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Abstract: The Paleogene sandstone reservoir of Huizhou Sag is an important target for deep explo-
ration in the Pearl River Mouth Basin, South China Sea. Because of the intense volcanic activity,
it had a significant impact on the development of reservoirs, making it hard to predict. The dia-
genetic process of volcanogenic sediment and their influence of the reservoir have been studied
by petrographic analysis, X-ray diffraction and scanning electron microscopy (SEM). Four types of
volcanogenic sediment were identified: volcanic dust (<0.05 mm), volcanic rock fragments, crystal
fragments (quartz and feldspar) and vitric fragments. The strong tectonic and volcanic activity of
the Wenchang Formation resulted in a high content of volcanic materials, which led to significant
reservoir compaction. The main sedimentary facies types are fan delta facies and lacustrine facies;
the thick lacustrine mudstone can be used as high-quality source rock. After the source rock of the
Wenchang Formation matured and discharged acids, feldspar and rock fragments dissolved to form
dissolution pores, which effectively increases the porosity of the reservoir, but the argillaceous matrix
and clay minerals produced by the volcanic dust alteration would reduce the permeability of the
reservoir. With the weaker tectonic activity of the Enping Formation, the sedimentary facies changed
into braided river delta, resulting in the greater componential maturity of the reservoir. Due to the
relatively small impact of acidic fluids on the reservoir, the pore types of the reservoir are mainly
primary pores with good physical properties.

Keywords: volcanogenic sediment; diagenetic sequence; reservoir quality; the Wenchang Formation;
the Enping Formation; Huizhou Sag; Pearl River Mouth Basin

1. Introduction

With the continuous improvement of exploration, shallow oil and gas exploration can
no longer meet the increasing demand for oil and gas. Deep exploration, as one of the
important areas of oil and gas energy exploration, has become a hotspot in the global oil
and gas geological field [1–4]. However, due to the large burial depth and strong reservoir
heterogeneity, it is difficult to predict the distribution of high-quality reservoirs, which also
restricts the continuous development of deep oil and gas exploration [5–14]. As an impor-
tant oil and gas producing area in the Pearl River Mouth Basin (PRMB) of the South China
Sea, Huizhou Sag has also shifted its exploration focus to the deep layer in recent years,
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and many large-scale oil and gas reservoirs have been found in the deep Paleogene, which
proves the deep exploration potential of Huizhou Sag [15–19]. The PRMB of Paleogene was
a continental rift basin with strong and complex tectonic activity. The Huizhou Sag also
experienced strong tectonic activity in the Paleogene, including the first and second episode
of the Zhuqiong movement (about 54 Ma and 39.4 Ma) and the Nanhai movement (about
29.3 Ma), which was also accompanied by many volcanic eruptions [20–24]. Generally,
intensive volcanic activity has a significant impact on sedimentation, reservoirs and source
rocks, which can alter the sedimentary pattern, the quality of reservoirs and source rocks
and the distribution of oil and gas reservoirs [25–36]. The incorporation of a large amount
of volcanogenic sediment will lead to more complex and unpredictable reservoir character-
istics [34,37,38]. Previous studies have mainly focused on elucidating the characteristics
and reservoir-forming mechanisms of deep reservoirs [39–41]. However, there has been
little research on the impact mechanism of volcanogenic sediment in areas with intense
volcanic activity. Because of the strong impact on the reservoir, evaluating the impact of
volcanic activity and volcanogenic sediment in reservoirs and oil and gas reservoirs is an
important foundation for predicting high-quality reservoirs in the Huizhou Sag.

Volcanic activity often affects strata in two forms, including volcanic eruption and
magma intrusion. Volcanic eruption mainly affects contemporaneous sedimentary lay-
ers [42–45]. Volcanic materials are often accompanied by volcanic eruption, mixed with
contemporaneous sedimentary debris, and participate in later diagenesis evolution as
dissolution components. The intrusion of magma mainly affects the early pre-existing
strata. The intrusion of magma will transmit heat to the strata, causing thermal alteration
of rock strata and even the recycling of sand bodies [27–29,35,46–60].

In this paper, we studied the characteristics and evolution of volcanogenic sediments
in the Wenchang and Enping Formation of Huizhou 26 subsag, Huizhou Sag, Zhu-I
Depression, Pearl River Mouth Basin, aiming to (1) define the reservoir characteristics
of the Wenchang and Enping Formation; (2) study the characteristics and differences of
volcanogenic sediments in different strata; and (3) discuss the diagenetic evolution of
volcanogenic sediments and its influence on reservoir characteristics and evolution.

2. Geological Setting

The Pearl River Mouth Basin (PRMB), located in the South China Sea, can be divided
into five secondary tectonic units from south to north, which are the Southern Uplift Zone,
the Southern Depression Zone (Zhu-II Depression, Chaoshan Depression), the Central
Uplift Zone, the Northern Depression Zone (Zhu-I Depression and Zhu-III Depression)
and the Northern Uplift Zone. The Zhu-I depression is a large depression developed in the
Northern Depression Zone of the PRMB. It is NE-trending, adjacent to the Northern Fault
Terrace Zone in the north, the Central Uplift Zone in the south and the Zhu-III Depression
in the west. From west to east, five negative structural units are arranged in order: Enping
Sag, Xijiang Sag, Huizhou Sag, Lufeng Sag and Hanjiang Sag (Figure 1) [20,23,61–65].

The tectonic evolution of the PRMB can be divided into three stages. (1) Rifting stage:
According to the tectonic episode, it can be divided into three stages corresponding to
the three tectonic movements of the Shenhu movement, the first and the second episode
of the Zhuqiong movement. At this stage, the basin experienced multi-stage rifting and
tension, resulting in a NE-trending rift zone composed of grabens or semi-grabens. Among
them, the near EW-, NE- and NEE-trending boundary faults and NWW-trending faults in
the depression controlled the basic structural pattern of the basin, which corresponded to
the development of the Shenhu, Wenchang and Enping Formations [66–70]. (2) Post-rift
depression stage: This was an evolution stage accompanied by depression and fracture,
including a rift-depression transition sub-stage and a depression quiet sub-stage, mainly
corresponding to the Nanhai movement and Baiyun movement, which corresponded to
the strata of the Zhujiang Formation, Zhuhai Formation and Hanjiang Formation. The
basin underwent regional uplift and denudation in the Late Oligocene and transformed
from a rift to a depression. The NWW fault activity was slightly stronger, and the fault
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activity in other directions continued to weaken [21,71]. (3) Fault block activity stage: The
PRMB experienced block fault rise and fall, and the uplift area suffered different degrees
of denudation, frequently fracture and magmatic activity, corresponding to the Dongsha
movement (Figure 2) [26,72,73].
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phological paĴern that penetrated the Wenchang-Enping Formation in Huizhou Sag. (c) Main mor-
phological paĴern and boreholes in Huizhou 26 Subsag. Abbreviations: PRMB = Pearl River Mouth 
Basin; Zhu 1 = Zhu-I Depression; Zhu 2 = Zhu-II Depression; Zhu 3 = Zhu-III Depression; NUZ = 
Northern Uplift Zone; PYU = Panyu Uplift; DSU = Dongsha Uplift; SUZ = Southern Uplift Zone. 
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Figure 1. (a) Topography and altitude of the South China Sea and adjacent regions with locations
of the major sedimentary basins, including the Huizhou Sag (HZS) in Zhu-I Depression. (b) Main
morphological pattern that penetrated the Wenchang-Enping Formation in Huizhou Sag. (c) Main
morphological pattern and boreholes in Huizhou 26 Subsag. Abbreviations: PRMB = Pearl River
Mouth Basin; Zhu 1 = Zhu-I Depression; Zhu 2 = Zhu-II Depression; Zhu 3 = Zhu-III Depression;
NUZ = Northern Uplift Zone; PYU = Panyu Uplift; DSU = Dongsha Uplift; SUZ = Southern Uplift Zone.
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Figure 2. Generalized stratigraphic column of the Huizhou Sag, Pearl River Mouth Basin (modified
from [19,66]).

The Huizhou Sag is located in the middle of Zhu-I depression, north of the Northern
Fault Terrace, south of the Central Uplift Zone of Dongsha Uplift, adjacent to Huilu Low
Uplift and Huixi Low Uplift to the east and west. The study area is located in the southern
margin of Huizhou Sag, with an area of 1500 km2. The early NE-trending depression-
controlling faults and the late NW-trending reformation faults are mainly developed in
Huizhou Sag. Under their joint control, the Huizhou Sag shows a structural framework
of alternating uplift and sag (Figure 1). The main body of the sag can be divided into
several small subsags, which are mainly distributed along the depression-controlling faults.
With strong tectonic activity in the Wenchang Formation, the main sedimentary facies
are the fan delta facies and lacustrine facies. The thick lacustrine mudstone in the center
of the sag can be used as a high-quality source rock for the Paleogene. With weakening
tectonic activity in the Enping Formation, the main sedimentary facies is converted to the
large-area braided-river delta facies, without the development of high-quality lacustrine
source rocks [16,73,74].
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3. Materials and Methods

A total of 164 thin sections of the Wenchang-Enping Formation from 6 wells’ sandtone
samples were prepared. In order to identify pores and calcite, all thin sections were impreg-
nated with blue epoxy resin and stained with alizarin red-s solution [75,76]. The quantitative
statistics of minerals and pores were observed by polarizing microscope with 400 counting
points per thin section, using the Gazzi–Dickinson point-counting method [77–79].

A total of 39 gold-coated samples from 4 wells in the Wenchang-Enping Formation
were observed used scanning electron microscope (SEM) to examine the morphologies and
spatial relationships of diagenetic minerals. These samples were analyzed with JSM-5500LV
scanning electron microscope (JEOL. Ltd., Tokyo, Japan) equipped with a Quantax 400
energy-dispersive X-ray (EDX) spectrometer (Bruker Co. Ltd., Billerica, America) under a
beam current of 1.0 to 1.5 nA and an acceleration voltage of 20 kV.

A total of 58 samples from 6 wells in the Wenchang-Enping Formation, which were
volcanic glass in the rock layer, were analyzed using an electron probe to determine the
main element content characteristics of the volcanogenic sediment. These samples were
analyzed with a JXA-8320 Electron probe X-ray microanalyzer (JEOL. Ltd., Tokyo, Japan).
The test temperature was 20 ◦C and the humidity was 43%.

A total of 214 core plug porosity and permeability datapoints from 6 wells in the
Wenchang-Enping Formation were collected from the CNOOC to analyze the characteristics
of reservoir physical properties. The porosity and permeability of the samples were
analyzed according to the standard SY-T 6385-1999 [80] ‘The porosity and permeability
measurement of core in the net confining stress’, using a CMS-300 Overburden Pressure
Pore-permeator. The core porosity was measured using helium gas, and the measurement
accuracy is 0.5 porosity units. The permeability was calculated using a custom pulse decay
permeability meter with helium as the detection gas and using total gas flux measurements.

4. Results
4.1. Lithofacies and Petrography of the Wenchang-Enping Formation

The Wenchang Formation (fan delta facies) is mostly composed of thick sand bodies
intercalated with thin layers of mud, with a sand content of 50.5–82.7%. The volcanic
breccia is more than 300 m thick, indicating strong volcanic activity. At the same time, the
development of volcanic rocks indicates that volcanic activity is dominated by effusive
facies and synsedimentary volcanic activity. The Enping Formation (braided-river delta
facies) is mostly composed of thin interbedded sand and mudstone, with a sand content of
60.3–77.2%. The development of thin-bedded tuff and tuffaceous sandstone in the Enping
Formation indicates that the synsedimentary volcanic activity is dominated by explosive
facies and has a relatively weak intensity (Figure 3).

The petrologic characteristics between the Wenchang and Enping Formation are
different (Figure 4 and Tables 1 and 2). Due to the strong volcanic activity in the study
area, a large amount of tuffaceous matrix developed in the reservoir, which is different
from the argillaceous matrix. They are both extremely fine in size, but the tuffaceous matrix
often appears as aggregated products with various colors and little or no light reflection.
The tuffaceous matrix is unstable at high temperatures, often undergoing devitrification
and dissolution, with a first-order gray-white interference color. The argillaceous matrix
is mainly composed of clay minerals, which are relatively stable and difficult to undergo
dissolution and have a high interference color with star-like distribution, which is a main
difference from the tuffaceous matrix [29,34,81,82].
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Table 1. Content data of component by point count from thin sections.

WELL DEPTH STRATA Q F VRF MRF SRF MICA AM TM CC CM SC PY

H1 3158.4 EP 62.0 28.0 6.5 0.0 0.0 3.5 19.0 5.0 0.0 0.0 0.0 0.5

H1 3184 EP 82.5 7.5 9.5 0.5 0.0 0.0 1.0 5.0 22.0 0.5 1.5 0.0

H1 3200 EP 51.0 10.0 38.0 0.0 0.0 1.0 0.0 5.0 0.5 15.0 0.0 2.5

H1 3226 EP 33.5 39.0 24.0 1.0 0.0 2.5 0.0 5.0 0.0 13.0 0.0 0.0

H1 3226 EP 41.0 33.5 25.0 0.0 0.0 0.5 0.0 5.0 0.0 15.0 0.0 0.0

H1 3234.5 EP 36.0 9.0 54.0 0.0 0.0 1.0 0.0 5.0 0.0 5.0 0.0 0.0

H1 3235 EP 31.0 6.0 61.0 0.0 0.0 2.0 0.0 5.0 0.5 0.5 0.0 0.0

H1 3399.4 WC 41.0 11.0 48.0 0.0 0.0 0.0 0.0 10.0 0.0 10.0 0.0 0.0
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Table 1. Cont.

WELL DEPTH STRATA Q F VRF MRF SRF MICA AM TM CC CM SC PY

H1 3503.5 WC 54.0 24.5 21.0 0.0 0.0 0.5 0.0 8.0 0.0 10.0 0.5 0.0

H1 3582 WC 31.0 46.5 22.5 0.0 0.0 0.0 20.0 15.0 0.0 0.0 0.0 0.0

H3 3166.5 EP 79.6 14.0 5.1 0.6 0.6 0.0 0.0 0.0 0.0 0.0 1.0 0.0

H3 3182 EP 73.6 16.0 7.4 0.0 3.1 0.0 0.0 0.0 0.0 0.0 1.0 0.0

H3 3211 EP 79.8 13.1 6.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

H3 3223 EP 64.3 15.5 20.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

H3 3266.5 EP 78.3 12.0 7.8 0.6 1.2 0.0 0.0 0.0 0.0 0.0 1.0 0.0

H3 3281.5 EP 77.8 12.6 5.2 1.5 0.0 3.0 1.0 0.0 0.0 0.5 0.0 0.0

H3 3304 EP 78.1 9.5 10.1 0.0 0.0 2.4 0.0 6.0 1.5 0.0 0.5 0.0

H3 3360 EP 63.9 9.6 23.5 0.0 0.6 2.4 0.0 0.0 0.0 0.0 1.0 0.0

H3 3380 EP 59.5 7.7 27.4 0.0 0.6 4.8 0.0 16.0 0.0 0.0 0.0 0.0

H3 3521 EP 82.1 11.4 5.7 0.0 0.8 0.0 15.0 0.0 0.0 0.0 1.0 0.0

H3 3572.5 WC 54.0 10.4 29.4 0.0 4.9 1.2 0.0 0.0 0.0 0.0 1.0 0.0

H3 3583 WC 74.1 14.5 9.6 0.0 1.2 0.6 0.0 0.0 0.0 0.0 1.0 0.0

H3 3596 WC 56.6 6.0 34.9 0.0 0.0 2.4 0.0 16.0 0.0 0.0 0.0 0.0

H3 3615 WC 60.0 8.2 30.0 0.0 1.8 0.0 0.0 1.0 0.0 0.0 1.0 0.0

H3 3719.5 WC 38.6 4.2 56.6 0.0 0.6 0.0 0.0 2.0 0.0 0.0 0.5 0.0

H3 3726 WC 50.7 23.3 23.3 1.4 1.4 0.0 0.0 16.5 0.5 0.5 1.0 0.0

H3 3791 WC 45.2 7.1 47.6 0.0 0.0 0.0 0.0 0.0 0.0 6.0 0.0 0.0

H3 3794 WC 62.0 12.7 25.3 0.0 0.0 0.0 0.0 10.0 0.0 0.0 0.0 0.0

H3 3798 WC 42.5 11.0 45.2 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0

H3 3801.5 WC 44.9 15.4 38.5 0.0 0.0 1.3 0.0 22.0 0.0 0.0 0.0 0.0

H3 3816.5 WC 63.3 15.2 20.3 0.0 1.3 0.0 0.0 3.0 0.0 0.0 0.0 0.0

H4A 3600 WC 49.4 4.5 46.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

H4A 3705 WC 34.9 10.5 54.7 0.0 0.0 0.0 0.0 6.0 0.0 0.0 0.0 0.0

H4A 3808.5 WC 73.3 12.8 14.0 0.0 0.0 0.0 0.0 12.0 0.0 0.0 0.0 0.0

H4A 3820.15 WC 67.8 12.1 18.4 0.0 0.6 1.1 0.0 12.0 0.0 0.0 0.0 0.0

H4A 3821.4 WC 72.4 8.2 18.8 0.0 0.0 0.6 0.0 12.0 0.0 0.0 0.0 0.0

H4A 3822.97 WC 75.9 8.0 14.9 0.0 0.0 1.1 0.0 11.0 0.0 0.0 0.0 2.0

H4A 3823.5 WC 79.8 8.3 11.9 0.0 0.0 0.0 0.0 10.0 0.0 0.0 0.0 0.0

H4A 3824.45 WC 75.6 9.8 14.6 0.0 0.0 0.0 0.0 0.0 18.0 0.0 0.0 0.0

H4A 3825.41 WC 85.9 9.4 4.7 0.0 0.0 0.0 0.0 12.0 0.0 0.0 0.0 0.0

H4A 3826.19 WC 84.3 10.8 4.8 0.0 0.0 0.0 0.0 9.0 4.0 0.0 0.0 1.5

H4A 3827.5 WC 68.1 15.0 16.3 0.6 0.0 0.0 0.0 15.0 0.0 0.0 5.0 0.0

H4A 3828.12 WC 73.9 12.7 13.4 0.0 0.0 0.0 0.0 12.0 5.0 0.0 0.0 0.0

H4A 3829.43 WC 63.6 16.4 20.0 0.0 0.0 0.0 45.0 0.0 0.0 0.0 0.0 0.0

H4A 3830.86 WC 71.6 14.9 13.5 0.0 0.0 0.0 0.0 0.0 26.0 0.0 0.0 0.0

H4A 3831.96 WC 63.5 21.2 15.3 0.0 0.0 0.0 0.0 13.5 1.0 0.0 0.5 0.0

H4A 3832.93 WC 83.3 11.9 3.6 0.0 0.0 1.2 0.0 12.5 0.0 0.0 0.5 0.0
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Table 1. Cont.

WELL DEPTH STRATA Q F VRF MRF SRF MICA AM TM CC CM SC PY

H4A 3833.68 WC 76.1 11.4 12.5 0.0 0.0 0.0 0.0 12.0 0.0 0.0 0.0 0.0

H4A 3834.59 WC 71.6 6.2 21.0 0.0 0.0 1.2 0.0 19.0 0.0 0.0 0.0 0.0

H4A 3835.45 WC 82.1 8.3 9.5 0.0 0.0 0.0 0.0 12.0 0.0 0.0 0.5 0.0

H4A 3836.7 WC 80.4 7.6 12.0 0.0 0.0 0.0 0.0 14.0 0.0 0.0 0.0 0.0

H4A 3837.43 WC 77.0 9.2 13.8 0.0 0.0 0.0 0.0 10.0 0.0 0.0 0.0 0.0

H4A 3848.5 WC 76.6 14.3 9.1 0.0 0.0 0.0 0.0 12.0 0.0 0.0 0.0 0.0

H4A 3868.3 WC 78.6 11.9 9.5 0.0 0.0 0.0 0.0 11.0 0.0 0.0 0.0 0.0

H4A 3871 WC 69.0 19.0 11.9 0.0 0.0 0.0 16.0 0.0 0.0 0.0 0.0 0.0

H4A 3873.6 WC 76.5 12.3 11.1 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 0.0

H4A 3879 WC 75.9 16.5 7.6 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 0.0

H4A 3883.3 WC 76.1 9.1 14.8 0.0 0.0 0.0 0.0 7.5 0.0 0.0 0.5 0.0

H4A 3886.5 WC 73.9 10.2 15.9 0.0 0.0 0.0 0.0 11.0 0.5 0.0 0.0 0.0

H4A 3897 WC 76.2 16.7 7.1 0.0 0.0 0.0 0.0 12.0 0.0 0.0 0.0 0.0

H4A 3907.5 WC 68.3 13.4 18.3 0.0 0.0 0.0 0.0 10.0 0.0 0.0 0.0 0.0

H4A 3912.5 WC 57.6 5.9 10.6 0.0 25.9 0.0 0.0 10.0 0.0 0.0 0.0 0.0

H4A 4082 WC 73.6 10.3 16.1 0.0 0.0 0.0 0.0 6.0 0.0 0.0 0.0 0.0

H4A 4094 WC 49.7 10.1 40.2 0.0 0.0 0.0 0.0 15.0 0.0 0.0 0.0 0.0

H4A 4109 WC 46.4 8.3 45.2 0.0 0.0 0.0 0.0 13.5 0.0 0.0 0.0 0.0

H5 3113.8 EP 74.5 17.5 4.0 4.0 0.0 0.0 7.0 2.0 0.0 0.0 1.5 0.5

H5 3120.47 EP 79.5 16.5 3.5 0.5 0.0 0.0 3.0 2.0 0.0 0.0 0.5 1.0

H5 3125.15 EP 77.0 9.0 6.0 5.0 1.0 2.0 4.0 5.0 0.0 1.5 0.0 0.5

H5 3134.42 EP 71.5 17.5 6.5 4.0 0.0 0.5 1.0 3.0 0.0 0.0 0.5 1.0

H5 3136.41 EP 73.0 17.0 8.0 2.0 0.0 0.0 0.0 5.0 3.0 0.0 1.5 0.0

H5 3160 EP 74.5 18.0 5.5 1.5 0.5 0.0 4.5 5.0 0.0 1.5 2.0 0.0

H5 3186.5 EP 76.5 15.5 7.0 0.5 0.5 0.0 0.0 5.0 0.0 0.0 2.0 0.0

H5 3195 EP 68.0 21.5 4.0 6.0 0.0 0.5 0.0 5.0 0.0 0.0 2.0 0.0

H5 3206 EP 79.0 5.0 16.0 0.0 0.0 0.0 3.5 15.0 0.0 9.0 0.5 1.0

H5 3284 EP 77.0 17.0 6.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0 1.0 0.0

H5 3288 EP 76.0 18.0 5.0 0.0 1.0 0.0 0.0 5.0 0.0 0.0 1.5 0.0

H5 3314 EP 74.0 11.5 7.0 5.5 1.0 1.0 7.0 15.0 0.0 0.0 2.0 0.5

H5 3421 EP 70.5 16.5 8.5 4.0 0.5 0.0 1.0 10.0 0.0 12.0 2.0 0.5

H5 3425 EP 75.0 14.5 9.0 0.0 1.5 0.0 0.0 5.0 6.0 5.5 1.0 0.5

H5 3429.5 EP 79.5 14.0 5.5 1.0 0.0 0.0 1.0 10.0 1.5 3.5 3.0 1.0

H5 3433.6 EP 74.5 16.5 6.5 2.5 0.0 0.0 1.5 15.0 0.0 7.0 2.0 0.0

H5 3524.6 EP 73.5 14.5 9.5 0.0 0.0 2.5 17.0 20.0 0.0 0.0 0.0 0.0

H5 3553 EP 74.5 14.5 6.0 0.5 0.0 4.5 18.0 22.0 0.0 0.0 0.0 0.0

H5 3554.5 EP 80.0 15.5 3.0 0.0 0.5 1.0 7.0 5.0 1.0 1.0 0.5 0.0

H5 3581 EP 79.5 16.0 3.5 0.5 0.5 0.0 0.0 5.0 1.0 0.5 4.0 0.0

H7 3462 EP 73.5 18.5 4.0 3.0 0.5 0.5 0.0 0.0 0.0 0.0 2.0 0.0

H7 3480 EP 72.5 19.0 2.0 4.5 1.0 1.0 1.0 0.0 0.0 0.0 2.0 0.0
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Table 1. Cont.

WELL DEPTH STRATA Q F VRF MRF SRF MICA AM TM CC CM SC PY

H7 3514 EP 77.5 14.5 5.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0

H7 3632 EP 70.5 21.0 3.5 4.0 0.5 0.5 1.0 0.0 0.0 0.5 1.0 0.5

H7 3649.5 EP 65.5 24.0 6.0 4.0 0.0 0.5 1.0 1.0 0.0 0.5 1.5 0.0

H7 3660 EP 79.0 4.5 5.5 10.5 0.0 0.5 0.0 2.0 0.0 0.0 0.5 0.0

H7 3672.5 EP 68.0 23.5 7.5 1.0 0.0 0.0 1.5 0.0 0.0 0.0 3.0 1.5

H7 3676.5 EP 68.0 24.0 4.5 3.0 0.0 0.5 9.0 0.0 0.5 0.5 3.0 0.0

H7 3684 EP 54.0 21.0 12.0 12.5 0.0 0.5 17.0 0.0 0.0 0.5 1.5 0.5

H7 3690.3 EP 84.0 5.5 3.5 6.0 0.0 1.0 0.0 0.5 0.0 1.5 2.0 0.0

H7 3700 EP 67.0 20.5 9.0 3.5 0.0 0.0 0.0 0.0 0.3 0.2 3.0 0.0

H7 3715 EP 78.0 9.5 12.0 0.5 0.0 0.0 3.0 1.0 0.0 3.0 0.5 0.0

H7 3721.5 EP 69.5 20.5 6.0 3.5 0.0 0.5 1.0 0.0 0.0 0.0 2.0 0.5

H7 3738 EP 67.5 26.5 3.0 1.0 0.0 2.0 1.0 1.0 0.0 5.0 1.0 0.0

H7 3743 EP 63.0 23.5 6.0 5.5 0.0 2.0 3.5 0.0 0.5 0.5 3.0 1.0

H7 3758 EP 67.5 25.5 2.0 1.0 0.0 4.0 0.5 3.0 0.0 3.0 1.0 0.5

H7 3807 EP 64.0 22.0 6.5 5.5 0.0 2.0 1.0 1.0 0.0 4.0 1.0 0.5

H7 3835 EP 67.0 22.0 6.0 4.5 0.0 0.5 3.0 1.0 9.0 0.0 0.5 0.0

H7 3842 EP 64.5 24.0 0.5 3.5 0.0 7.5 0.5 1.5 0.0 2.5 0.5 0.5

H7 3969 EP 53.0 14.0 4.5 25.5 0.0 3.0 16.0 0.5 1.5 0.0 0.0 0.0

H7 3974 EP 65.5 16.5 7.5 9.5 0.0 1.0 0.0 0.0 15.0 0.0 0.0 0.0

H7 4001 WC 63.0 26.0 4.5 6.5 0.0 0.0 0.0 11.0 7.5 0.0 0.0 0.5

H7 4029.4 WC 70.5 17.0 6.5 3.5 2.0 0.5 7.0 6.5 0.5 0.0 1.0 0.0

H7 4051 WC 67.0 15.0 5.5 11.5 0.0 1.0 0.5 6.5 2.5 0.0 0.0 0.0

Note: Q—Quartz; F—Feldspar; VRF—Volcanic rock fragment; MRF—Metamorphic rock fragment; SRF—
Sedimentary rock fragment; MICA—Mica; AM—Argillaceous matrix; TM—Tuffaceous matrix; CC—Carbonate
cement; CM—Clay mineral; SC—Siliceous cement; PY—Pyrite; EP—Enping Formation; WC—Wenchang Forma-
tion. The content of Q, F, VRF, MRF, SRF and MICA is the percentage of all framework grains, the content of AM,
TM, CC, CM, SC and PY is the percentage of the entire sample, and the unit is %.

Table 2. Content of component and pores by recalculated parameters from thin sections and porosity
and permeability by core analysis in the Wenchang and Enping Formations.

Component, Pore,
Porosity and Permeability

Enping Formation Wenchang Formation

Range Average Range Average

Quartz/% 31.0−84.0 69.3 31.0−85.9 65.2

Feldspar/% 4.5−39.0 16.6 4.2−46.5 12.9

Volcanic rock fragment/% 0.5−61.0 10.0 3.6−56.6 20.4

Metamorphic rock fragment/% 0.0−25.5 2.7 0.0−11.5 0.5

Sedimentary rock fragment/% 0.0−3.1 0.3 0.0−25.9 0.8

Mica/% 0.0−7.5 1.1 0.0−2.4 0.2

Argillaceous matrix/% 0.0−19.0 3.0 0.0−45.5 1.7

Tuffaceous matrix/% 0.0−22.0 4.0 0.0−22.0 8.8

Carbonate cement/% 0.0−22.0 1.1 0.0−26.0 1.3

Clay mineral/% 0.0−15.0 1.9 0.0−10.0 0.5



J. Mar. Sci. Eng. 2024, 12, 1459 10 of 26

Table 2. Cont.

Component, Pore,
Porosity and Permeability

Enping Formation Wenchang Formation

Range Average Range Average

Siliceous cement/% 0.0−4.0 1.2 0.0−5.0 0.3

Pyrite/% 0.0−2.5 0.3 0.0−2.0 0.1

Primary pore/% 0.0−40.0 5.7 0.0−24.0 1.9

Interparticle pore/% 0.0−4.5 0.2 0.0−14.0 1.9

Intragranular pore/% 0.0−2.5 0.6 0.0−8.0 1.3

Intercrystalline pore/% 0.0−2.0 0.2 0.0−0.5 0.0

Microfracture/% 0.0−0.1 0.0 0.0−4.0 0.1

Porosity/% 1.5−18.7 11.3 1.2−20.5 11.1

Permeability/mD 0.01−4119.7 297.3 0.01−411.0 12.7
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Figure 4. Ternary diagram of rock composition and histogram of the filling material show the
composition of the detrital grains and interstitial materials (a) for The Enping Formation and (b) for
the Wenchang Formation (Q, quartz grain; F, feldspar grain; R, rock fragment; modified after [83,84]).

The lithology of Wenchang Formation is dominated by litharenite and feldspathic
litharenite. Based on the point-count data, the content of quartz ranges from 31.0% to
85.9% (av. of 65.2%), and the content of feldspar ranges from 4.2% to 46.5% (av. of 12.9%).
The rock fragments predominantly consist of volcanic rock fragments (range: 3.6–56.6%;
av. of 20.4%), minor metamorphic rock fragments (range: 0.0–11.5%; av. of 0.5%) and
minor sedimentary rock fragments (range: 0.0–25.9%; av. of 0.8%). The interstitial materials
predominantly consist of tuffaceous matrix (range: 0.0–22.0%; av. of 8.8%), argillaceous
matrix (range: 0.0–45.5%; av. of 1.7%), carbonate (range: 0.0–26.0%; av. of 1.3%), minor clay
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mineral (range: 0.0–10.0%; av. of 0.5%), minor siliceous cement (range: 0.0–5.0%; av. of
0.3%) and minor pyrite (range: 0.0–2.0%; av. of 0.1%).

The lithology of the Enping Formation is dominated by lithic arkose and subarkose.
The content of quartz ranges from 31.0% to 84.0% (av. of 69.3%), and the content of feldspar
ranges from 4.5% to 39.0% (av. of 16.6%). The rock fragments predominantly consist of
volcanic rock fragments (range: 0.5–61.0%; av. of 10.0%), minor metamorphic rock fragments
(range: 0.0–25.5%; av. of 2.7%) and minor sedimentary rock fragments (range: 0.0–3.1%;
av. of 0.3%). The interstitial materials predominantly consist of tuffaceous matrix (range:
0.0–22.0%; av. of 4.0%), argillaceous matrix (range: 0.0–19.0%; av. of 3.0%), clay minerals
(range: 0.0–15.0%; av. of 1.9%), siliceous cement (range: 0.0–4.0%; av. of 1.2%), minor
carbonate (range: 0.0–22.0%; av. of 1.1%) and minor pyrite (range: 0.0–2.5%; av. of 0.3%).

4.2. Diagenetic Events
4.2.1. Compaction

The compaction effect of the HZ26 subsag reservoir is obviously strong, in which the
contact mode between the particles changes, the plastic particles deform (mica), the rigid
particles (quartz and feldspar) break up to form cracks and the particles are oriented by the
compaction effect (Figure 5a–c). The Enping Formation strata, with shallow burial depth
and relatively low interstitial content, has a strong anti-compaction ability and a relatively
weak compaction effect.

4.2.2. Cementation

• Carbonate Cementation

Carbonate cements are one of the main types of cements, of which calcite is the
most common carbonate cement in the Wenchang and Enping Formations (Figure 5d). In
the reservoir, the intergranular pores in the areas with strong carbonate cementation are
greatly reduced, resulting in poor physical properties. In the areas with moderate or weak
carbonate cementation, some residual primary pores are still retained, and these currently
exhibit good physical properties. In reservoirs with low matrix content, the content of
carbonate cements directly affects the physical properties of the reservoirs.

• Clay Mineral Cementation

Through a large number of rock slices and SEM observation, the clay mineral cements
are mainly authigenic kaolinite, chlorite, illite and I/S (Figure 5e–g). The authigenic
kaolinite is fibrous, radial or scaly, filled inside the intergranular pores under the microscope
and is pseudohexagonal under the scanning electron microscope. The chlorite and illite are
flaky or acicular (Figure 5f), and the I/S of the mixed layer is honeycomb and filamentous
(Figure 5g). The dissolution of feldspar grains is generally strong in the well section where
kaolinite cement appears, and it is speculated that kaolinite may be the product of feldspar
dissolution.

• Siliceous Cementation

Siliceous cements are mainly quartz overgrowth and authigenic quartz filling (Fig-
ure 5h). The phenomenon of quartz overgrowth is widespread, and the degree of over-
growth is high, and two episodes can be seen. In general, the increase of quartz mostly
occurs in the reservoir with temperatures greater than 60 ◦C, indicating that the buried
depth was more than 2000 m [85–89].

• Pyrite Cementation

Pyrite is a relatively low-content cement in the study area, with limited development
and only observable in some thin sections. Pyrite is an opaque mineral, so it does not
show light under plane-polarized light and cross-polarized light, and it can be seen with a
distinct metallic luster under reflected light (Figure 5i). Under the optical microscope, it
appears as a clot-like aggregate filling the pores, and the framboidal pyrite can be observed
under the SEM (Figure 5i,j).
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Figure 5. Microscopic characteristics of Paleogene sandstone diagenesis in the Huizhou Sag. (a) Frac-
tured rock fragment affected by compaction. Well H1, Wenchang Formation, 3521.5 m, PPL.
(b) Bended mica affected by compaction. Well H1, Enping Formation, 3235.0 m, PPL. (c) Scaly
sericites are Oriented distributed by compaction. Well H2, Enping Formation, 3033 m, XPL. (d) Car-
bonate cements in the pore spaces. Well H1, Enping Formation, 3184 m, PPL. (e) Kaolinite filled in
original pores. Well H5, Enping Formation, 3368.8 m, PPL. (f) Acicular kaolinite filled in pores. Well
H1, Enping Formation, 3158.4 m, SEM. (g) Honeycomb I/S of the mixed layer filled in pores. Well H7,
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Enping Formation, 3649.5 m, SEM. (h) Quartz overgrowth often develops around quartz grains.
Well H5, Enping Formation, 3206 m, PPL. (i) The clot-like pyrite filling the pores. Well H3, Enping
Formation, 3191 m, RL. (j) The framboidal pyrite filling the pores. Well H3, Wenchang Formation,
3642.7 m, SEM. (k) Feldspars form secondary dissolution pores along cleavage. Well H1, Enping For-
mation, 3235 m, PPL. (l) Kaolinite filled in the feldspar-dissolved pores. Well H5, Enping Formation,
3581 m, SEM. (m) Volcanic rock fragments are dissolved to form secondary pores. Well H1, Wenchang
Formation, 3399.4 m, PPL. (n) Tuffaceous matrix is dissolved to form interparticle dissolved pores.
Well H3, Enping Formation, 3191 m, PPL. (o) Carbonate cements replace feldspars, and both dissolve
to form secondary pores. Well H5, Enping Formation, 3554.5 m, PPL. Abbreviations: Q, Quartz; Qo,
Quartz overgrowth; F, Feldspars; RF, Rock fragment; TM, tuffaceous matrix; C, Carbonate cements; K,
Kaolinite; Py, Pyrite; P, Pores; PPL, Plane-polarized light; XPL, Cross-polarized light; RL, Reflected
light; SEM, scanning electron microscopy.

4.2.3. Dissolution

The dissolution of particle components and cements is more common; the most
common is the dissolution of feldspar particles (Figure 5k,l), followed by the dissolution
of coarse-grained volcanic rock debris (Figure 5m) and fine-grained tuffaceous matrix
(Figure 5n).

Based on the data of thin sections, the main dissolved pore types of the reservoir are
the intragranular pores and interparticle pores. The feldspar composition of the Wenchang
Formation reservoir is high, which is more prone to acid dissolution to form secondary
pores and improve reservoir properties [40,90,91]. The statistical results of thin sections
show that feldspar dissolution is the most intense in dissolution, and the feldspar dissolu-
tion pore is the most important part of secondary pores. The K+, Al3+ and SiO4

2− produced
by feldspar dissolution are deposited in the form of kaolinite and SiO2 under appropri-
ate conditions, which provides a material source for quartz overgrowth and authigenic
kaolinite [5,85,88,89].

In addition, it is also common that the latest cements are filled in early dissolution pores,
such as the dissolution pores of feldspar, which are filled by carbonate cements (Figure 5o),
and a small amount of quartz dissolution secondary pores are filled by carbonate cements.

4.3. Pore Type and Reservoir Physical Property

Due to the different diagenesis intensities, pore types and physical properties between
the the Wenchang and Enping Formations are different (Figures 6 and 7).
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For the Wenchang Formation, the main pore type of sandstones is a secondary dissolved
pore, like intergranular and intragranular dissolved pores, mainly formed by the dissolution
of feldspar and tuffaceous matrix (smaller than 0.05 mm; in aggregate form; easy to devitrify
and dissolve) (Figure 5g,h), with a poor reservoir physical property (porosity: from 1.2%
to 20.5%, mean = 11.1%; permeability: from 0.01 mD to 411 mD, mean = 12.7 mD). For the
Enping Formation, the main pore type of sandstones is a primary pore; the dissolved pore,
like intergranular dissolved pores and intragranular dissolved pores, is relatively low, with a
higher reservoir physical property (porosity: from 1.5% to 18.7%, mean = 11.3%; permeability:
from 0.01 mD to 4119.7 mD, mean = 294.3 mD). With a similar porosity, the permeability is
significantly higher than that of the Wenchang Formation reservoir.

4.4. Characteristic and Differential of Volcanogenic Sediment

Based on drilling cores and thin sections analyses, the Paleogene strata in the Huizhou
Sag was strongly affected by volcanic activity, with most wells encountering volcanic rocks
(mainly basalt) and pyroclastic rocks (mainly volcanic breccia and tuffaceous sandstone)
(Figure 3). The volcanic breccia was produced by volcanic eruptions and is mainly com-
posed of rock fragments (larger than 2 mm) (Figure 8a). Tuffaceous sandstone was mainly
composed of terrigenous clasts and volcanic ash (smaller than 2 mm), which had four types
pyroclastics: volcanic dust, rock fragments, crystal fragments and vitric fragments [92–94].
Among them, the volcanic dust, which has a particle size less than 0.05 mm, filled the
spaces among the crystal fragments, rock fragments and vitric fragments as cements, and
was local altered to laumontite (Figure 8b,c). Under cross-polarized light, laumontite is
identified by well-developed cleavages and greyish white interference colors (Figure 8b).
The SEM images also illustrate that plate-like laumontite crystals fill the pores (Figure 8c).
The crystal fragments from the volcanic rock were mainly feldspar and quartz and existed
in two forms: angular-subangular and irregular, with concave melting edges (Figure 8d,e).
The volcanic rock fragment had typical volcanic rock structures, such as pilotaxitic tex-
tures and porphyritic textures (Figure 8f,g). The vitric fragment was uniquely glassy, like
chicken-bone and sickle-like (Figure 8h), and was often unstable at low temperatures and
prone to devitrification to form felsic textures (Figure 8i) or comb structures [95].
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Figure 8. Microscopical identification of volcanic materials. (a) Drilling core with volcanic rock
fragment (larger than 10 cm). Well H2, Enping Formation, 3073–3073.3 m. (b) Volcanic dust filled
among crystal fragment and rock fragment, and altered to laumontite (red arrows). Well H4A,
Wenchang Formation, 3980.5 m, XPL. (c) Plate-like laumontite crystals filling in the pores. Well H4A,
Wenchang Formation, 3980.5 m, SEM. (d) Angular-subangular feldspar and quartz crystal fragment
(red circles). Well H7, Enping Formation, 3943 m, PPL. (e) Quartz crystal fragment with concave
irregular erosion edge (red circles). Well H7, Wenchang Formation, 4029.4 m, PPL. (f) Semiplastic
andesite fragment with pilotaxitic texture (red arrow). Well H1, Enping Formation, 3234.5 m, PPL.
(g) Rhyolite fragment with porphyritic structure, and visible clastic quartz embedded in rhyolite (red
arrow). Well H3, Wenchang Formation, 3728.5 m, PPL. (h) Chicken-bone and sickle-like volcanic
glassy fragment (red arrows). Well H4A, Enping Formation, 3220 m, PPL. (i) Volcano glass with felsic
texture (red circles). Well H2, Enping Formation, 3165 m, XPL. Abbreviations: Q, Quartz; Vd, Volcanic
dust; VRF, Volcanic rock fragment; Lmt, laumontite; PPL, Plane-polarized light; XPL, Cross-polarized
light; SEM, scanning electron microscope.

There are significant differences in the characteristics of volcanic materials between
the Wenchang and Enping Formations (Figure 3 and Table 3). For the Wenchang Formation,
it is dominated by volcanic rocks and volcanic breccias, with relatively high tuffaceous
content (mostly higher than 8%) and large particle sizes (mostly greater than 0.2 mm),
mostly in the form of skeleton particles. The Enping Formation is dominated by volcanic
dust, with relatively low tuffaceous content (mostly less than 8%) and small particle sizes
(mostly smaller than 0.2 mm), mostly filling in pores.

Table 3. Tuffaceous content and particle size statistics in the Wenchang and Enping Formations.

Wells H1 H2 H3 H4A H5 H7

EP 5.0% (<0.24 mm) 11.6% (<0.2 mm) 2.2% (<0.15 mm) / 8.2% (<0.35 mm) 0.6% (<0.2 mm)
WC 11.0% (0.3–2 mm) / 6.4% (0.2–0.5 mm) 9.5% (0.2–1 mm) / 8% (0.2–0.4 mm)

The geochemical properties of volcanic glass have been analyzed (Figure 9) [96]. For
the Wenchang Formation sandstones, the content of SiO2 ranged from 41.27% to 71.72%,
with an average value of 54.78%, and the content of K2O + Na2O ranged from 0.05% to
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15.51%, with an average value of 4.84%. For the Enping Formation sandstones, the content
of SiO2 ranged from 42.29% to 76.21%, with an average value of 54.76%, and the content
of K2O + Na2O ranged from 0.21% to 16.88%, with an average value of 5.10%. Combined
with the drilled basalt and the andesitic volcanic breccia, the magmatic properties of the
Wenchang and Enping Formations were mainly intermediate-basic.
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5. Discussion
5.1. Influence of Volcanogenic Sediment on Reservoir

In an area with strong volcanic activity, many volcanic materials entered the reservoir,
and their subsequent compaction and alteration had a significant impact on reservoir
physical properties [34,37,38].

The types of volcanic materials in the Huizhou Sag were complex: (1) The volcanic
dusts had a fine particle size and always filled in the pores as interstitial materials, which
could lead to a rapid decline in reservoir physical properties. The reservoir would transform
into a tight reservoir (porosity less than 10%, permeability less than 1 mD), while the
volcanic dust content was greater than 10% (Figure 10). Although dissolution or alteration
might occur later, the improvement of the reservoir was relatively limited. (2) The rock
fragment had a relatively coarse particle size and usually existed as skeleton particles,
which could enhance the compressive strength of the reservoir. The later dissolution
could effectively increase the physical properties of the reservoir, thus having a positive
improvement effect on the reservoir. (3) Although the volcanogenic quartz and feldspar
fragments had different origins from the terrigenous quartz and feldspar fragments, the
same minerals underwent a similar evolution process after the same diagenesis, so they
had similar impact on the reservoir and will not be discussed separately. (4) The vitric
fragments were formed by pore explosions in magma, with a fine particle size, and were
usually plastic. They were easily compacted and deformed later, which could block pores.
Although they could cause some degree of dissolution, they would ultimately reduce the
physical properties of the reservoir.

With the volcanogenic sediment mixed into the sandstone, the composition of the
reservoir has been changed (Tables 1 and 2).

The framework grains of reservoirs in the Wenchang and Enping Formations were
both dominated by rigid framework grains (quartz, feldspar and volcanic rock fragments),
with a low content of plastic framework grains (mica and vitric fragment; less than 2%)
(Tables 1 and 2). Therefore, compaction was difficult for destroying all pores, and its
strength was mainly related to burial depth. Subsequent cementation and dissolution also
had a significant impact on the reservoir [97].
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Figure 10. Cross plot of volcanic dust and porosity (a) and permeability (b) of the Wenchang and
Enping Formation reservoirs in Well H3.

The rigid framework grains in the Wenchang Formation were dominated by volcanic
frock fragments and feldspar, as well as a large amount of fine-grained tuffaceous matrix
filling the pores. The rigid framework grains in the Enping Formation were mainly com-
posed of quartz, with a low content of volcanic rock fragments and tuffaceous matrix due
to weak volcanic activity. Because of the different contents of soluble feldspar and volcanic
rock debris in different formations, the intensity of dissolution varied, and the types of ions
brought by the different components also affected the type and intensity of subsequent
cementation [5,34,89].

5.2. Diagenetic Evolution Sequence

According to the indices of organic matter maturity (Ro, %) and petrographic analysis
of thin sections and SEM observations, we reconstructed the diagenetic history and defined
the diagenetic stage as the mesodiagenetic stage in the study area [91,98–106].

The eodiagenetic stage was mainly characterized by strong compaction and early
clay mineral cladding, and the clay minerals were mainly chlorite and C/S mixed-layer.
Volcanic dust alteration formed smectite, and it began to become unstable as the burial
depth increased. It reacted with the alkaline fluid containing Fe2+ and Mg2+ produced by
the dissolution of volcanic fragment and mica to transform into chlorite and C/S mixed-
layer. Authigenic quartz is usually associated with chlorite and develops in areas without
chlorite cladding, indicating that early chlorite cladding can inhibit the quartz cementation
and protect pores (Figure 11a). At the same time, the evolution and maturity of source rocks
released organic acids [82,107–110], which would acid-soluble transform the Paleogene
reservoirs, and a large number of feldspar and coarse-grained volcanic fragments would
be dissolved (Figure 11b). Al3+ and Si2+ produced by feldspar corrosion also provided
material sources for quartz and kaolinite cementation, so they were generally considered
to have formed in the same period. The filling of feldspar dissolution pores by calcite
indicated that calcite precipitation occurred after acidic dissolution (Figure 11b,c). Scanning
electron microscopy images revealed that the fine-grained volcanic dust mainly underwent
alteration, and the alteration products were mainly laumontite and chlorite (Figure 11d).
During the mesodiagenetic period, some ankerite cementation (Figure 11e) and late pyrite
cementation (Figure 11f) occurred, which made obvious damage to the reservoir.
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Figure 11. Main diagenetic evolution characteristics. (a) Early clay mineral cladding, Well H1,
Wenchang Formation, 3405 m, SEM. (b) Calcite in feldspar-dissolved pores, Well H3, Wenchang
Formation, 3583 m, PPL. (c) Calcite in feldspar-dissolved pores, Well H5, Enping Formation, 3429.5 m,
PPL. (d) Alteration products such as laumontite and clay minerals, Well H5, Enping Formation,
3328 m, SEM. (e) Lately ankerite cementation in feldspar-dissolved pores, Well H5, Enping Formation,
3136.41 m, XPL. (f) Late pyrite filling residual pores. Well H1, Enping Formation, 3200 m, RL.
Abbreviations: Q, Quartz; F, Feldspars; C, Carbonate cements; K, Kaolinite; Ch, chlorite; Ab, Albite;
Lmt, Laumontite; Ank, Ankerite; Py, Pyrite; C/S, Mixed-layer chlorite–smectite; P, Pores; PPL, Plane-
polarized light; XPL, Cross-polarized light; RL, Reflected light; SEM, scanning electron microscopy.

Therefore, the diagenesis sequence of Huizhou 26 Paleogene reservoir is summarized
as follows: (i) compaction, (ii) clay mineral cladding, (iii) feldspar and coarse-grained
volcanic fragment dissolution, (iv) kaolinite and quartz cementation, (v) fine-grained
tuffaceous alteration, (vi) calcite cementation, (vii) hydrocarbon charge and (viii) late
ankerite and pyrite cementation (Figure 12). With higher burial depth and larger content
of feldspar and volcanogenic debris sediment, the diagenetic intensity of the Wenchang
Formation is significantly higher than that of the Enping Formation [11,17,104]. After
complex diagenetic evolution, cements filled the pores, primary pores were destroyed,
and dissolution pores developed. Therefore, although the porosity is relatively high, the
permeability is significantly lower.

5.3. Formation Mechanism of the Pyroclastic Rock

Volcanic eruptions form volcanogenic sediment, which produces pyroclastic rocks
when mixed into terrigenous clasts. The formation and distribution of pyroclastic rocks
are related to sedimentary systems and volcanic activities [94,111–113]. The difference of
volcanic activity intensity and type will produce different types of volcanogenic sediments
and have different effects on sand-bodies and reservoirs (Figure 13).
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Figure 12. Paragenetic sequence of the diagenetic history of the Wenchang-Enping Formation
sandstone reservoirs.

During the period of the Wenchang Formation, the strong tectonic activity led to
the large separation of the boundary fault. The type of sedimentary facies was mainly
fan-delta, and the short sedimentary distance and weak hydrodynamic conditions led to
the low maturity of the reservoir. At the same time, strong tectonic activity led to frequent
volcanic activity, and basalt (basic magma) indicated that the volcanic crater was close to
the sand body and erupted in the form of effusive. Therefore, many volcanogenic debris
sediments mixed into the terrigenous debris, resulting in high content of coarse volcanic
rock fragments, and the main type of interstitial materials was fine tuffaceous matrix (vol-
canic dust). Plastic framework grains and interstitial materials (tuffaceous matrix) led to
the weak ability to resist the compaction of the reservoir. Although the early clay mineral
cladding was developed, the low content led to the limit impact on the reservoir, so the
primary intergranular pores were hard to preserve. With the increase of burial depth, the
organic matter began to release organic acid, resulting in the strong dissolution of feldspar
and coarse-grained volcanic rock fragments, producing dissolution pores and alteration
minerals (kaolinite). With the consumption of acid fluid, the fluid environment changed. In
the alkaline environment, carbonate minerals were cemented, fine volcanic dust altered to
laumontite and kaolinite reacted with the alkaline fluid containing Fe2+ and Mg2+ produced
by the dissolution of volcanic materials to transform into chlorite. Finally, in the mesodia-
genetic stage, local pyrite cements were developed under the influence of hydrothermal
fluids. Strong compaction led to the poor preservation of primary intergranular pores in the
reservoir, but feldspar and rock fragment dissolution would produce massive secondary
dissolved pores. Although carbonate cement and iron cement would fill the pores in the
later stage, the impact was relatively limited, so the reservoir porosity is relatively large.
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Many interstitial materials and altered secondary minerals blocked pore throats, resulting
in the low reservoir permeability.
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Figure 13. Formation mechanism (a) and diagenetic evolution model (b) of the Wenchang and Enping
Formation pyroclastic rock.

During the period of the Enping Formation, tectonic activity weakened, and the
boundary type was mainly a gentle slope boundary. The sedimentary facies changed to
braided river delta, and the reservoir maturity increased. The absence of volcanic rock
and volcanic breccia indicated that the volcanic activity was weak and far away from the
sand body, resulting in fine-grained volcanic dust as the main type of volcanogenic debris
sediment in the reservoir. The high content of rigid framework grains (quartz, feldspar)
and shallow burial depth resulted in weak compaction effects on the reservoir, allowing for
the well-preserved primary intergranular pores. After the entry of acid fluid, feldspar and
fine-grained volcanic dust were altered. However, due to the distance from the source rock,
the acid fluid could not enter effectively, making it difficult to form dissolution pores, which
were mainly altered to produce kaolinite. After the change of the fluid environment, the
carbonate minerals were cemented, and kaolinite was transformed into chlorite. The good
preservation of primary pores and low interstitial content led to high reservoir porosity
and permeability.
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6. Conclusions

(1) For the Wenchang Formation, the main lithology is litharenite and feldspathic litharen-
ite, with high content of interstitial material, mainly tuffaceous matrix, and the main
pore type is secondary dissolved pores, with an average porosity and permeability of
11.1% and 12.7 mD. For the Enping Formation, the main lithology is lithic arkose and
subarkose, with a low content of interstitial materials and complex types. The main
pore type is primary pore, with an average porosity and permeability of 11.3% and
294.3 mD.

(2) The magmatic property was mainly intermediate-basic. The types of volcanic mate-
rials in the Huizhou Sag were complex. Coarse-grained volcanic fragments could
enhance the compressive strength of the reservoir, and the dissolution could effec-
tively increase the physical properties of the reservoir. Fine-grained volcanic dust
filled the pores as interstitial materials, resulting in the tightness of the reservoir.

(3) The reservoirs underwent a diagenetic evolution process that was broadly alkaline
to acidic and finally alkaline; the diagenesis sequence is summarized as follows:
(i) compaction, (ii) clay mineral cladding, (iii) feldspar and coarse-grained volcanic
fragment dissolution, (iv) kaolinite and quartz cementation, (v) fine-grained tuffaceous
alteration, (vi) calcite cementation, (vii) hydrocarbon charge and (viii) late ankerite
and pyrite cementation.

(4) During the period of the Wenchang Formation, strong tectonic activity led to strong
volcanic activity, with many volcanic materials mixed into the terrigenous clasts. The
rapid sedimentation of the fan delta resulted in lower reservoir maturity and stronger
compaction. The dissolution of feldspar and rock fragments generated dissolution
pores, increasing porosity, but the clay minerals produced by alteration would block
the throat and reduce the reservoir permeability. During the period of the Enping
Formation, the volcanic activity was weakened, and the type of volcanic material
was mainly fine-grained volcanic dust. The change of sedimentary facies led to the
increase of reservoir maturity and weaker compaction. It was difficult for acid fluid
to effectively enter the Enping Formation to form dissolution pores, so the content of
altered clay minerals was low, resulting in better physical properties.
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