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Abstract

:

The Paleogene sandstone reservoir of Huizhou Sag is an important target for deep exploration in the Pearl River Mouth Basin, South China Sea. Because of the intense volcanic activity, it had a significant impact on the development of reservoirs, making it hard to predict. The diagenetic process of volcanogenic sediment and their influence of the reservoir have been studied by petrographic analysis, X-ray diffraction and scanning electron microscopy (SEM). Four types of volcanogenic sediment were identified: volcanic dust (<0.05 mm), volcanic rock fragments, crystal fragments (quartz and feldspar) and vitric fragments. The strong tectonic and volcanic activity of the Wenchang Formation resulted in a high content of volcanic materials, which led to significant reservoir compaction. The main sedimentary facies types are fan delta facies and lacustrine facies; the thick lacustrine mudstone can be used as high-quality source rock. After the source rock of the Wenchang Formation matured and discharged acids, feldspar and rock fragments dissolved to form dissolution pores, which effectively increases the porosity of the reservoir, but the argillaceous matrix and clay minerals produced by the volcanic dust alteration would reduce the permeability of the reservoir. With the weaker tectonic activity of the Enping Formation, the sedimentary facies changed into braided river delta, resulting in the greater componential maturity of the reservoir. Due to the relatively small impact of acidic fluids on the reservoir, the pore types of the reservoir are mainly primary pores with good physical properties.
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1. Introduction


With the continuous improvement of exploration, shallow oil and gas exploration can no longer meet the increasing demand for oil and gas. Deep exploration, as one of the important areas of oil and gas energy exploration, has become a hotspot in the global oil and gas geological field [1,2,3,4]. However, due to the large burial depth and strong reservoir heterogeneity, it is difficult to predict the distribution of high-quality reservoirs, which also restricts the continuous development of deep oil and gas exploration [5,6,7,8,9,10,11,12,13,14]. As an important oil and gas producing area in the Pearl River Mouth Basin (PRMB) of the South China Sea, Huizhou Sag has also shifted its exploration focus to the deep layer in recent years, and many large-scale oil and gas reservoirs have been found in the deep Paleogene, which proves the deep exploration potential of Huizhou Sag [15,16,17,18,19]. The PRMB of Paleogene was a continental rift basin with strong and complex tectonic activity. The Huizhou Sag also experienced strong tectonic activity in the Paleogene, including the first and second episode of the Zhuqiong movement (about 54 Ma and 39.4 Ma) and the Nanhai movement (about 29.3 Ma), which was also accompanied by many volcanic eruptions [20,21,22,23,24]. Generally, intensive volcanic activity has a significant impact on sedimentation, reservoirs and source rocks, which can alter the sedimentary pattern, the quality of reservoirs and source rocks and the distribution of oil and gas reservoirs [25,26,27,28,29,30,31,32,33,34,35,36]. The incorporation of a large amount of volcanogenic sediment will lead to more complex and unpredictable reservoir characteristics [34,37,38]. Previous studies have mainly focused on elucidating the characteristics and reservoir-forming mechanisms of deep reservoirs [39,40,41]. However, there has been little research on the impact mechanism of volcanogenic sediment in areas with intense volcanic activity. Because of the strong impact on the reservoir, evaluating the impact of volcanic activity and volcanogenic sediment in reservoirs and oil and gas reservoirs is an important foundation for predicting high-quality reservoirs in the Huizhou Sag.



Volcanic activity often affects strata in two forms, including volcanic eruption and magma intrusion. Volcanic eruption mainly affects contemporaneous sedimentary layers [42,43,44,45]. Volcanic materials are often accompanied by volcanic eruption, mixed with contemporaneous sedimentary debris, and participate in later diagenesis evolution as dissolution components. The intrusion of magma mainly affects the early pre-existing strata. The intrusion of magma will transmit heat to the strata, causing thermal alteration of rock strata and even the recycling of sand bodies [27,28,29,35,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60].



In this paper, we studied the characteristics and evolution of volcanogenic sediments in the Wenchang and Enping Formation of Huizhou 26 subsag, Huizhou Sag, Zhu-I Depression, Pearl River Mouth Basin, aiming to (1) define the reservoir characteristics of the Wenchang and Enping Formation; (2) study the characteristics and differences of volcanogenic sediments in different strata; and (3) discuss the diagenetic evolution of volcanogenic sediments and its influence on reservoir characteristics and evolution.




2. Geological Setting


The Pearl River Mouth Basin (PRMB), located in the South China Sea, can be divided into five secondary tectonic units from south to north, which are the Southern Uplift Zone, the Southern Depression Zone (Zhu-II Depression, Chaoshan Depression), the Central Uplift Zone, the Northern Depression Zone (Zhu-I Depression and Zhu-III Depression) and the Northern Uplift Zone. The Zhu-I depression is a large depression developed in the Northern Depression Zone of the PRMB. It is NE-trending, adjacent to the Northern Fault Terrace Zone in the north, the Central Uplift Zone in the south and the Zhu-III Depression in the west. From west to east, five negative structural units are arranged in order: Enping Sag, Xijiang Sag, Huizhou Sag, Lufeng Sag and Hanjiang Sag (Figure 1) [20,23,61,62,63,64,65].



The tectonic evolution of the PRMB can be divided into three stages. (1) Rifting stage: According to the tectonic episode, it can be divided into three stages corresponding to the three tectonic movements of the Shenhu movement, the first and the second episode of the Zhuqiong movement. At this stage, the basin experienced multi-stage rifting and tension, resulting in a NE-trending rift zone composed of grabens or semi-grabens. Among them, the near EW-, NE- and NEE-trending boundary faults and NWW-trending faults in the depression controlled the basic structural pattern of the basin, which corresponded to the development of the Shenhu, Wenchang and Enping Formations [66,67,68,69,70]. (2) Post-rift depression stage: This was an evolution stage accompanied by depression and fracture, including a rift-depression transition sub-stage and a depression quiet sub-stage, mainly corresponding to the Nanhai movement and Baiyun movement, which corresponded to the strata of the Zhujiang Formation, Zhuhai Formation and Hanjiang Formation. The basin underwent regional uplift and denudation in the Late Oligocene and transformed from a rift to a depression. The NWW fault activity was slightly stronger, and the fault activity in other directions continued to weaken [21,71]. (3) Fault block activity stage: The PRMB experienced block fault rise and fall, and the uplift area suffered different degrees of denudation, frequently fracture and magmatic activity, corresponding to the Dongsha movement (Figure 2) [26,72,73].



The Huizhou Sag is located in the middle of Zhu-I depression, north of the Northern Fault Terrace, south of the Central Uplift Zone of Dongsha Uplift, adjacent to Huilu Low Uplift and Huixi Low Uplift to the east and west. The study area is located in the southern margin of Huizhou Sag, with an area of 1500 km2. The early NE-trending depression-controlling faults and the late NW-trending reformation faults are mainly developed in Huizhou Sag. Under their joint control, the Huizhou Sag shows a structural framework of alternating uplift and sag (Figure 1). The main body of the sag can be divided into several small subsags, which are mainly distributed along the depression-controlling faults. With strong tectonic activity in the Wenchang Formation, the main sedimentary facies are the fan delta facies and lacustrine facies. The thick lacustrine mudstone in the center of the sag can be used as a high-quality source rock for the Paleogene. With weakening tectonic activity in the Enping Formation, the main sedimentary facies is converted to the large-area braided-river delta facies, without the development of high-quality lacustrine source rocks [16,73,74].




3. Materials and Methods


A total of 164 thin sections of the Wenchang-Enping Formation from 6 wells’ sandtone samples were prepared. In order to identify pores and calcite, all thin sections were impregnated with blue epoxy resin and stained with alizarin red-s solution [75,76]. The quantitative statistics of minerals and pores were observed by polarizing microscope with 400 counting points per thin section, using the Gazzi–Dickinson point-counting method [77,78,79].



A total of 39 gold-coated samples from 4 wells in the Wenchang-Enping Formation were observed used scanning electron microscope (SEM) to examine the morphologies and spatial relationships of diagenetic minerals. These samples were analyzed with JSM-5500LV scanning electron microscope (JEOL. Ltd., Tokyo, Japan) equipped with a Quantax 400 energy-dispersive X-ray (EDX) spectrometer (Bruker Co. Ltd., Billerica, America) under a beam current of 1.0 to 1.5 nA and an acceleration voltage of 20 kV.



A total of 58 samples from 6 wells in the Wenchang-Enping Formation, which were volcanic glass in the rock layer, were analyzed using an electron probe to determine the main element content characteristics of the volcanogenic sediment. These samples were analyzed with a JXA-8320 Electron probe X-ray microanalyzer (JEOL. Ltd., Tokyo, Japan). The test temperature was 20 °C and the humidity was 43%.



A total of 214 core plug porosity and permeability datapoints from 6 wells in the Wenchang-Enping Formation were collected from the CNOOC to analyze the characteristics of reservoir physical properties. The porosity and permeability of the samples were analyzed according to the standard SY-T 6385-1999 [80] ‘The porosity and permeability measurement of core in the net confining stress’, using a CMS-300 Overburden Pressure Pore-permeator. The core porosity was measured using helium gas, and the measurement accuracy is 0.5 porosity units. The permeability was calculated using a custom pulse decay permeability meter with helium as the detection gas and using total gas flux measurements.




4. Results


4.1. Lithofacies and Petrography of the Wenchang-Enping Formation


The Wenchang Formation (fan delta facies) is mostly composed of thick sand bodies intercalated with thin layers of mud, with a sand content of 50.5–82.7%. The volcanic breccia is more than 300 m thick, indicating strong volcanic activity. At the same time, the development of volcanic rocks indicates that volcanic activity is dominated by effusive facies and synsedimentary volcanic activity. The Enping Formation (braided-river delta facies) is mostly composed of thin interbedded sand and mudstone, with a sand content of 60.3–77.2%. The development of thin-bedded tuff and tuffaceous sandstone in the Enping Formation indicates that the synsedimentary volcanic activity is dominated by explosive facies and has a relatively weak intensity (Figure 3).



The petrologic characteristics between the Wenchang and Enping Formation are different (Figure 4 and Table 1 and Table 2). Due to the strong volcanic activity in the study area, a large amount of tuffaceous matrix developed in the reservoir, which is different from the argillaceous matrix. They are both extremely fine in size, but the tuffaceous matrix often appears as aggregated products with various colors and little or no light reflection. The tuffaceous matrix is unstable at high temperatures, often undergoing devitrification and dissolution, with a first-order gray-white interference color. The argillaceous matrix is mainly composed of clay minerals, which are relatively stable and difficult to undergo dissolution and have a high interference color with star-like distribution, which is a main difference from the tuffaceous matrix [29,34,81,82].



The lithology of Wenchang Formation is dominated by litharenite and feldspathic litharenite. Based on the point-count data, the content of quartz ranges from 31.0% to 85.9% (av. of 65.2%), and the content of feldspar ranges from 4.2% to 46.5% (av. of 12.9%). The rock fragments predominantly consist of volcanic rock fragments (range: 3.6–56.6%; av. of 20.4%), minor metamorphic rock fragments (range: 0.0–11.5%; av. of 0.5%) and minor sedimentary rock fragments (range: 0.0–25.9%; av. of 0.8%). The interstitial materials predominantly consist of tuffaceous matrix (range: 0.0–22.0%; av. of 8.8%), argillaceous matrix (range: 0.0–45.5%; av. of 1.7%), carbonate (range: 0.0–26.0%; av. of 1.3%), minor clay mineral (range: 0.0–10.0%; av. of 0.5%), minor siliceous cement (range: 0.0–5.0%; av. of 0.3%) and minor pyrite (range: 0.0–2.0%; av. of 0.1%).



The lithology of the Enping Formation is dominated by lithic arkose and subarkose. The content of quartz ranges from 31.0% to 84.0% (av. of 69.3%), and the content of feldspar ranges from 4.5% to 39.0% (av. of 16.6%). The rock fragments predominantly consist of volcanic rock fragments (range: 0.5–61.0%; av. of 10.0%), minor metamorphic rock fragments (range: 0.0–25.5%; av. of 2.7%) and minor sedimentary rock fragments (range: 0.0–3.1%; av. of 0.3%). The interstitial materials predominantly consist of tuffaceous matrix (range: 0.0–22.0%; av. of 4.0%), argillaceous matrix (range: 0.0–19.0%; av. of 3.0%), clay minerals (range: 0.0–15.0%; av. of 1.9%), siliceous cement (range: 0.0–4.0%; av. of 1.2%), minor carbonate (range: 0.0–22.0%; av. of 1.1%) and minor pyrite (range: 0.0–2.5%; av. of 0.3%).




4.2. Diagenetic Events


4.2.1. Compaction


The compaction effect of the HZ26 subsag reservoir is obviously strong, in which the contact mode between the particles changes, the plastic particles deform (mica), the rigid particles (quartz and feldspar) break up to form cracks and the particles are oriented by the compaction effect (Figure 5a–c). The Enping Formation strata, with shallow burial depth and relatively low interstitial content, has a strong anti-compaction ability and a relatively weak compaction effect.




4.2.2. Cementation


	
Carbonate Cementation






Carbonate cements are one of the main types of cements, of which calcite is the most common carbonate cement in the Wenchang and Enping Formations (Figure 5d). In the reservoir, the intergranular pores in the areas with strong carbonate cementation are greatly reduced, resulting in poor physical properties. In the areas with moderate or weak carbonate cementation, some residual primary pores are still retained, and these currently exhibit good physical properties. In reservoirs with low matrix content, the content of carbonate cements directly affects the physical properties of the reservoirs.



	
Clay Mineral Cementation






Through a large number of rock slices and SEM observation, the clay mineral cements are mainly authigenic kaolinite, chlorite, illite and I/S (Figure 5e–g). The authigenic kaolinite is fibrous, radial or scaly, filled inside the intergranular pores under the microscope and is pseudohexagonal under the scanning electron microscope. The chlorite and illite are flaky or acicular (Figure 5f), and the I/S of the mixed layer is honeycomb and filamentous (Figure 5g). The dissolution of feldspar grains is generally strong in the well section where kaolinite cement appears, and it is speculated that kaolinite may be the product of feldspar dissolution.



	
Siliceous Cementation






Siliceous cements are mainly quartz overgrowth and authigenic quartz filling (Figure 5h). The phenomenon of quartz overgrowth is widespread, and the degree of overgrowth is high, and two episodes can be seen. In general, the increase of quartz mostly occurs in the reservoir with temperatures greater than 60 °C, indicating that the buried depth was more than 2000 m [85,86,87,88,89].



	
Pyrite Cementation






Pyrite is a relatively low-content cement in the study area, with limited development and only observable in some thin sections. Pyrite is an opaque mineral, so it does not show light under plane-polarized light and cross-polarized light, and it can be seen with a distinct metallic luster under reflected light (Figure 5i). Under the optical microscope, it appears as a clot-like aggregate filling the pores, and the framboidal pyrite can be observed under the SEM (Figure 5i,j).




4.2.3. Dissolution


The dissolution of particle components and cements is more common; the most common is the dissolution of feldspar particles (Figure 5k,l), followed by the dissolution of coarse-grained volcanic rock debris (Figure 5m) and fine-grained tuffaceous matrix (Figure 5n).



Based on the data of thin sections, the main dissolved pore types of the reservoir are the intragranular pores and interparticle pores. The feldspar composition of the Wenchang Formation reservoir is high, which is more prone to acid dissolution to form secondary pores and improve reservoir properties [40,90,91]. The statistical results of thin sections show that feldspar dissolution is the most intense in dissolution, and the feldspar dissolution pore is the most important part of secondary pores. The K+, Al3+ and SiO42− produced by feldspar dissolution are deposited in the form of kaolinite and SiO2 under appropriate conditions, which provides a material source for quartz overgrowth and authigenic kaolinite [5,85,88,89].



In addition, it is also common that the latest cements are filled in early dissolution pores, such as the dissolution pores of feldspar, which are filled by carbonate cements (Figure 5o), and a small amount of quartz dissolution secondary pores are filled by carbonate cements.





4.3. Pore Type and Reservoir Physical Property


Due to the different diagenesis intensities, pore types and physical properties between the the Wenchang and Enping Formations are different (Figure 6 and Figure 7).



For the Wenchang Formation, the main pore type of sandstones is a secondary dissolved pore, like intergranular and intragranular dissolved pores, mainly formed by the dissolution of feldspar and tuffaceous matrix (smaller than 0.05 mm; in aggregate form; easy to devitrify and dissolve) (Figure 5g,h), with a poor reservoir physical property (porosity: from 1.2% to 20.5%, mean = 11.1%; permeability: from 0.01 mD to 411 mD, mean = 12.7 mD). For the Enping Formation, the main pore type of sandstones is a primary pore; the dissolved pore, like intergranular dissolved pores and intragranular dissolved pores, is relatively low, with a higher reservoir physical property (porosity: from 1.5% to 18.7%, mean = 11.3%; permeability: from 0.01 mD to 4119.7 mD, mean = 294.3 mD). With a similar porosity, the permeability is significantly higher than that of the Wenchang Formation reservoir.




4.4. Characteristic and Differential of Volcanogenic Sediment


Based on drilling cores and thin sections analyses, the Paleogene strata in the Huizhou Sag was strongly affected by volcanic activity, with most wells encountering volcanic rocks (mainly basalt) and pyroclastic rocks (mainly volcanic breccia and tuffaceous sandstone) (Figure 3). The volcanic breccia was produced by volcanic eruptions and is mainly composed of rock fragments (larger than 2 mm) (Figure 8a). Tuffaceous sandstone was mainly composed of terrigenous clasts and volcanic ash (smaller than 2 mm), which had four types pyroclastics: volcanic dust, rock fragments, crystal fragments and vitric fragments [92,93,94]. Among them, the volcanic dust, which has a particle size less than 0.05 mm, filled the spaces among the crystal fragments, rock fragments and vitric fragments as cements, and was local altered to laumontite (Figure 8b,c). Under cross-polarized light, laumontite is identified by well-developed cleavages and greyish white interference colors (Figure 8b). The SEM images also illustrate that plate-like laumontite crystals fill the pores (Figure 8c). The crystal fragments from the volcanic rock were mainly feldspar and quartz and existed in two forms: angular-subangular and irregular, with concave melting edges (Figure 8d,e). The volcanic rock fragment had typical volcanic rock structures, such as pilotaxitic textures and porphyritic textures (Figure 8f,g). The vitric fragment was uniquely glassy, like chicken-bone and sickle-like (Figure 8h), and was often unstable at low temperatures and prone to devitrification to form felsic textures (Figure 8i) or comb structures [95].



There are significant differences in the characteristics of volcanic materials between the Wenchang and Enping Formations (Figure 3 and Table 3). For the Wenchang Formation, it is dominated by volcanic rocks and volcanic breccias, with relatively high tuffaceous content (mostly higher than 8%) and large particle sizes (mostly greater than 0.2 mm), mostly in the form of skeleton particles. The Enping Formation is dominated by volcanic dust, with relatively low tuffaceous content (mostly less than 8%) and small particle sizes (mostly smaller than 0.2 mm), mostly filling in pores.



The geochemical properties of volcanic glass have been analyzed (Figure 9) [96]. For the Wenchang Formation sandstones, the content of SiO2 ranged from 41.27% to 71.72%, with an average value of 54.78%, and the content of K2O + Na2O ranged from 0.05% to 15.51%, with an average value of 4.84%. For the Enping Formation sandstones, the content of SiO2 ranged from 42.29% to 76.21%, with an average value of 54.76%, and the content of K2O + Na2O ranged from 0.21% to 16.88%, with an average value of 5.10%. Combined with the drilled basalt and the andesitic volcanic breccia, the magmatic properties of the Wenchang and Enping Formations were mainly intermediate-basic.





5. Discussion


5.1. Influence of Volcanogenic Sediment on Reservoir


In an area with strong volcanic activity, many volcanic materials entered the reservoir, and their subsequent compaction and alteration had a significant impact on reservoir physical properties [34,37,38].



The types of volcanic materials in the Huizhou Sag were complex: (1) The volcanic dusts had a fine particle size and always filled in the pores as interstitial materials, which could lead to a rapid decline in reservoir physical properties. The reservoir would transform into a tight reservoir (porosity less than 10%, permeability less than 1 mD), while the volcanic dust content was greater than 10% (Figure 10). Although dissolution or alteration might occur later, the improvement of the reservoir was relatively limited. (2) The rock fragment had a relatively coarse particle size and usually existed as skeleton particles, which could enhance the compressive strength of the reservoir. The later dissolution could effectively increase the physical properties of the reservoir, thus having a positive improvement effect on the reservoir. (3) Although the volcanogenic quartz and feldspar fragments had different origins from the terrigenous quartz and feldspar fragments, the same minerals underwent a similar evolution process after the same diagenesis, so they had similar impact on the reservoir and will not be discussed separately. (4) The vitric fragments were formed by pore explosions in magma, with a fine particle size, and were usually plastic. They were easily compacted and deformed later, which could block pores. Although they could cause some degree of dissolution, they would ultimately reduce the physical properties of the reservoir.



With the volcanogenic sediment mixed into the sandstone, the composition of the reservoir has been changed (Table 1 and Table 2).



The framework grains of reservoirs in the Wenchang and Enping Formations were both dominated by rigid framework grains (quartz, feldspar and volcanic rock fragments), with a low content of plastic framework grains (mica and vitric fragment; less than 2%) (Table 1 and Table 2). Therefore, compaction was difficult for destroying all pores, and its strength was mainly related to burial depth. Subsequent cementation and dissolution also had a significant impact on the reservoir [97].



The rigid framework grains in the Wenchang Formation were dominated by volcanic frock fragments and feldspar, as well as a large amount of fine-grained tuffaceous matrix filling the pores. The rigid framework grains in the Enping Formation were mainly composed of quartz, with a low content of volcanic rock fragments and tuffaceous matrix due to weak volcanic activity. Because of the different contents of soluble feldspar and volcanic rock debris in different formations, the intensity of dissolution varied, and the types of ions brought by the different components also affected the type and intensity of subsequent cementation [5,34,89].




5.2. Diagenetic Evolution Sequence


According to the indices of organic matter maturity (Ro, %) and petrographic analysis of thin sections and SEM observations, we reconstructed the diagenetic history and defined the diagenetic stage as the mesodiagenetic stage in the study area [91,98,99,100,101,102,103,104,105,106].



The eodiagenetic stage was mainly characterized by strong compaction and early clay mineral cladding, and the clay minerals were mainly chlorite and C/S mixed-layer. Volcanic dust alteration formed smectite, and it began to become unstable as the burial depth increased. It reacted with the alkaline fluid containing Fe2+ and Mg2+ produced by the dissolution of volcanic fragment and mica to transform into chlorite and C/S mixed-layer. Authigenic quartz is usually associated with chlorite and develops in areas without chlorite cladding, indicating that early chlorite cladding can inhibit the quartz cementation and protect pores (Figure 11a). At the same time, the evolution and maturity of source rocks released organic acids [82,107,108,109,110], which would acid-soluble transform the Paleogene reservoirs, and a large number of feldspar and coarse-grained volcanic fragments would be dissolved (Figure 11b). Al3+ and Si2+ produced by feldspar corrosion also provided material sources for quartz and kaolinite cementation, so they were generally considered to have formed in the same period. The filling of feldspar dissolution pores by calcite indicated that calcite precipitation occurred after acidic dissolution (Figure 11b,c). Scanning electron microscopy images revealed that the fine-grained volcanic dust mainly underwent alteration, and the alteration products were mainly laumontite and chlorite (Figure 11d). During the mesodiagenetic period, some ankerite cementation (Figure 11e) and late pyrite cementation (Figure 11f) occurred, which made obvious damage to the reservoir.



Therefore, the diagenesis sequence of Huizhou 26 Paleogene reservoir is summarized as follows: (i) compaction, (ii) clay mineral cladding, (iii) feldspar and coarse-grained volcanic fragment dissolution, (iv) kaolinite and quartz cementation, (v) fine-grained tuffaceous alteration, (vi) calcite cementation, (vii) hydrocarbon charge and (viii) late ankerite and pyrite cementation (Figure 12). With higher burial depth and larger content of feldspar and volcanogenic debris sediment, the diagenetic intensity of the Wenchang Formation is significantly higher than that of the Enping Formation [11,17,104]. After complex diagenetic evolution, cements filled the pores, primary pores were destroyed, and dissolution pores developed. Therefore, although the porosity is relatively high, the permeability is significantly lower.




5.3. Formation Mechanism of the Pyroclastic Rock


Volcanic eruptions form volcanogenic sediment, which produces pyroclastic rocks when mixed into terrigenous clasts. The formation and distribution of pyroclastic rocks are related to sedimentary systems and volcanic activities [94,111,112,113]. The difference of volcanic activity intensity and type will produce different types of volcanogenic sediments and have different effects on sand-bodies and reservoirs (Figure 13).



During the period of the Wenchang Formation, the strong tectonic activity led to the large separation of the boundary fault. The type of sedimentary facies was mainly fan-delta, and the short sedimentary distance and weak hydrodynamic conditions led to the low maturity of the reservoir. At the same time, strong tectonic activity led to frequent volcanic activity, and basalt (basic magma) indicated that the volcanic crater was close to the sand body and erupted in the form of effusive. Therefore, many volcanogenic debris sediments mixed into the terrigenous debris, resulting in high content of coarse volcanic rock fragments, and the main type of interstitial materials was fine tuffaceous matrix (volcanic dust). Plastic framework grains and interstitial materials (tuffaceous matrix) led to the weak ability to resist the compaction of the reservoir. Although the early clay mineral cladding was developed, the low content led to the limit impact on the reservoir, so the primary intergranular pores were hard to preserve. With the increase of burial depth, the organic matter began to release organic acid, resulting in the strong dissolution of feldspar and coarse-grained volcanic rock fragments, producing dissolution pores and alteration minerals (kaolinite). With the consumption of acid fluid, the fluid environment changed. In the alkaline environment, carbonate minerals were cemented, fine volcanic dust altered to laumontite and kaolinite reacted with the alkaline fluid containing Fe2+ and Mg2+ produced by the dissolution of volcanic materials to transform into chlorite. Finally, in the mesodiagenetic stage, local pyrite cements were developed under the influence of hydrothermal fluids. Strong compaction led to the poor preservation of primary intergranular pores in the reservoir, but feldspar and rock fragment dissolution would produce massive secondary dissolved pores. Although carbonate cement and iron cement would fill the pores in the later stage, the impact was relatively limited, so the reservoir porosity is relatively large. Many interstitial materials and altered secondary minerals blocked pore throats, resulting in the low reservoir permeability.



During the period of the Enping Formation, tectonic activity weakened, and the boundary type was mainly a gentle slope boundary. The sedimentary facies changed to braided river delta, and the reservoir maturity increased. The absence of volcanic rock and volcanic breccia indicated that the volcanic activity was weak and far away from the sand body, resulting in fine-grained volcanic dust as the main type of volcanogenic debris sediment in the reservoir. The high content of rigid framework grains (quartz, feldspar) and shallow burial depth resulted in weak compaction effects on the reservoir, allowing for the well-preserved primary intergranular pores. After the entry of acid fluid, feldspar and fine-grained volcanic dust were altered. However, due to the distance from the source rock, the acid fluid could not enter effectively, making it difficult to form dissolution pores, which were mainly altered to produce kaolinite. After the change of the fluid environment, the carbonate minerals were cemented, and kaolinite was transformed into chlorite. The good preservation of primary pores and low interstitial content led to high reservoir porosity and permeability.





6. Conclusions


	(1)

	
For the Wenchang Formation, the main lithology is litharenite and feldspathic litharenite, with high content of interstitial material, mainly tuffaceous matrix, and the main pore type is secondary dissolved pores, with an average porosity and permeability of 11.1% and 12.7 mD. For the Enping Formation, the main lithology is lithic arkose and subarkose, with a low content of interstitial materials and complex types. The main pore type is primary pore, with an average porosity and permeability of 11.3% and 294.3 mD.




	(2)

	
The magmatic property was mainly intermediate-basic. The types of volcanic materials in the Huizhou Sag were complex. Coarse-grained volcanic fragments could enhance the compressive strength of the reservoir, and the dissolution could effectively increase the physical properties of the reservoir. Fine-grained volcanic dust filled the pores as interstitial materials, resulting in the tightness of the reservoir.




	(3)

	
The reservoirs underwent a diagenetic evolution process that was broadly alkaline to acidic and finally alkaline; the diagenesis sequence is summarized as follows: (i) compaction, (ii) clay mineral cladding, (iii) feldspar and coarse-grained volcanic fragment dissolution, (iv) kaolinite and quartz cementation, (v) fine-grained tuffaceous alteration, (vi) calcite cementation, (vii) hydrocarbon charge and (viii) late ankerite and pyrite cementation.




	(4)

	
During the period of the Wenchang Formation, strong tectonic activity led to strong volcanic activity, with many volcanic materials mixed into the terrigenous clasts. The rapid sedimentation of the fan delta resulted in lower reservoir maturity and stronger compaction. The dissolution of feldspar and rock fragments generated dissolution pores, increasing porosity, but the clay minerals produced by alteration would block the throat and reduce the reservoir permeability. During the period of the Enping Formation, the volcanic activity was weakened, and the type of volcanic material was mainly fine-grained volcanic dust. The change of sedimentary facies led to the increase of reservoir maturity and weaker compaction. It was difficult for acid fluid to effectively enter the Enping Formation to form dissolution pores, so the content of altered clay minerals was low, resulting in better physical properties.
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Figure 1. (a) Topography and altitude of the South China Sea and adjacent regions with locations of the major sedimentary basins, including the Huizhou Sag (HZS) in Zhu-I Depression. (b) Main morphological pattern that penetrated the Wenchang-Enping Formation in Huizhou Sag. (c) Main morphological pattern and boreholes in Huizhou 26 Subsag. Abbreviations: PRMB = Pearl River Mouth Basin; Zhu 1 = Zhu-I Depression; Zhu 2 = Zhu-II Depression; Zhu 3 = Zhu-III Depression; NUZ = Northern Uplift Zone; PYU = Panyu Uplift; DSU = Dongsha Uplift; SUZ = Southern Uplift Zone. 
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Figure 2. Generalized stratigraphic column of the Huizhou Sag, Pearl River Mouth Basin (modified from [19,66]). 
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Figure 3. Stratigraphic cross-well sections show the lithologies and GR curve characteristics of the Wenchang-Enping Formation stratum in the Huizhou 26 Subsag. See Figure 1c for the location of the wells. The red box is used to clarify the characteristics of different layers and highlight the location of volcanic rocks and breccias. 
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Figure 4. Ternary diagram of rock composition and histogram of the filling material show the composition of the detrital grains and interstitial materials (a) for The Enping Formation and (b) for the Wenchang Formation (Q, quartz grain; F, feldspar grain; R, rock fragment; modified after [83,84]). 
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Figure 5. Microscopic characteristics of Paleogene sandstone diagenesis in the Huizhou Sag. (a) Fractured rock fragment affected by compaction. Well H1, Wenchang Formation, 3521.5 m, PPL. (b) Bended mica affected by compaction. Well H1, Enping Formation, 3235.0 m, PPL. (c) Scaly sericites are Oriented distributed by compaction. Well H2, Enping Formation, 3033 m, XPL. (d) Carbonate cements in the pore spaces. Well H1, Enping Formation, 3184 m, PPL. (e) Kaolinite filled in original pores. Well H5, Enping Formation, 3368.8 m, PPL. (f) Acicular kaolinite filled in pores. Well H1, Enping Formation, 3158.4 m, SEM. (g) Honeycomb I/S of the mixed layer filled in pores. Well H7, Enping Formation, 3649.5 m, SEM. (h) Quartz overgrowth often develops around quartz grains. Well H5, Enping Formation, 3206 m, PPL. (i) The clot-like pyrite filling the pores. Well H3, Enping Formation, 3191 m, RL. (j) The framboidal pyrite filling the pores. Well H3, Wenchang Formation, 3642.7 m, SEM. (k) Feldspars form secondary dissolution pores along cleavage. Well H1, Enping Formation, 3235 m, PPL. (l) Kaolinite filled in the feldspar-dissolved pores. Well H5, Enping Formation, 3581 m, SEM. (m) Volcanic rock fragments are dissolved to form secondary pores. Well H1, Wenchang Formation, 3399.4 m, PPL. (n) Tuffaceous matrix is dissolved to form interparticle dissolved pores. Well H3, Enping Formation, 3191 m, PPL. (o) Carbonate cements replace feldspars, and both dissolve to form secondary pores. Well H5, Enping Formation, 3554.5 m, PPL. Abbreviations: Q, Quartz; Qo, Quartz overgrowth; F, Feldspars; RF, Rock fragment; TM, tuffaceous matrix; C, Carbonate cements; K, Kaolinite; Py, Pyrite; P, Pores; PPL, Plane-polarized light; XPL, Cross-polarized light; RL, Reflected light; SEM, scanning electron microscopy. 
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Figure 6. Percentage content histogram of different pore types in the Wenchang and Enping Formations. 
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Figure 7. Cross plot (a) and frequency distribution histograms of porosity and permeability (b) of the Wenchang and Enping Formation reservoirs. 
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Figure 8. Microscopical identification of volcanic materials. (a) Drilling core with volcanic rock fragment (larger than 10 cm). Well H2, Enping Formation, 3073–3073.3 m. (b) Volcanic dust filled among crystal fragment and rock fragment, and altered to laumontite (red arrows). Well H4A, Wenchang Formation, 3980.5 m, XPL. (c) Plate-like laumontite crystals filling in the pores. Well H4A, Wenchang Formation, 3980.5 m, SEM. (d) Angular-subangular feldspar and quartz crystal fragment (red circles). Well H7, Enping Formation, 3943 m, PPL. (e) Quartz crystal fragment with concave irregular erosion edge (red circles). Well H7, Wenchang Formation, 4029.4 m, PPL. (f) Semiplastic andesite fragment with pilotaxitic texture (red arrow). Well H1, Enping Formation, 3234.5 m, PPL. (g) Rhyolite fragment with porphyritic structure, and visible clastic quartz embedded in rhyolite (red arrow). Well H3, Wenchang Formation, 3728.5 m, PPL. (h) Chicken-bone and sickle-like volcanic glassy fragment (red arrows). Well H4A, Enping Formation, 3220 m, PPL. (i) Volcano glass with felsic texture (red circles). Well H2, Enping Formation, 3165 m, XPL. Abbreviations: Q, Quartz; Vd, Volcanic dust; VRF, Volcanic rock fragment; Lmt, laumontite; PPL, Plane-polarized light; XPL, Cross-polarized light; SEM, scanning electron microscope. 
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Figure 9. TAS diagram of tuffaceous matter of the Wenchang and Enping Formations [96]. 
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Figure 10. Cross plot of volcanic dust and porosity (a) and permeability (b) of the Wenchang and Enping Formation reservoirs in Well H3. 
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Figure 11. Main diagenetic evolution characteristics. (a) Early clay mineral cladding, Well H1, Wenchang Formation, 3405 m, SEM. (b) Calcite in feldspar-dissolved pores, Well H3, Wenchang Formation, 3583 m, PPL. (c) Calcite in feldspar-dissolved pores, Well H5, Enping Formation, 3429.5 m, PPL. (d) Alteration products such as laumontite and clay minerals, Well H5, Enping Formation, 3328 m, SEM. (e) Lately ankerite cementation in feldspar-dissolved pores, Well H5, Enping Formation, 3136.41 m, XPL. (f) Late pyrite filling residual pores. Well H1, Enping Formation, 3200 m, RL. Abbreviations: Q, Quartz; F, Feldspars; C, Carbonate cements; K, Kaolinite; Ch, chlorite; Ab, Albite; Lmt, Laumontite; Ank, Ankerite; Py, Pyrite; C/S, Mixed-layer chlorite–smectite; P, Pores; PPL, Plane-polarized light; XPL, Cross-polarized light; RL, Reflected light; SEM, scanning electron microscopy. 
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Figure 12. Paragenetic sequence of the diagenetic history of the Wenchang-Enping Formation sandstone reservoirs. 
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Figure 13. Formation mechanism (a) and diagenetic evolution model (b) of the Wenchang and Enping Formation pyroclastic rock. 






Figure 13. Formation mechanism (a) and diagenetic evolution model (b) of the Wenchang and Enping Formation pyroclastic rock.



[image: Jmse 12 01459 g013]







 





Table 1. Content data of component by point count from thin sections.
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	WELL
	DEPTH
	STRATA
	Q
	F
	VRF
	MRF
	SRF
	MICA
	AM
	TM
	CC
	CM
	SC
	PY





	H1
	3158.4
	EP
	62.0
	28.0
	6.5
	0.0
	0.0
	3.5
	19.0
	5.0
	0.0
	0.0
	0.0
	0.5



	H1
	3184
	EP
	82.5
	7.5
	9.5
	0.5
	0.0
	0.0
	1.0
	5.0
	22.0
	0.5
	1.5
	0.0



	H1
	3200
	EP
	51.0
	10.0
	38.0
	0.0
	0.0
	1.0
	0.0
	5.0
	0.5
	15.0
	0.0
	2.5



	H1
	3226
	EP
	33.5
	39.0
	24.0
	1.0
	0.0
	2.5
	0.0
	5.0
	0.0
	13.0
	0.0
	0.0



	H1
	3226
	EP
	41.0
	33.5
	25.0
	0.0
	0.0
	0.5
	0.0
	5.0
	0.0
	15.0
	0.0
	0.0



	H1
	3234.5
	EP
	36.0
	9.0
	54.0
	0.0
	0.0
	1.0
	0.0
	5.0
	0.0
	5.0
	0.0
	0.0



	H1
	3235
	EP
	31.0
	6.0
	61.0
	0.0
	0.0
	2.0
	0.0
	5.0
	0.5
	0.5
	0.0
	0.0



	H1
	3399.4
	WC
	41.0
	11.0
	48.0
	0.0
	0.0
	0.0
	0.0
	10.0
	0.0
	10.0
	0.0
	0.0



	H1
	3503.5
	WC
	54.0
	24.5
	21.0
	0.0
	0.0
	0.5
	0.0
	8.0
	0.0
	10.0
	0.5
	0.0



	H1
	3582
	WC
	31.0
	46.5
	22.5
	0.0
	0.0
	0.0
	20.0
	15.0
	0.0
	0.0
	0.0
	0.0



	H3
	3166.5
	EP
	79.6
	14.0
	5.1
	0.6
	0.6
	0.0
	0.0
	0.0
	0.0
	0.0
	1.0
	0.0



	H3
	3182
	EP
	73.6
	16.0
	7.4
	0.0
	3.1
	0.0
	0.0
	0.0
	0.0
	0.0
	1.0
	0.0



	H3
	3211
	EP
	79.8
	13.1
	6.0
	1.2
	0.0
	0.0
	0.0
	0.0
	0.0
	0.0
	1.0
	0.0



	H3
	3223
	EP
	64.3
	15.5
	20.2
	0.0
	0.0
	0.0
	0.0
	0.0
	0.0
	0.0
	1.0
	0.0



	H3
	3266.5
	EP
	78.3
	12.0
	7.8
	0.6
	1.2
	0.0
	0.0
	0.0
	0.0
	0.0
	1.0
	0.0



	H3
	3281.5
	EP
	77.8
	12.6
	5.2
	1.5
	0.0
	3.0
	1.0
	0.0
	0.0
	0.5
	0.0
	0.0



	H3
	3304
	EP
	78.1
	9.5
	10.1
	0.0
	0.0
	2.4
	0.0
	6.0
	1.5
	0.0
	0.5
	0.0



	H3
	3360
	EP
	63.9
	9.6
	23.5
	0.0
	0.6
	2.4
	0.0
	0.0
	0.0
	0.0
	1.0
	0.0



	H3
	3380
	EP
	59.5
	7.7
	27.4
	0.0
	0.6
	4.8
	0.0
	16.0
	0.0
	0.0
	0.0
	0.0



	H3
	3521
	EP
	82.1
	11.4
	5.7
	0.0
	0.8
	0.0
	15.0
	0.0
	0.0
	0.0
	1.0
	0.0



	H3
	3572.5
	WC
	54.0
	10.4
	29.4
	0.0
	4.9
	1.2
	0.0
	0.0
	0.0
	0.0
	1.0
	0.0



	H3
	3583
	WC
	74.1
	14.5
	9.6
	0.0
	1.2
	0.6
	0.0
	0.0
	0.0
	0.0
	1.0
	0.0



	H3
	3596
	WC
	56.6
	6.0
	34.9
	0.0
	0.0
	2.4
	0.0
	16.0
	0.0
	0.0
	0.0
	0.0



	H3
	3615
	WC
	60.0
	8.2
	30.0
	0.0
	1.8
	0.0
	0.0
	1.0
	0.0
	0.0
	1.0
	0.0



	H3
	3719.5
	WC
	38.6
	4.2
	56.6
	0.0
	0.6
	0.0
	0.0
	2.0
	0.0
	0.0
	0.5
	0.0



	H3
	3726
	WC
	50.7
	23.3
	23.3
	1.4
	1.4
	0.0
	0.0
	16.5
	0.5
	0.5
	1.0
	0.0



	H3
	3791
	WC
	45.2
	7.1
	47.6
	0.0
	0.0
	0.0
	0.0
	0.0
	0.0
	6.0
	0.0
	0.0



	H3
	3794
	WC
	62.0
	12.7
	25.3
	0.0
	0.0
	0.0
	0.0
	10.0
	0.0
	0.0
	0.0
	0.0



	H3
	3798
	WC
	42.5
	11.0
	45.2
	0.0
	1.4
	0.0
	0.0
	0.0
	0.0
	0.0
	0.0
	0.0



	H3
	3801.5
	WC
	44.9
	15.4
	38.5
	0.0
	0.0
	1.3
	0.0
	22.0
	0.0
	0.0
	0.0
	0.0



	H3
	3816.5
	WC
	63.3
	15.2
	20.3
	0.0
	1.3
	0.0
	0.0
	3.0
	0.0
	0.0
	0.0
	0.0



	H4A
	3600
	WC
	49.4
	4.5
	46.1
	0.0
	0.0
	0.0
	0.0
	0.0
	0.0
	0.0
	0.0
	0.0



	H4A
	3705
	WC
	34.9
	10.5
	54.7
	0.0
	0.0
	0.0
	0.0
	6.0
	0.0
	0.0
	0.0
	0.0



	H4A
	3808.5
	WC
	73.3
	12.8
	14.0
	0.0
	0.0
	0.0
	0.0
	12.0
	0.0
	0.0
	0.0
	0.0



	H4A
	3820.15
	WC
	67.8
	12.1
	18.4
	0.0
	0.6
	1.1
	0.0
	12.0
	0.0
	0.0
	0.0
	0.0



	H4A
	3821.4
	WC
	72.4
	8.2
	18.8
	0.0
	0.0
	0.6
	0.0
	12.0
	0.0
	0.0
	0.0
	0.0



	H4A
	3822.97
	WC
	75.9
	8.0
	14.9
	0.0
	0.0
	1.1
	0.0
	11.0
	0.0
	0.0
	0.0
	2.0



	H4A
	3823.5
	WC
	79.8
	8.3
	11.9
	0.0
	0.0
	0.0
	0.0
	10.0
	0.0
	0.0
	0.0
	0.0



	H4A
	3824.45
	WC
	75.6
	9.8
	14.6
	0.0
	0.0
	0.0
	0.0
	0.0
	18.0
	0.0
	0.0
	0.0



	H4A
	3825.41
	WC
	85.9
	9.4
	4.7
	0.0
	0.0
	0.0
	0.0
	12.0
	0.0
	0.0
	0.0
	0.0



	H4A
	3826.19
	WC
	84.3
	10.8
	4.8
	0.0
	0.0
	0.0
	0.0
	9.0
	4.0
	0.0
	0.0
	1.5



	H4A
	3827.5
	WC
	68.1
	15.0
	16.3
	0.6
	0.0
	0.0
	0.0
	15.0
	0.0
	0.0
	5.0
	0.0



	H4A
	3828.12
	WC
	73.9
	12.7
	13.4
	0.0
	0.0
	0.0
	0.0
	12.0
	5.0
	0.0
	0.0
	0.0



	H4A
	3829.43
	WC
	63.6
	16.4
	20.0
	0.0
	0.0
	0.0
	45.0
	0.0
	0.0
	0.0
	0.0
	0.0



	H4A
	3830.86
	WC
	71.6
	14.9
	13.5
	0.0
	0.0
	0.0
	0.0
	0.0
	26.0
	0.0
	0.0
	0.0



	H4A
	3831.96
	WC
	63.5
	21.2
	15.3
	0.0
	0.0
	0.0
	0.0
	13.5
	1.0
	0.0
	0.5
	0.0



	H4A
	3832.93
	WC
	83.3
	11.9
	3.6
	0.0
	0.0
	1.2
	0.0
	12.5
	0.0
	0.0
	0.5
	0.0



	H4A
	3833.68
	WC
	76.1
	11.4
	12.5
	0.0
	0.0
	0.0
	0.0
	12.0
	0.0
	0.0
	0.0
	0.0



	H4A
	3834.59
	WC
	71.6
	6.2
	21.0
	0.0
	0.0
	1.2
	0.0
	19.0
	0.0
	0.0
	0.0
	0.0



	H4A
	3835.45
	WC
	82.1
	8.3
	9.5
	0.0
	0.0
	0.0
	0.0
	12.0
	0.0
	0.0
	0.5
	0.0



	H4A
	3836.7
	WC
	80.4
	7.6
	12.0
	0.0
	0.0
	0.0
	0.0
	14.0
	0.0
	0.0
	0.0
	0.0



	H4A
	3837.43
	WC
	77.0
	9.2
	13.8
	0.0
	0.0
	0.0
	0.0
	10.0
	0.0
	0.0
	0.0
	0.0



	H4A
	3848.5
	WC
	76.6
	14.3
	9.1
	0.0
	0.0
	0.0
	0.0
	12.0
	0.0
	0.0
	0.0
	0.0



	H4A
	3868.3
	WC
	78.6
	11.9
	9.5
	0.0
	0.0
	0.0
	0.0
	11.0
	0.0
	0.0
	0.0
	0.0



	H4A
	3871
	WC
	69.0
	19.0
	11.9
	0.0
	0.0
	0.0
	16.0
	0.0
	0.0
	0.0
	0.0
	0.0



	H4A
	3873.6
	WC
	76.5
	12.3
	11.1
	0.0
	0.0
	0.0
	0.0
	5.0
	0.0
	0.0
	0.0
	0.0



	H4A
	3879
	WC
	75.9
	16.5
	7.6
	0.0
	0.0
	0.0
	0.0
	5.0
	0.0
	0.0
	0.0
	0.0



	H4A
	3883.3
	WC
	76.1
	9.1
	14.8
	0.0
	0.0
	0.0
	0.0
	7.5
	0.0
	0.0
	0.5
	0.0



	H4A
	3886.5
	WC
	73.9
	10.2
	15.9
	0.0
	0.0
	0.0
	0.0
	11.0
	0.5
	0.0
	0.0
	0.0



	H4A
	3897
	WC
	76.2
	16.7
	7.1
	0.0
	0.0
	0.0
	0.0
	12.0
	0.0
	0.0
	0.0
	0.0



	H4A
	3907.5
	WC
	68.3
	13.4
	18.3
	0.0
	0.0
	0.0
	0.0
	10.0
	0.0
	0.0
	0.0
	0.0



	H4A
	3912.5
	WC
	57.6
	5.9
	10.6
	0.0
	25.9
	0.0
	0.0
	10.0
	0.0
	0.0
	0.0
	0.0



	H4A
	4082
	WC
	73.6
	10.3
	16.1
	0.0
	0.0
	0.0
	0.0
	6.0
	0.0
	0.0
	0.0
	0.0



	H4A
	4094
	WC
	49.7
	10.1
	40.2
	0.0
	0.0
	0.0
	0.0
	15.0
	0.0
	0.0
	0.0
	0.0



	H4A
	4109
	WC
	46.4
	8.3
	45.2
	0.0
	0.0
	0.0
	0.0
	13.5
	0.0
	0.0
	0.0
	0.0



	H5
	3113.8
	EP
	74.5
	17.5
	4.0
	4.0
	0.0
	0.0
	7.0
	2.0
	0.0
	0.0
	1.5
	0.5



	H5
	3120.47
	EP
	79.5
	16.5
	3.5
	0.5
	0.0
	0.0
	3.0
	2.0
	0.0
	0.0
	0.5
	1.0



	H5
	3125.15
	EP
	77.0
	9.0
	6.0
	5.0
	1.0
	2.0
	4.0
	5.0
	0.0
	1.5
	0.0
	0.5



	H5
	3134.42
	EP
	71.5
	17.5
	6.5
	4.0
	0.0
	0.5
	1.0
	3.0
	0.0
	0.0
	0.5
	1.0



	H5
	3136.41
	EP
	73.0
	17.0
	8.0
	2.0
	0.0
	0.0
	0.0
	5.0
	3.0
	0.0
	1.5
	0.0



	H5
	3160
	EP
	74.5
	18.0
	5.5
	1.5
	0.5
	0.0
	4.5
	5.0
	0.0
	1.5
	2.0
	0.0



	H5
	3186.5
	EP
	76.5
	15.5
	7.0
	0.5
	0.5
	0.0
	0.0
	5.0
	0.0
	0.0
	2.0
	0.0



	H5
	3195
	EP
	68.0
	21.5
	4.0
	6.0
	0.0
	0.5
	0.0
	5.0
	0.0
	0.0
	2.0
	0.0



	H5
	3206
	EP
	79.0
	5.0
	16.0
	0.0
	0.0
	0.0
	3.5
	15.0
	0.0
	9.0
	0.5
	1.0



	H5
	3284
	EP
	77.0
	17.0
	6.0
	0.0
	0.0
	0.0
	0.0
	5.0
	0.0
	0.0
	1.0
	0.0



	H5
	3288
	EP
	76.0
	18.0
	5.0
	0.0
	1.0
	0.0
	0.0
	5.0
	0.0
	0.0
	1.5
	0.0



	H5
	3314
	EP
	74.0
	11.5
	7.0
	5.5
	1.0
	1.0
	7.0
	15.0
	0.0
	0.0
	2.0
	0.5



	H5
	3421
	EP
	70.5
	16.5
	8.5
	4.0
	0.5
	0.0
	1.0
	10.0
	0.0
	12.0
	2.0
	0.5



	H5
	3425
	EP
	75.0
	14.5
	9.0
	0.0
	1.5
	0.0
	0.0
	5.0
	6.0
	5.5
	1.0
	0.5



	H5
	3429.5
	EP
	79.5
	14.0
	5.5
	1.0
	0.0
	0.0
	1.0
	10.0
	1.5
	3.5
	3.0
	1.0



	H5
	3433.6
	EP
	74.5
	16.5
	6.5
	2.5
	0.0
	0.0
	1.5
	15.0
	0.0
	7.0
	2.0
	0.0



	H5
	3524.6
	EP
	73.5
	14.5
	9.5
	0.0
	0.0
	2.5
	17.0
	20.0
	0.0
	0.0
	0.0
	0.0



	H5
	3553
	EP
	74.5
	14.5
	6.0
	0.5
	0.0
	4.5
	18.0
	22.0
	0.0
	0.0
	0.0
	0.0



	H5
	3554.5
	EP
	80.0
	15.5
	3.0
	0.0
	0.5
	1.0
	7.0
	5.0
	1.0
	1.0
	0.5
	0.0



	H5
	3581
	EP
	79.5
	16.0
	3.5
	0.5
	0.5
	0.0
	0.0
	5.0
	1.0
	0.5
	4.0
	0.0



	H7
	3462
	EP
	73.5
	18.5
	4.0
	3.0
	0.5
	0.5
	0.0
	0.0
	0.0
	0.0
	2.0
	0.0



	H7
	3480
	EP
	72.5
	19.0
	2.0
	4.5
	1.0
	1.0
	1.0
	0.0
	0.0
	0.0
	2.0
	0.0



	H7
	3514
	EP
	77.5
	14.5
	5.0
	3.0
	0.0
	0.0
	0.0
	0.0
	0.0
	0.0
	2.0
	0.0



	H7
	3632
	EP
	70.5
	21.0
	3.5
	4.0
	0.5
	0.5
	1.0
	0.0
	0.0
	0.5
	1.0
	0.5



	H7
	3649.5
	EP
	65.5
	24.0
	6.0
	4.0
	0.0
	0.5
	1.0
	1.0
	0.0
	0.5
	1.5
	0.0



	H7
	3660
	EP
	79.0
	4.5
	5.5
	10.5
	0.0
	0.5
	0.0
	2.0
	0.0
	0.0
	0.5
	0.0



	H7
	3672.5
	EP
	68.0
	23.5
	7.5
	1.0
	0.0
	0.0
	1.5
	0.0
	0.0
	0.0
	3.0
	1.5



	H7
	3676.5
	EP
	68.0
	24.0
	4.5
	3.0
	0.0
	0.5
	9.0
	0.0
	0.5
	0.5
	3.0
	0.0



	H7
	3684
	EP
	54.0
	21.0
	12.0
	12.5
	0.0
	0.5
	17.0
	0.0
	0.0
	0.5
	1.5
	0.5



	H7
	3690.3
	EP
	84.0
	5.5
	3.5
	6.0
	0.0
	1.0
	0.0
	0.5
	0.0
	1.5
	2.0
	0.0



	H7
	3700
	EP
	67.0
	20.5
	9.0
	3.5
	0.0
	0.0
	0.0
	0.0
	0.3
	0.2
	3.0
	0.0



	H7
	3715
	EP
	78.0
	9.5
	12.0
	0.5
	0.0
	0.0
	3.0
	1.0
	0.0
	3.0
	0.5
	0.0



	H7
	3721.5
	EP
	69.5
	20.5
	6.0
	3.5
	0.0
	0.5
	1.0
	0.0
	0.0
	0.0
	2.0
	0.5



	H7
	3738
	EP
	67.5
	26.5
	3.0
	1.0
	0.0
	2.0
	1.0
	1.0
	0.0
	5.0
	1.0
	0.0



	H7
	3743
	EP
	63.0
	23.5
	6.0
	5.5
	0.0
	2.0
	3.5
	0.0
	0.5
	0.5
	3.0
	1.0



	H7
	3758
	EP
	67.5
	25.5
	2.0
	1.0
	0.0
	4.0
	0.5
	3.0
	0.0
	3.0
	1.0
	0.5



	H7
	3807
	EP
	64.0
	22.0
	6.5
	5.5
	0.0
	2.0
	1.0
	1.0
	0.0
	4.0
	1.0
	0.5



	H7
	3835
	EP
	67.0
	22.0
	6.0
	4.5
	0.0
	0.5
	3.0
	1.0
	9.0
	0.0
	0.5
	0.0



	H7
	3842
	EP
	64.5
	24.0
	0.5
	3.5
	0.0
	7.5
	0.5
	1.5
	0.0
	2.5
	0.5
	0.5



	H7
	3969
	EP
	53.0
	14.0
	4.5
	25.5
	0.0
	3.0
	16.0
	0.5
	1.5
	0.0
	0.0
	0.0



	H7
	3974
	EP
	65.5
	16.5
	7.5
	9.5
	0.0
	1.0
	0.0
	0.0
	15.0
	0.0
	0.0
	0.0



	H7
	4001
	WC
	63.0
	26.0
	4.5
	6.5
	0.0
	0.0
	0.0
	11.0
	7.5
	0.0
	0.0
	0.5



	H7
	4029.4
	WC
	70.5
	17.0
	6.5
	3.5
	2.0
	0.5
	7.0
	6.5
	0.5
	0.0
	1.0
	0.0



	H7
	4051
	WC
	67.0
	15.0
	5.5
	11.5
	0.0
	1.0
	0.5
	6.5
	2.5
	0.0
	0.0
	0.0







Note: Q—Quartz; F—Feldspar; VRF—Volcanic rock fragment; MRF—Metamorphic rock fragment; SRF—Sedimentary rock fragment; MICA—Mica; AM—Argillaceous matrix; TM—Tuffaceous matrix; CC—Carbonate cement; CM—Clay mineral; SC—Siliceous cement; PY—Pyrite; EP—Enping Formation; WC—Wenchang Formation. The content of Q, F, VRF, MRF, SRF and MICA is the percentage of all framework grains, the content of AM, TM, CC, CM, SC and PY is the percentage of the entire sample, and the unit is %.













 





Table 2. Content of component and pores by recalculated parameters from thin sections and porosity and permeability by core analysis in the Wenchang and Enping Formations.
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Component, Pore,

Porosity and Permeability

	
Enping Formation

	
Wenchang Formation




	
Range

	
Average

	
Range

	
Average






	
Quartz/%

	
31.0−84.0

	
69.3

	
31.0−85.9

	
65.2




	
Feldspar/%

	
4.5−39.0

	
16.6

	
4.2−46.5

	
12.9




	
Volcanic rock fragment/%

	
0.5−61.0

	
10.0

	
3.6−56.6

	
20.4




	
Metamorphic rock fragment/%

	
0.0−25.5

	
2.7

	
0.0−11.5

	
0.5




	
Sedimentary rock fragment/%

	
0.0−3.1

	
0.3

	
0.0−25.9

	
0.8




	
Mica/%

	
0.0−7.5

	
1.1

	
0.0−2.4

	
0.2




	
Argillaceous matrix/%

	
0.0−19.0

	
3.0

	
0.0−45.5

	
1.7




	
Tuffaceous matrix/%

	
0.0−22.0

	
4.0

	
0.0−22.0

	
8.8




	
Carbonate cement/%

	
0.0−22.0

	
1.1

	
0.0−26.0

	
1.3




	
Clay mineral/%

	
0.0−15.0

	
1.9

	
0.0−10.0

	
0.5




	
Siliceous cement/%

	
0.0−4.0

	
1.2

	
0.0−5.0

	
0.3




	
Pyrite/%

	
0.0−2.5

	
0.3

	
0.0−2.0

	
0.1




	
Primary pore/%

	
0.0−40.0

	
5.7

	
0.0−24.0

	
1.9




	
Interparticle pore/%

	
0.0−4.5

	
0.2

	
0.0−14.0

	
1.9




	
Intragranular pore/%

	
0.0−2.5

	
0.6

	
0.0−8.0

	
1.3




	
Intercrystalline pore/%

	
0.0−2.0

	
0.2

	
0.0−0.5

	
0.0




	
Microfracture/%

	
0.0−0.1

	
0.0

	
0.0−4.0

	
0.1




	
Porosity/%

	
1.5−18.7

	
11.3

	
1.2−20.5

	
11.1




	
Permeability/mD

	
0.01−4119.7

	
297.3

	
0.01−411.0

	
12.7











 





Table 3. Tuffaceous content and particle size statistics in the Wenchang and Enping Formations.






Table 3. Tuffaceous content and particle size statistics in the Wenchang and Enping Formations.





	Wells
	H1
	H2
	H3
	H4A
	H5
	H7





	EP
	5.0% (<0.24 mm)
	11.6% (<0.2 mm)
	2.2% (<0.15 mm)
	/
	8.2% (<0.35 mm)
	0.6% (<0.2 mm)



	WC
	11.0% (0.3–2 mm)
	/
	6.4% (0.2–0.5 mm)
	9.5% (0.2–1 mm)
	/
	8% (0.2–0.4 mm)
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