS.
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The scatter plot depicting the independent relationship between ice thickness and flexural
strength for sloping structures is depicted in Figure 6a. Similarly, the scatter plot illustrating
the independent relationship between ice thickness and the ice strength coefficient for
vertical structures is shown in Figure 6b. Subsequently, the study explores the effects of
introducing correlations between these variables using the NATAF transformation model.
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3.2. NATAF Transformation Model

Typically, there is a correlation between the parameters that characterize the physical
properties of sea ice. This correlation can be estimated using experimental data. The
NATAF transformation model is capable of representing this correlation structure to gener-
ate the associated joint probability density and distribution functions [24]. The fundamental
assumption of the NATAF transformation model is that the basic random variables repre-
senting the physical properties of sea ice can be derived by transforming the corresponding
Gaussian variables zi, zj, zk and vice versa, as described by Equations (28)–(30).

zi = Φ−1(Fthickness(xi)) (28)

zj = Φ−1
(

Ff lexural
(
xj
))

(29)

zk = Φ−1
(

Fcrushing
(
xj
))

(30)

The correlation coefficient ρ0,ij between the two Gaussian variables zi and zj is related
to the correlation coefficient ρij between the thickness xi and flexural strength of sea ice xj.
The correlation between the random variables representing the physical parameters, i.e., xi
and xj, is given by:

ρij =

∞∫
−∞

∞∫
−∞

(
xi − µi

σi

)( xj − µj

σj

)
φ2
(
zi, zj, ρ0,ij

)
dzidzj (31)

where E(xr) = µr, Var(xr) = σ2
r , r = i, j, or r = i, k; and φ2 is the bivariate standard normal

probability density function as defined in Equation (32).

φ2
(
zi, zj, ρ0,ij

)
=

1

2π
√

1 − ρ2
0,ij

exp

− z2
i + z2

j − 2·ρ0,ij·zi·zj

2·
(

1 − ρ2
0,ij

)
 (32)

In the Gaussian plane, the uncorrelated variables zi and zj can be converted into
correlated variables ẑ1 and ẑ2, as specified in Equation (33).
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[
ẑi
ẑj

]
=

[
1 0
ρ
√

1 − ρ2

][
zi
zj

]
(33)

For vertical structures, the parameter xk, representing the ice strength coefficients
in Equations (28) and (29), is employed in lieu of the flexural strength of sea ice, xj. The
NATAF transformation model remains valid across the entire spectrum of the correlation
coefficient (i.e., from −1 to 1). This study investigates the influence of the correlation
between key parameters of ice loading on vertical and sloping structures. Five distinct
values for the correlation coefficient ρ are utilized: [−0.9, −0.5, 0.0, 0.5, 0.9], encompassing
the full range from minimal to maximal values. The extreme correlation coefficient values
are confined to −0.9 and 0.9 due to numerical constraints inherent in the transformation
process (i.e., the transformation matrix in Equation (33) becomes singular as the absolute
value of the correlation coefficient nears 1.0).

3.3. Implementation of Extreme Value Analysis

The extreme mooring loads for each ice management scheme are estimated based on
full-scale measurements. The observed peak mooring loads at the Magne Viking (MV)
are treated as random variables for analysis. The sample values of tension peak loads,
denoted as t1,. . .,tN, are assumed to be independent realizations from the same underlying
probability distribution, F(t), which is used to establish the extreme value distribution. The
probability distribution for the maximum mooring load, η, corresponding to a sample size
N, is given in Equation (34).

P(η) = Prob(t1 ≤ η, . . . , tN ≤ η) (34)

Assuming the sample values are independent and identically distributed, Equation (34)
can be simplified as shown in Equation (35).

P(η) =
N

∏
i=1

Prob(ti ≤ η) = [Ft(η)]
N (35)

Here, N represents the count of ice load peak events during the specified period for
each ice management scheme.

3.3.1. The Peaks-over-Threshold and Block Maxima Methods

In this investigation, two established methodologies are employed to forecast extreme
loads: the peaks-over-threshold (POT) and block maxima (BM) methods. Initially proposed
by [25], the POT method entails identifying peaks in mooring line loads that surpass a
specified threshold, facilitating the fitting of an initial distribution, F(t). The non-exceedance
probability F̂(n) is determined under the no-bias condition [26], indicating the occurrence
of n peaks out of a total NTotal, as detailed in Equation (36).

F̂(n) = 1 − n − 0.44
NTotal + 0.12

for n = 1, 2, 3, . . . , NTotal (36)

For the BM method, the peak mooring load values within a fixed-duration time win-
dow are initially fitted with a suitable distribution model. This fitted distribution is then
utilized in Equation (36) to derive the extreme value distribution. The extreme value correspond-
ing to a specified exceedance probability, λ, is subsequently determined using Equation (37).

η = F(n)−1
[
(1 − λ)

1
NBox

]
(37)

Here, the exceedance probability level λ aligns with a specific return period, as de-
fined by Equation (37). Furthermore, NBox represents the division of the measurement
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record into blocks. Figure 7 depicts the respective peak values utilized in both POT
and BM methodologies.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 13 of 35 
 

 

non-exceedance probability   F n  is determined under the no-bias condition [26], indi-
cating the occurrence of n  peaks out of a total TotalN , as detailed in Equation (36). 

   0.441
0.12Total

nF n
N


 


 for  n = 1,2,3,…, TotalN .  (36)

For the BM method, the peak mooring load values within a fixed-duration time win-
dow are initially fiĴed with a suitable distribution model. This fiĴed distribution is then 
utilized in Equation (36) to derive the extreme value distribution. The extreme value cor-
responding to a specified exceedance probability,  , is subsequently determined using 
Equation (37). 

   
11 1 BoxNF n      

  (37)

Here, the exceedance probability level   aligns with a specific return period, as de-
fined by Equation (37). Furthermore, BoxN  represents the division of the measurement 
record into blocks. Figure 7 depicts the respective peak values utilized in both POT and 
BM methodologies. 

  
(a) (b) 

Figure 7. Illustration of the POT and BM methods. (a) Peaks-over-threshold method (POT). (b) Block 
maxima method (BM). 

To forecast the short-term extreme mooring load during the full-scale experiment, 
the exceedance probability  , linked to a specific number of operational repetitions, can 
be derived from the return period relative to the total days under consideration, dayT  
(such as the number of days in a year). This relationship is expressed as follows: 

1
24

day
test

R T
T

 
 

  
(38)

Here, testT  denotes the duration of a specific full-scale test. In this context, R  represents 
a reduction factor indicating the proportion of time relative to dayT  during which the op-
eration is conducted. For estimating extreme values, the Gumbel distribution is commonly 
utilized as the initial model, primarily because it is assumed to be the appropriate asymp-
totic distribution for the given scenario, with liĴle additional justification typically pro-
vided. The cumulative distribution function (CDF) and the probability density function 
(PDF) of the Gumbel distribution are expressed by Equations (39) and (40), respectively: 

Figure 7. Illustration of the POT and BM methods. (a) Peaks-over-threshold method (POT). (b) Block
maxima method (BM).

To forecast the short-term extreme mooring load during the full-scale experiment, the
exceedance probability λ, linked to a specific number of operational repetitions, can be
derived from the return period relative to the total days under consideration, Tday (such as
the number of days in a year). This relationship is expressed as follows:

λ =
1

24
Ttest

·R·Tday
(38)

Here, Ttest denotes the duration of a specific full-scale test. In this context, R represents a
reduction factor indicating the proportion of time relative to Tday during which the operation
is conducted. For estimating extreme values, the Gumbel distribution is commonly utilized
as the initial model, primarily because it is assumed to be the appropriate asymptotic
distribution for the given scenario, with little additional justification typically provided.
The cumulative distribution function (CDF) and the probability density function (PDF) of
the Gumbel distribution are expressed by Equations (39) and (40), respectively:

FGumbel(t) = exp
{
− exp

[
−
(

t − β

α

)]}
(39)

fGumbel(t) =
1
α

exp
(

t − β

α

)
· exp

{
− exp

[
−
(

t − β

α

)]}
(40)

The parameters β and α represent the location and scale of the Gumbel distribution.
These parameters can be determined, for instance, through methods such as least squares
fitting on probability paper, method of moments, or maximum likelihood estimation.
Additionally, the scale parameters of the BM method can be related to the scale parameters
of the POT method, as shown in Equation (41).

βPOT = βBM + ln(NBox)·αBM (41)

3.3.2. The ACER Method

The ACER method provides a computational framework suitable for investigating
extreme mooring loads across various ice management strategies. One of its key advantages
is its capacity to function as a robust diagnostic tool, allowing for the verification of the
inherent extreme value distribution within sampled datasets. This approach generates a
nonparametric representation of the distribution, enabling an assessment of the applicability
of asymptotic distributions commonly used in analyzing extreme value data extracted
from time series. A fundamental aspect of the ACER method involves the sequence of
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ACER functions [26], which vary in order k and converge towards the extreme value
distribution inherent in the data as k increases. It is adaptable for analyzing both stationary
and non-stationary datasets of stochastic processes. For a more detailed exploration of
the principles and advancements in extreme value estimation using the ACER method,
comprehensive discussions can be found in Naess and Gaidai [27] and Naess, Gaidai, and
Karpa [28]. Further guidance on employing the ACER method for data analysis is available
in Naess, Gaidai, and Karpa [28], where Equation (42) defines the formulation of the target
probability distribution for extreme value analysis using this method.

P(η) ≈ exp(−(N − k + 1))·ACERk(η) = exp(−(N − k + 1)·ε̂k(η)) (42)

The symbol ε̂k(η) represents the empirical ACER function of order k, estimated from
the dataset where N denotes the total number of data points in the sampled time series.
Generally, increasing the order k of the ACER function enhances accuracy, although the
optimal k value for precise estimation heavily relies on the dependence structure within
the time series. In cases of independent data, k = 1 suffices. For dependent data, a
reasonable engineering approximation is achieved with k = 2 aligning with the classical
Poisson assumption of independent upcrossings at high response levels. For extrapolating
data akin to that examined in this study, the ACER functions are approximated using the
following set of parametric functions:

εk(η) ≈ qk· exp
{
−ak·(η − bk)

ck
}

, η ≥ η0 (43)

The coefficients ak, bk, ck and qk are constants that vary with the order k, and η0
represents a threshold beyond which Equation (43) is deemed applicable. The coefficients
ak, bk, ck and qk are constrained to ak > 0, bk ≤ η0 and ck > 0. It is noteworthy that for this set
of parametric functions, the underlying asymptotic extreme value distribution conforms
to the Gumbel type, where ck = 0. However, when fitting these functions to actual data,
which typically do not exhibit asymptotic behavior, the parameter ck seldom equals zero.
Thus, assuming the asymptotic Gumbel distribution for extremes in such scenarios would
be questionable. In this study, we employ the ACER method specifically to evaluate the
validity of this assumption for our dataset.

4. Case Study
4.1. Probabilistic Assessment of a Fixed Offshore Structure under Ice Loading

In this section, the outcomes of analyzing ice loads on structures using the ISO standard
are presented. The approach to analyzing ice load differs between vertical and sloping
structures primarily because the failure mechanisms of sea ice vary between the two cases:
crushing mode for vertical structures and flexural mode for sloping structures.

4.1.1. Vertical Structures

As part of the probabilistic assessment, the Normal distribution and the Weibull
distribution are found to provide suitable fits for the level ice thickness and ice strength
coefficient. The parameters µ (mean) and σ (standard deviation) for the Normal distribution
are 0.662 m and 0.175 m, respectively. For the Weibull distribution, these parameters
(shape and scale) are determined as 4.504 and 0.446, respectively [6]. The uncertainty in
ice loading on vertical structures considers only the statistical variability of the level ice
thickness and ice strength coefficient, excluding uncertainties due to the exponents n and
m in Equation (1). The ice pressure and global ice force, as defined by ISO standards,
are presented in Figure 8. The influence of correlation between ice thickness and ice
strength coefficient on ice pressures and global ice forces is investigated using the NATAF
transformation model. Numerical samples based on the NATAF transformation model for
a correlation coefficient of −0.5 are depicted in Figure 9, showing data points where scale
effects are significant. More negative correlation coefficients tend to result in more data



J. Mar. Sci. Eng. 2024, 12, 1458 14 of 32

points in regions where scale effects are notable, although these points do not correspond
to high values of global ice force.
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Figure 9. Examples of average ice pressures and global ice forces utilizing the NATAF transformation
model with ρ = −0.5 and w = 1 m.

Samples generated through MCS are utilized to fit distributions, enabling a detailed
examination of the statistical properties of global ice loads. Figure 10 illustrates an example
plot demonstrating the fitting of the Weibull distribution to characterize the average ice
pressure and global ice forces exerted on vertical structures.
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Figure 10. Illustration of linear regression applied to fit average ice pressure and global ice forces
for a vertical structure using the Weibull distribution approach (ρ = −0.5 and width = 1.00 m). (The
independent variable, x, represents ice pressure (in MPa) or global ice force (in MN)).

The correlation coefficient between ice thickness and the ice strength coefficient tends
to flatten the shape of the average ice pressure probability density function, indicating
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increased uncertainty. Conversely, for global ice forces, a decrease in the correlation
coefficient leads to narrower probability density functions. Figure 11 presents the Weibull
probability density functions (PDFs) of ice pressure and global ice loading across various
correlation levels and structural widths.
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Figure 11. Variations in the correlation levels and structural widths impact the correlations between
average ice pressure and global ice loads for vertical structures, which depend on ice thickness and
crushing strength.

The impact of different correlation levels on the average ice pressure and global ice
forces can also be examined by comparing their CDFs across various values of structural
width and correlation coefficient. These trends mirror those observed in the PDFs, as
depicted in Figure 12.
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Figure 12. The CDFs of Weibull distributions for ice pressures per square meter and global ice forces
in the context of vertical structures.

4.1.2. Sloping Structures

For inclined structures, according to the ISO 19906 standards (Petroleum and natural
gas industries—Arctic offshore structures) [4], global ice loads show a notable increase
with steeper slopes, whether upward or downward. Horizontal ice loads exhibit greater
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magnitudes than vertical ones, with horizontal values being more responsive to slope
angles compared to vertical values, as evident in Figure 13.
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Figure 13. Ice loads in both horizontal and vertical directions on inclined structures (upward left and
downward right) vary with ice thickness, flexural strength, and slope angle.

Vertical and horizontal ice load samples are created using MCS, where ice thickness
and flexural strength serve as fundamental variables. These variables are then inputted
into the formulas outlined in the ISO document. By employing the NATAF transforma-
tion model, the interdependence between these variables, as indicated by the correlation
coefficient ρ, is taken into consideration. Scatter plots illustrating the relationships between
horizontal and vertical loads for various correlation coefficients between ice thickness and flexu-
ral strength on upward and downward slopes are depicted in Figures 14 and 15, respectively.
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Figure 15. Samples of the vertical and horizontal ice forces based on an application of the NATAF
transformation model for ρ = −0.5 and sloping angle = 120 deg. (downwards direction).

Steeper slope geometries result in increased magnitudes and uncertainties in global
horizontal ice loads. The primary contributing factor to these loads is the breaking load
component HB, which involves the bending of the ice sheet and subsequent flexural failure
of sea ice. Both global vertical and horizontal ice loads exhibit similar variations in trends.
Generally, the mean values of ice loading show minimal change across different sloping
angles. Additionally, a stronger correlation between ice thickness and flexural strength
leads to greater dispersion in the PDFs, indicating higher statistical uncertainty.

Different probabilistic models have been tested to determine the best fit for the cu-
mulative distribution of horizontal and vertical ice forces. The analysis revealed that the
Weibull distribution is the most suitable model for both components of the global ice force.
Figure 16 presents examples of how the Weibull distribution fits the PDFs for horizontal
and vertical ice forces.
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Figure 16. Examples of linear regression to fit the cumulative distributions of horizontal and vertical
ice forces using Weibull probability paper (with a correlation coefficient of ρ = −0.5 and a sloping
angle of 120 degrees).

Gentler slopes lead to a notable decrease in the magnitude of horizontal loading due
to a shift in sea ice failure from crushing to bending modes. The variability in global ice
loads in both upward and downward directions can be discerned from the respective
PDFs depicted in Figures 17 and 18. These figures illustrate that the correlation coefficient
between ice thickness and flexural strength significantly influences the PDF shapes, which
flatten increasingly with higher correlation coefficients, observed in both upward and
downward slopes.
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Figure 18. Weibull probability density functions for vertical ice forces on inclined structures vary
with different correlation coefficients and sloping angles.

The impact of slope angles on the uncertainty of horizontal ice loading is notable.
Steeper slopes exhibit increased dispersion and uncertainty in global horizontal ice forces,
as depicted in Figure 17. Conversely, slope angles have minimal influence on vertical ice
forces, which is evident from the PDF shapes across various slope angles shown in Figure 18.

Moreover, the shapes of the CDFs in Figure 19 also depict the results of the uncertainty
assessment regarding ice loading on sloping structures.
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4.2. Extreme Value Analysis of Ice Loading on Fixed and Floating Offshore Structures
4.2.1. Ice Management Operations

Ice management systems are typically utilized during the operations of ships and
floating structures in icy regions to mitigate ice loading [8,29]. In the current experiments,
an icebreaker was deployed to break ice according to various ice management strategies.
The selection of vessel types and equipment for the field experiments was based on previous
experience with complex marine operations under similar conditions. Two vessels were
involved in the experiments: an ice-breaking vessel and a stationary supply vessel. Both
vessels have extensive operational history in Arctic conditions and are equipped with diesel
mechanical shaft line systems. The vessels feature nozzle-mounted propellers, with shaft
generators powering electrical tunnel thrusters and retractable azimuth thrusters in the
bow [30]. Magne Viking (MV) is a standard offshore vessel with a bulbous blunt shape,
as depicted in Figure 20. The bow shape of the Tor Viking (TV) vessel is optimized for
icebreaking and ramming, as illustrated in Figure 21.
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4.2.2. Ice Breaker Deployment Patterns for Ice Management

The primary objective of ice management (IM) operations is to minimize the ice load
on vessels, ensuring they can maintain station and conduct offshore operations effectively.
The most effective strategy for reducing ice loads involves creating a uniform channel to
decrease the size of moving ice floes using an icebreaker following systematic patterns [8].
To optimize performance, these patterns can be adjusted based on factors such as the
speed, thickness, and turning characteristics of incoming ice, as well as the maneuvering
capabilities of the icebreaker.

Four distinct strategies for ice management were implemented during the full-scale
trials, as depicted in Figure 22. The corresponding measurement data are currently under
analysis to determine the statistical characteristics of extreme mooring forces. These
selected ice management patterns were planned using the ship’s Electronic Chart Display
and Information System (ECDIS), which proves particularly advantageous in low-visibility
conditions [31]. The most challenging aspect of ice management operations occurs during
the initial pattern, primarily due to the unbroken ice at this stage. Consequently, the vessel
operated at a relatively low speed during the first turn, resulting in a longer time required
for the initial pass compared to subsequent maneuvers.
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Figure 22. Patterns corresponding to the different ice management schemes applied during full-scale tests.

The initial ice management scheme involves the square updrift pattern, depicted in
Figure 22 (Case 1), where the icebreaker cuts through the sea ice in a straight line in the
updrift direction. This pattern allows the icebreaker to gain speed along a straight path
before executing sharp 90-degree turns at transition points. However, the combination
of high speeds and sharp turns in the square pattern can lead to excessive vessel rolling.
The second pattern is the round circular track, illustrated in Figure 22 (Case 2), where
the icebreaker circles around the stationary supply vessel. This pattern is suitable for
low drift speeds to minimize the size of outgoing floes and generate a large amount of
brash ice. The third pattern involves circular updrift tracks, shown in Figure 22 (Case 3),
which facilitate pushing ice into previously cut tracks, significantly reducing resistance
during turns. The icebreaker typically achieves speeds of 10–12 knots after initiating
ice management operations with this circular approach, which proves effective in most
ice conditions encountered during the trials, except when ice drift speeds are high and
conditions severe [31,32]. Figure 22 (Case 4) demonstrates the linear updrift track, a novel
ice management scheme implemented for station-keeping trials.

The schedule of various tests is detailed in Table 1. There are slight variations com-
pared to the originally planned mission schedule. The timings in Table 1 reflect the actual
start and completion times recorded during the ice management operations.
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Table 1. The schedule for the different ice management (IM) operations.

Ice Management Operation Date Time

Square updrift pattern 9 March 2017 11:00:00–13:15:00
Round circular pattern 12 March 2017 10:00:00–14:25:00
Circular updrift pattern 16 March 2017 19:40:00–21:40:00
Linear updrift pattern 16 March 2017 21:40:00–00:30:00

4.2.3. Weather Conditions

During the field experiment, various meteorological and oceanographic conditions
such as air temperature, wind speed, wind direction, ice draft, ice drift speed, and ice
concentration were recorded. Figure 23a illustrates the geographical positioning of the IPS
stations in the Baltic Sea. Underwater ice profiler sensors (IPS) were strategically deployed
and anchored to the seabed, as depicted in Figure 23b. For detailed information regarding
the IPS stations, refer to Teigen, Lindvall, Samardzija, and Hansen [33]. These IPS stations
were positioned approximately 35–35 m below the water surface to measure sea ice draft, as
shown in Figure 23b. Acoustic Doppler Current Profilers (ADCPs) were utilized to measure
ice drift speed and direction. Additionally, ice drift beacons were deployed on the surface
of the ice to monitor ice drift velocity, as illustrated in Figure 23c.
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Figure 23. (a) The spatial positions of the ice profilers within the Baltic Sea, (b) Stations for ice profiler
sensors (IPS), and (c) Beacons for monitoring ice drift (DB) [34].

The station-keeping trials (SKTs) in the drifting ice project conducted a full-scale
experiment using the icebreaker TV for ice management, aiming to break sea ice updrift
from the stationary supply vessel to reduce ice loads. The experiment monitored ice drift
locally using ADCP measurements and an ice drift beacon installed on the sea ice [33].
The ice rose diagram [34] illustrates the speed and direction of sea ice drift during these
operations. Figure 24 shows the paths taken by the icebreaker and supply vessel for each
operational pattern, delineated by latitude and longitude. Four different ice management
schemes were implemented. The actual paths of the icebreaker differed slightly from
planned routes due to variations in ice thickness, ice drift speed, and the vessel’s ice-
breaking capabilities.

The mooring tension time series for each IM operation were captured using a load
cell, recording data every second. Additionally, during instances where the mooring
load exceeded 100 tons, the thrusters of the supply vessel MV were engaged for dynamic
positioning-assisted mooring (DPAM), as depicted in Figure 25.
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The peaks in the mooring line and thruster loads were calculated using the peaks
prominence method to filter out local peaks caused by signal noise. A minimum prominence
value of 2 tons was applied for peak detection in the analysis. The results of peak detection
in the mooring load time series for various IM operation cases are shown in Figure 26.
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Figure 26. Mooring and thruster forces for different ice management schemes.

The illustration in Figure 27 demonstrates the use of active thrusters to assist the moor-
ing line when encountering an ice ridge. The load cell, which is the weakest component in
the mooring line system, has a maximum capacity of approximately 150 tons. In this study,
the analysis of short-term extreme mooring loads incorporates the total loads from both the
mooring line and the thrusters.
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4.2.4. Estimation of Global Ice Loading

The global ice loads on the vessel are computed using the ice resistance method, utiliz-
ing the time series data of ice thickness and ice drift speed. These loads are then compared
with the recorded mooring loads observed during ice management operations. The ice
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resistance method, however, does not consider the impact of ice management, resulting
in a systematic difference between the two datasets, as evident from the histograms in
Figure 28. Additionally, findings from the SKT 2017 project by Fenz, Younan, Piercey,
Barrett, Ralph, and Jordaan [35] indicate that well-organized ice management operations
substantially reduce the local ice pressure on the ship’s bow during full-scale experiments.
Table 2 compares the statistical parameters of the measured and calculated ice loads. It
is important to note that the differences in the calculated loads across different cases are
solely due to variations in ice thickness and drift speed, without accounting for differences
in ice management schemes. The statistical variability of the calculated load is estimated
based on the statistical properties of the input variables (i.e., ice thickness and drift speed).
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Table 2. The statistical parameters of the mooring loads for each IM scheme.

Case
Measured Load [Ton] Calculated Load [Ton]

Mean STD COV % Mean STD COV %

1 32.22 17.03 52.85 24.92 16.11 64.63
2 35.08 17.99 51.29 41.63 18.99 45.61
3 34.89 20.15 57.76 55.13 26.88 48.76
4 39.07 14.69 37.60 52.30 27.02 51.67

4.3. Extreme Value Estimation

In the context of ship and offshore structure design, extreme loading conditions play
a critical role, especially in cold regions where sea ice loads dominate. Uncertainty in
ice loading arises primarily from variations in sea ice properties during its formation [6].
The application of extreme value theory allows for the prediction of maximum ice loads
on mooring lines by analyzing key parameters such as ice thickness and drift speed.
Conversely, the extreme mooring loads can be directly estimated from measured peak
loads in recorded time series data. This research focuses on deriving extreme mooring
loads based on such peak measurements. For detailed data on ice conditions and metocean
parameters during the SKT project, refer to Teigen, Lindvall, Samardzija, and Hansen [33].

4.3.1. The POT and PM Methods

The investigation focuses on assessing extreme mooring loads using peak values
derived from the mooring load time series. This study contrasts the results obtained from
employing two distinct methodologies: the POT approach and the BM method. In the
context of the BM method, data points corresponding to peak values are subjected to fitting
procedures involving various probabilistic models to identify an optimal parent distribution
for subsequent extreme value analysis. Notably, the Gumbel distribution emerges as the
most suitable model for characterizing extreme mooring load peaks under both the POT and
BM methodologies. Illustrative instances of fitting mooring load peaks with the Gumbel
distribution, particularly for scenarios involving the Square updrift pattern, are visually
presented in Figure 29.
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Figure 29. Illustrates: (a) an instance of data fitting using the POT method, and (b) an instance of
data fitting using the BM method for case 1: Square updrift pattern.

The analysis of extreme mooring load distributions derived from the POT and BM
methods reveals their sensitivity to the chosen threshold value and the duration of the time
window employed. Figure 30a depicts examples of PDFs representing extreme mooring
loads for case 3, with variations in the threshold value. Careful deliberation is necessary
when selecting the threshold value for the POT method, as higher thresholds diminish the
dataset size available for statistical fitting purposes.
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Figure 30. (a) Examples of extreme mooring load PDFs for the circular updrift pattern with varying
threshold values for the POT method, (b) examples of extreme mooring load PDFs with varying time
window lengths for the BM method.

The temporal scope employed in the analysis of extreme mooring loads extends
beyond that typically applied to assess the direct impacts of extreme ice loads on the ship
hull, a timeframe usually ranging from 1 to 5 min [36,37]. This discrepancy arises because
mooring load peaks result from the cumulative influence of all local ice loads acting on the
ship hull. During station-keeping operations, when the ship initially encounters ice with
minimal speed, the intervals between mooring load peaks are inherently longer compared
to those between the peaks of local ice loads. In the present full-scale experimental setup,
the duration of the time window used in the BM method ranges approximately from
3 to 20 min. Sensitivity analyses concerning the duration of this time window for the BM
method, specifically for case 3 (the circular updrift pattern), are illustrated in Figure 30b.

The PDFs derived from the POT method generally yield higher values compared to
the BM method for extreme peak loads, with the exception of case 3 (Suyuthi, Leira, and
Riska [36]). Figure 31 illustrates a comparison of PDFs for extreme mooring loads obtained
by the POT and BM methods across various ice management operation patterns.
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Figure 31. Comparison of extreme mooring load PDFs obtained by the POT and BM methods for
each pattern of IM operation.

During the full-scale measurements, the mean values and standard deviations of
the thickness of level ice, ice draft, and ice drift speed are documented as depicted in
Figure 32a, 32b, and 32c, respectively. Statistical parameters for the level ice thickness and
ice draft/ridges were computed based on the recorded IPS time series. However, the IPS
records for ice draft do not differentiate between level ice thickness, consolidated layers, or
ice rubble. Therefore, the maximum values of the past decade from drilling data concerning
level ice thickness [38] in the Baltic Sea were utilized to distinguish between data pertaining
to level ice thickness and ice draft/ridges in the time series.
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Figure 32. (a) The thickness of level ice during ice management activities. (b) The depth of the
keel in the ice draft/ridge during ice management activities. (c) The speed of ice drift during ice
management activities.

The highest-level ice thickness and ice draft occurred during IM operations for cases 3
and 4, respectively. Case 1, characterized by the square updrift pattern, experienced the
highest ice drift speed, while the mean values of ice thickness and ice draft were lowest in
this scenario.

The outcomes from the POT and BM methods regarding short-term extreme mooring
loads reveal comparable patterns, demonstrating consistency in the results derived from
these approaches. Both methods suggest an increased magnitude for the projected long-
term extreme mooring loads across various return periods. This increase is adjusted using
a reduction factor, R, specific to each ice management operation, as illustrated in Figure 33.
The comparative analysis highlights that while the POT and BM methods generally align
in their assessment of short-term extremes, there is a notable divergence in their long-term
projections. The greatest disparity between the long-term extreme mooring loads estimated
by the two methods is approximately 25 percent.
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4.3.2. The ACER Method

The entire recorded time series for each Ice Management (IM) scheme was used to
calculate ACER functions with k = 2, as detailed in Section 3.3.2. The resulting empirical
ACER functions, ε̂k(η) for k = 2, were plotted against the amplitudes of mooring loads for
each case in Figure 34. It is noteworthy that a Gumbel extreme value distribution would
manifest as a straight line on these plots. Despite the limited quantity of available data, the
plots of ACER functions suggest that the Gumbel distribution provides a reasonably accu-
rate approximation of the extreme value distribution inherent in the data. This conclusion
offers a robust foundation for its utilization in the BM method applied in this study, even
with the constraints posed by limited data availability.
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Figure 34. Plot of barrier levels η versus ACER functions εk(η) for k = 2 on the logarithmic scale for
different ice management schemes.

When the Gumbel distribution is considered an appropriate approximation for the
extreme value distribution, the ACER and BM methods should, in theory, yield comparable
results if properly implemented. However, in instances of limited data, significant uncer-
tainty is associated with the estimates obtained from these various methods. Due to the
BM method’s straightforward application and its confirmed applicability to our dataset,
we have selected it as the reference method for this study.
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5. Discussion
5.1. Probabilistic Assessment of Fixed Offshore Structures

Sea ice properties inherently exhibit significant uncertainty. The wide range between
maximum and minimum parameter values used in calculating ice loading suggests that
correlations between these parameters—whether high–high, high–low, or low–low—are
likely to have a notable impact, a factor addressed in this study. It identified correlations
among critical design parameters for both vertical and sloping structures. To integrate
this understanding into our probabilistic assessment, it employs multivariate probability
density functions with explicit correlation coefficients, alongside MCS techniques. This
approach enables us to quantify how these correlations affect computed ice loads as per
the ISO standard formulation. To ensure computational robustness, correlation coefficients
range from −0.9 to 0.9, encompassing the full spectrum of possible values from strongly
negative to strongly positive.

5.1.1. Vertical Structures

The level of uncertainty associated with ice loads is quantified using standard devi-
ation, SD, where higher SD values indicate greater uncertainty. Additionally, the shapes
of PDFs and CDFs provide insights into uncertainty levels; flatter PDFs and gentler CDF
slopes suggest higher uncertainty.

5.1.2. Sloping Structures

In the case of sloping structures, parameters such as level ice thickness, rubble pile-up
height, and flexural strength become crucial for estimating ice loading, particularly in
scenarios involving thin ice, narrow structures, and no snow cover. This study utilized
empirical formulas derived from data collected at the Kemi Lighthouse and Confederation
Bridge to estimate the PDFs of accumulated rubble pile-up heights based on level ice
thickness. Consequently, these conservative values from the Confederation Bridge data
were adopted to compute global forces.

5.2. Extreme Value Analysis of Mooring Lines for Stationary Keeping in Ice

According to the offshore standard DNV-OS-H101 [39], for general marine operations,
the design return period accepted depends on the reference period of field operations.
For our current experiment, we focused on a one-week operation for the full-scale test,
excluding installation, dynamic positioning tests, and others. The minimum accepted
design return period for a one-week operation is three months, utilized specifically for
short-term extreme value analysis. However, it is important to note that this offshore
standard was initially designed for operations conducted in open water.

For a three-month return period, considering a reduction factor R corresponding to an
operation frequency of 0.375, case 4 (representing the linear updrift scheme) resulted in
the highest extreme mooring forces: 320 tons for POT, 318 tons for ACER, and 298 tons for
BM. These values exceed both the load cell capacity (150 tons) and the minimum breaking
load (MBL = 223 tons) of the steel wire. Conversely, the lowest extreme mooring load
occurred in case 3, the circular updrift pattern, yielding estimates of 227 tons for POT,
225 tons for ACER, and 274 tons for BM. To align with the load cell capacity and the steel
wire’s minimum breaking load, reduction factors R of approximately 0.0025 and 0.05 are
necessary, respectively.

Notably, during case 2, the recorded maximum ice load exceeded 150 tons when an
ice ridge passed the supply vessel, as depicted in Figure 28’s time series data. During this
period, mooring relied on the vessel’s thrusters. This underscores the inadequacy of the
current low value of the operational reduction factor R, particularly for scenarios lacking
thruster assistance.

The findings reveal that the highest efficiency of IM operations when considering
average unit ice momentum occurs in case 3: the circular updrift pattern. This observation
aligns with the relative efficiency determined by considering only the ice thickness/draft.
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However, the efficiency for case 1, the square updrift pattern, increases when momentum
is taken into account due to the highest ice drift speed in this scenario, which elevates the
average sea ice momentum. Conversely, the lowest efficiency for the momentum criterion is
observed in case 2, which slightly diverges from the results obtained by solely considering
the ice thickness/draft.

In case 2, where the icebreaker follows a round circular pattern, it covers the entire
vicinity around the supply vessel, MV. As a result, the effectiveness of icebreaking in the
upstream direction of the ice drift decreases due to the shorter distance over which the
sea ice is cut. This reduction in travel distance tends to lower the efficiency of the ice
management operation. However, the round circular pattern offers advantages in regions
characterized by rapidly changing directions of ice drift.

The short-term extreme mooring loads estimated by the POT, ACER, and BM methods
for each IM scheme are normalized based on the maximum observed mooring load, as
shown in Figure 35. The highest normalized values were observed for case 4, the linear
updrift pattern, resulting in 3.1, 3.0, and 2.8 for the POT, ACER, and BM methods, respec-
tively. Typically, the maximum loads derived from simulations of severe environmental
conditions are used for mooring system designs. The normalization results suggest a no-
table increase in long-term extreme values compared to maximum loads observed during
short-term operations.
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Typically, there are several international standards for mooring design, such as DNVGL
(DNVGL, 2015), GL Noble Denton (Denton, 2013), American Bureau of Shipping (ABS)
(ABS, 2018), Bureau Veritas (Veritas, 2005), etc. The safety factors in the international design
standards are introduced in order to cover the uncertainty related to the estimated extreme
loads and structural resistance.

Usually, there exist multiple global standards governing mooring design, such as
DNVGL [41], American Bureau of Shipping (ABS) [42], GL Noble Denton [43], Bureau
Veritas [44], etc. The safety margins prescribed by international design standards serve to
mitigate uncertainties linked to estimated extreme loads and structural resilience.

Moreover, the mooring system includes a weak link at the load cell and a safety wire
intended to disengage in uncontrollable scenarios, thus bolstering operational safety. It is
noteworthy that extreme value analysis is pivotal in mooring system design for forecasting
the maximum expected loading conditions during operations.

This study quantifies safety factors in terms of reserve strength capacity, defined as
the ratio between the minimum breaking load (MBL = 611 tons) of the main mooring chain
(76 mm type R4) and the maximum extreme mooring load. The mooring line exhibits a
reserve strength of approximately 1.9 (MBL/maximum extreme mooring load = 611 tons). It
is observed that the reserve strength capacity of the main mooring chain falls slightly below
the safety factors stipulated by key design standards such as DNVGL (safety factor = 1.9),
ABS (safety factor = 2.25), GL Noble Denton (safety factor = 1.67), and Bureau Veritas
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(safety factor = 1.67). For longer return periods (e.g., 1 year), this suggests the necessity for
stronger mooring lines.

6. Conclusions

A probabilistic evaluation of ice-structure interaction loads, employing MCS meth-
ods, was undertaken based on the ISO standard formula. The study encompassed two
structural configurations: vertical and sloping. Correlation coefficients between the ice
strength coefficient and ice thickness, and between flexural strength and ice thickness, were
estimated to assess their impact on uncertainties associated with ice loads across varying
correlation coefficient values.

The analysis demonstrated that increasing correlation coefficients substantially height-
ened both global ice forces and associated uncertainties compared to scenarios with
zero correlation:

• For vertical structures, a transition from a correlation coefficient of 0 to 0.9 resulted in
approximately 10% and 40% increases in mean values and standard deviations.

• Sloping structures showed approximately 20% and 60% increases in mean value and
standard deviation of horizontal and vertical global forces, respectively, as correlation
coefficients increased from 0 to 0.9.

• Higher sloping angles correlated with an increased standard deviation (uncertainty)
of global forces.

• Changes in slope angle exerted a more pronounced effect on mean values and standard
deviations of global forces in the horizontal direction compared to the vertical direction.

Short-term analysis of extreme mooring loads from full-scale measurements under
various ice management strategies was undertaken. These strategies encompass square
updrift, round circle, circular updrift, and linear updrift patterns. The experiment mon-
itored mooring line tension via a load cell, with continuous recording of measurements.
The analysis focuses on peaks in the mooring load time series using POT and BM methods
to ascertain the statistical properties of short-term extreme mooring loads.

• The results are notably sensitive to the POT threshold and the time window width
applied in the BM method.

• Extreme mooring loads estimated for a three-month return period, adjusted with a
reduction factor R for an operational frequency of 0.375, exhibit consistent agreement
across all methods.

• Differences among results from the various methods do not exceed 20%, primarily
influenced by variability in peak mooring loads (also correlating with total ice loads
on the MV supply vessel).

• Case 3, employing the circular updrift pattern, demonstrates the highest efficiency
among the ice management schemes, followed by case 4 utilizing the linear updrift
pattern. Case 2, employing the round circular pattern, displays the lowest efficiency.

In conclusion, rigorous analysis of extreme mooring loads is essential for designing
mooring systems to ensure adequate safety and operational integrity, particularly for
temporary operations in Arctic environments.

As for future work, it is suggested that more effort should be assigned to the data
from full-scale measurements to enhance the accuracy of the probabilistic models. This
is important to ensure that sufficient safety and integrity levels of these structures can be
maintained throughout the lifetime of their operation. More attention should also be paid
to the uncertainty of ice load estimation.
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