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Abstract: This paper analyzes the ability of three conceptual stochastic models (one-box, two-box,
and diffusion models) to reproduce essential features of sea surface temperature variability on intra-
annual time scales. The variability of sea surface temperature, which is particularly influenced by
feedback mechanisms in ocean surface–atmosphere coupling processes, is characterized by power
spectral density, commonly used to analyze the response of dynamical systems to random forcing. The
models are aimed at studying local effects of ocean–atmosphere interactions. Comparing observed
and theoretical power spectra shows that in dynamically inactive ocean regions (e.g., north-eastern
part of the Pacific Ocean), sea surface temperature variability can be described by linear stochastic
models such as one-box and two-box models. In regions of the world ocean (e.g., north-western
Pacific Ocean, subtropics of the North Atlantic, the Southern Ocean), in which the observed sea
surface temperature spectra on the intra-annual time scales do not obey the ν−2 law (where ν is
a regular frequency), the formation mechanisms of sea surface anomalies are mainly determined
by ocean circulation rather than by local ocean–atmosphere interactions. The diffusion model can
be used for simulating sea surface temperature anomalies in such areas of the global ocean. The
models examined are not able to reproduce the variability of sea surface temperature over the entire
frequency range for two primary reasons; first, because the object of study, the ocean surface mixed
layer, changes during the year, and second, due to the difference in the physics of processes involved
at different time scales.

Keywords: sea surface temperature; climate variability; ocean–atmosphere system; conceptual
climate models; long-range weather forecasting

1. Introduction

Demand for information on climate predictions and weather forecasts with varying
lead times has increased dramatically over the past few decades and is likely to grow even
faster in the coming years. Driving this demand is the current climate change, which is
occurring at an unprecedented rate and varies greatly across geographies. Consequently,
normal (“typical”) weather conditions in different geographical regions are also changing
rapidly, thereby directly and indirectly affecting people and all of their multifaceted and
diverse activities [1]. For decades, numerical models of the atmosphere–ocean–land system
of varying degrees of complexity have been used as the main tool for weather forecasting
and climate prediction. However, we should realize that there is a fairly clear distinction
between weather forecasting and climate prediction. In substance, the weather forecasting
is a Cauchy or, in other words, initial-value problem, the solution to which is highly
sensitive to the accuracy of imposing the initial conditions [2–6]. Here, the term “weather”
refers to the daily conditions of the atmosphere as described by a number of atmospheric
variables such as pressure, temperature, wind speed and direction, humidity, etc. It is
important to note that due to the high sensitivity to initial conditions and the chaotic
and multiscale nature of atmospheric dynamics, the weather forecast has a predictability
limit [7–11]. Climate is an “average” weather in a particular region and, in a sense, is
defined as an ensemble of states traversed by a climate system over a sufficiently long time
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period [12], which is about 30 years, according to the World Meteorological Organization
(WMO) [13]. The climate prediction, unlike the weather forecast, is a boundary-value
problem, the solution to which depends mainly on the external forcing that forms the
boundary conditions.

Beginning in the mid-20th century, atmospheric and oceanic explorations were largely
stimulated by the development of computer technology, which was accompanied by the
development of mathematical atmospheric and oceanic models and the emergence of a
new direction in forecasting science—numerical weather prediction (NWP) for both short
and medium ranges [14]. Since then, weather prediction has improved significantly due
to the continuous enhancement of mathematical models of the atmosphere and the ocean,
the exponential growth of computing power, as well as the growth in the volume of in situ
and remote observations [15]. Despite advances in the study of the atmosphere and ocean
and the availability of extremely complex high-resolution ocean–atmosphere models with
increasingly accurate representations of physical processes, scientists have not been able to
significantly increase the lead time for reliable weather forecasts, which is currently close
to two weeks [16]). In general terms, predictability is the degree to which the state of the
atmosphere can be accurately predicted. Although the reliability of numerical weather
forecasting is limited to about two weeks, there is an urgent need for long-range and
ultra-long-range forecasts to protect people, improve safety, and maintain the pace of
socio-economic development.

In accordance with the classification adopted by the WMO, meteorological forecasts
are divided into several categories [17]. The main goal of short-term weather forecasting is
to predict the fields of meteorological variables, weather patterns, and hazardous weather
phenomena such as heavy showers, tornadoes, fogs, local thunderstorms, etc. In the
meantime, on longer time scales, the forecast objects are not the instantaneous values
of meteorological variables associated with the word “weather”, but the probabilistic
characteristics of the expected distributions, such as, for example, monthly and seasonally
averaged anomalies of meteorological variables or the probabilities of anomaly gradations
(below normal, normal, and above normal).

As the lead time of a weather forecast increases, it becomes critically important to
correctly take into account interactions between the atmosphere and thermally inertial
components of the Earth’s climate system, primarily the ocean. Understanding essential
features of ocean dynamics is vital to long-range weather and climate prediction. Generally,
the ocean, having high heat capacity, absorbs most of the solar radiation that reaches our
planet and thereby represents a considerable heat storage reservoir. Since the solar radiation
flux has a strong latitudinal dependence, the ocean receives the greatest amount of solar
energy in the equatorial regions. Large-scale surface ocean currents, typically driven by
the wind, transport the ocean’s accumulated heat throughout Earth, thereby controlling
weather and climate conditions in various parts of the globe. The ocean conveyor belt is also
a very important factor in the global distribution of heat energy, affecting and stabilizing
climate on the entire planet. From the other perspective, changes in the Earth’s climate
strongly alter the physical and chemical properties of the ocean. Suffice it to say that over
the past 12 decades (from 1900 to 2019), the global mean sea surface temperature (SST) has
increased by an average of 0.062 ± 0.013 ◦C per decade, while over the last decade (from
2010 to 2019), the SST warming rate speeded up to a value of 0.280 ± 0.068 ◦C, more than
4 times the long-range mean [18].

It should be emphasized that SST (Tw) is the most important physical quantity, which,
on the one hand, describes the ocean state and dynamics, and, on the other hand, character-
izes the features of the ocean’s impact on the atmosphere and the formation of long-term
temporary changes in weather and climate. The SST field has significant spatial variability
with a wide range of scales: global scale with amplitudes ∆Tw of tens and ones of degrees
Celsius, including latitudinal variability and sharp contrasts in warm and cold surface
currents; synoptic-scale with ∆Tw = 10−1 . . . 100 ◦C (note that the ocean synoptic scale is
a horizontal length lH of the order of 101 . . . 102 km); mesoscale (lH = 102 . . . 104 m) with
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∆Tw ≈ 10−1 ◦C; and small-scale (lH ≤ 101 m) with ∆Tw = 10−2,. . ., 10−1 ◦C. The SST field
is also characterized by considerable temporal variability, namely inter-annual, which is
mainly an integral of thermal effects of the atmosphere–ocean interaction; seasonal variabil-
ity with periods of months, which is also an integral of the atmosphere–ocean interaction
and can be formed due to the variability of the main ocean currents and upwelling; synoptic
oceanic variability with periods of months and weeks generated by the oceanic synoptic
eddies; synoptic atmospheric variability with periods of several days generated by storms,
etc.; mesoscale variability with periods from hours to minutes generated by internal waves
and clouds; and, finally, small-scale variability with periods from minutes to fractions of a
second generated by surface waves and turbulence. The distribution of mean annual SST is,
to a large degree, determined by the insolation that, in turn, strictly depends on the latitude.
Since SST and its anomalies significantly affect long-term weather and climate conditions,
it is very important to take into account both SST and its fluctuations in long-range weather
forecasting and climate prediction (e.g., [19] and references therein).

The classical approach to NWP assumes the availability of mathematical models of
the atmosphere, ocean, and active layer of land, built on a rigorous physical basis and
described by systems of multidimensional partial differential equations. As we mentioned
above, short- and medium-range weather forecasting is an initial value problem, which
means that if the initial atmospheric state in a given geographical region or the entire
planet is known, then by numerically integrating the NWP model equations, one can
predict the future state of the atmosphere. Since the behavior of the atmosphere, due to its
nonlinearity and extremely high sensitivity to initial conditions, is chaotic (the phenomenon
of deterministic chaos [20]), the NWP time horizon is limited to approximately two weeks.
Therefore, NWP models are commonly used for short-term and medium-range weather
forecasting. In such problems, the ocean and active land layer are usually parameterized.
For long-range weather forecasting, similar NWP (coupled atmosphere-ocean) models can
be used. However, the skill of the long-term forecast obtained in such a way is quite low
and difficult to understand and interpret. That is why long-range weather forecasts rely
mainly on physically based statistical relations, and the forecast outputs are formulated
in terms of probability that the climate variable will fall into above-normal, near-normal,
or below-normal tercile. In addition, the wording of long-range weather forecasts is
more general than short- or medium-range ones, since in this case the forecasts are not
focused on all meteorological variables and phenomena, but mainly on time-space averaged
values of temperature and precipitation. It should be emphasized that in recent years, AI
technologies, primarily deep learning, which in essence is an artificial neural network with
a number of layers, came to be seen by experts as promising tools for improving traditional
forecasting models and developing completely new types of models for the purpose of
weather and climate prediction (e.g., [21–24]).

In developing physical-statistical methods for long-range weather forecasting, a very
important question arises: how to identify potential predictors for the analysis and forecast
of a particular meteorological element or weather phenomenon in the region of interest? It
is acknowledged (e.g., [25–28]) that SST and its anomalies strongly influence atmospheric
circulation, thermal regime over continents, rainfall patterns, drought intensity and fre-
quency, etc. In particular, tropical and subtropical Atlantic SST anomalies (SSTA) noticeably
affect the weather and climate in the European middle and high latitudes, while Pacific
SSTA influence weather patterns and climatic conditions in the North American region
(e.g., [29–33] and references therein). The point is that SST significantly affects the heat and
moisture content of the overlying air masses. Via large-scale atmospheric motions, heat,
both sensible and latent, is transferred poleward from the tropics and subtropics to middle
latitudes and then to polar regions, thereby influencing the regional weather and climate
(e.g., [34,35] and references therein). This suggests that tropical and subtropical SSTA, along
with some other variables, can be considered as predictors in developing statistical and
AI-based long-range weather and climate prediction models for mid- and high latitudes.
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The effects of tropical and subtropical SSTA and poleward heat transport on mid- and
high-latitude weather and climate are mostly explored using coupled ocean–atmosphere
models, including adjoint models (see Appendix A for details) perturbed by specified
SST variations. However, this approach is computationally very expensive. Meanwhile,
conceptual models of the climate system and its components (e.g., atmosphere and/or
ocean) represent valuable tools for exploring the key physical processes and feedback
that govern the climate system behavior, as well as for studying the cause-and-effect
relationships between variables and forcings of various natures.

This paper aims to explore the influence of local effects due to ocean–atmosphere inter-
actions on SST variability. In this study, SST variability is characterized by power spectral
density, which is usually used to analyze the systems’ response to random perturbations.
Conceptual stochastic models, which are valuable theoretical tools for exploring climate
variability and predictability, were employed in the analysis.

2. Methods

Changes and variability in low-latitude SST, as earlier mentioned, is an important
factor that to a certain extent influences large-scale atmosphere–ocean interaction, affecting
weather patterns in extratropics and even in polar areas. Meanwhile, numerous studies
show that SST variability is significantly affected by atmospheric circulation (e.g., [36–41]).
For example, in the mid-latitudes, on seasonal to interannual time scales, the formation
of large-scale SSTA is due to the variability of sensible and latent heat fluxes on the ocean
surface, which, in turn, are closely related to the large-scale atmospheric dynamics. To
explore SST and its variability, we can use the heat budget equation for the ocean surface
mixed layer (ML), describing essential physical processes that drive the SST changes.
Under the Boussinesq and incompressibility approximations, we can write the heat budget
equation for ML as follows (see [42,43] for details):

h
∂Tavg

∂t
+ hVavg·∇Tavg +∇·

∫ 0

−h
V̂T̂dz +

(
Tavg − T−h

)( ∂h
∂t

+ V−h·∇h + w−h

)
=

Qnet
ρwcw

p
. (1)

Here h is the ML depth; T is the seawater temperature; ρw and cw
p are the density and

specific heat capacity of seawater, respectively; w is the vertical velocity; T̂ is the deviation
from the vertically averaged temperature; V̂ is the deviation from the vertically averaged
horizontal velocity Vavg; Qnet is the net heat flux across the ocean surface. Subscript avg
denotes a vertically averaged quantity, while subscript −h denotes the quantity at the ML
lower boundary, therefore w−h is the (large scale) entrainment velocity.

To advance our understanding of weather formation processes on long-range time
scales, local SSTA need to be further explored since they can trigger responses in distant
regions. Moreover, these responses can even be global if the SSTA are quite large. It
is clear that in the upper ocean layer, which includes the ML and thermocline, vertical
temperature changes are much greater than the horizontal ones. Consequently, changes
in local thermodynamic conditions are driven much more by local energy/momentum
exchange between the atmosphere and ocean, and vertical mixing rather than by horizontal
transport and mixing. For this reason, to describe local SST variations, Equation (5) can be
used in a somewhat simplified form.

Firstly, it can be assumed that vertical turbulent mixing “very quickly” levels out
the temperature profile in the ML, so that if we consider processes with a characteristic
time of one day or more, then the ML can be considered vertically well mixed with
almost uniform salinity and temperature. Secondly, we can suppose that the ML is a
horizontally homogeneous layer; therefore, the horizontal transport and diffusion can be
neglected. Thirdly, we can also assume that SST variations are mainly determined by heat
and momentum fluxes at the ocean–atmosphere interface, while the entrainment effects
and changes in ML depth play a secondary role in the formation of local SST fluctuations;
consequently, with sufficiently high accuracy, these processes can also be neglected. In view
of the above, the local heat budget Equation (1) can be rewritten as [44–47]:
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∂Tw

∂t
+

1
h
(Tw − T−h)w−h =

QS − Q−h
ρwcw

p h
, (2)

where Tw denotes the SST; QS is heat flux through the ocean surface, which is given by:

QS = Io(1 − α)/4 + (F A − FS)− HS − LES. (3)

Here Io(1 − α)/4 is the incoming shortwave rediation at the ocean surface, where
Io is the solar constant and α is the planetary albedo; the difference (F A − FS) is the net
longwave radiation, where FS the upward longwave radiation emitted by the ocean surface
to the atmosphere and FA is the atmospheric longwave counter-radiation; HS is the upward
surface turbulent sensible heat flux; LES is the upward surface turbulent latent heat flux
due to evaporation at rate ES, where L is the specific latent heat of evaporation. In (2),
Q−h is the turbulent entrainment heat flux through the bottom of ML and is defined as
by Q−h = ρwcw

p wb(Tw − T−h), where wb is the entrainment velocity [46]. Let us note that
Equation (3) will be used to describe SST variability at temporal intervals significantly
exceeding the characteristic time of atmospheric synoptic phenomena.

Sensible heat exchange between the ocean surface and atmosphere can be estimated
by using the bulk aerodynamic formula (e.g., [48]):

HS = −ca
pρaCH |u|(Ta − Tw) = −ϑH(Ta − Tw), (4)

where Ta is the near-surface air temperature; ρa is the air density; ca
p is the air specific heat

capacity at constant pressure; u is the near-surface wind vector; and CH is the bulk transfer
coefficient for sensible heat.

The latent heat flux can be parameterized in a similar way

LES = −ρaLCE|u|[qa − qm(Tw)] = −ρaLCE|u|
[
rqqm(Ta)− qm(Tw)

]
, (5)

where qa is the air specific humidity; qm is the saturation specific humidity at a given tem-
perature; rq is the air relative humidity; and CE is the bulk transfer coefficient for moisture.

Let us assume that the relative humidity of the surface layer is close to 100%. Then,
bearing in mind the small deviations of ocean water temperature from the air temperature,
and using the Magnus formula, we can obtain LES ≈ −ϑE(Ta − Tw). The long-wave heat bud-
get component can be calculated using semi-empirical formulas FA − FS = γqγnσT4

a − σT4
w,

where σ is the Stefan–Boltzmann constant, γq and γn are coefficients accounting for the
effects of water vapor and cloudiness on atmospheric counter-radiation. Expanding σT4

a
in a Taylor series about Tw and retaining only the linear term, we approximately obtain
FA − FS ≈ ϑF(Ta − Tw). As a result, the heat balance Equation (2) can be represented
as follows:

C0
dTw

dt
= −λTw + ε. (6)

where C0 = cw
p ρwh is the effective heat capacity of the ocean ML; λ is the parameter

characterizing feedback in the atmosphere–ocean system that also includes the effects of
oceanic processes; ε is a parameter representing the residual terms. Expressions for these
parameters are given below.

Let us decompose SST and other meteorological variables into seasonal and synoptic
(order of days) parts, and also divide heat fluxes at the ocean surface into slow (seasonal)
and short-periodic (synoptic) components. Then, applying the time averaging procedure to
Equation (6), subtracting the resulting averaged equation from (2) and neglecting fluctua-
tions in the feedback parameter λ, we can obtain the equation for SSTA T′

w [46,49–51]:

C0
dT′

w
dt

= −λT′
w + ε′, (7)
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where
λ = ϑH + ϑE + ϑF + ρwcw

p w−h, (8)

ε′ = Q0Q′(1 − α) + (ϑH + ϑE + ϑF)T0T′
a − Q−h,0Q′

−h. (9)

Here, dimensionless coefficients of variation in solar radiation flux Q′, air temperature
T′

a and heat exchange intensity due to the entrainment process Q′
−h are introduced, mul-

tiplied by the corresponding scale factors, indicated by the subscript “0”. Recall that the
coefficient of variation c′ is the ratio of the standard deviation σ to the mean µ, c′ = σ/µ.

In order to estimate the parameters of Equations (7)–(9), we shall assume that
ca

p = 103 Jkg−1K−1, ρa = 1 kgm−3, CH = 10−3, |u| = 5 ms−1 [52], h0 = 70 m;
cw

p = 4.2 × 103 Jkg−1K−1 and ρw = 103 kgm−3. Then we have C0 ≈ 2.9·108 Jm−2K−1

and ϑH ≈ 5 Wm−2K−1. To estimate the parameter ϑE, we use the Bowen ratio β = HS/LEs.
Since over the tropical oceans the Bowen ratio is typically 0,1, while over the mid-
latitude oceans it is slightly bigger, we shall assume that the annual β ≈ 0.2 [53] then
ϑE = ϑH/β ≈ 25 Wm−2K−1. The value of ϑF is taken to be ϑF ≈ 5 Wm−2K−1 [46]. As an
estimate of the entrainment velocity, we can take the value of 10−7 ms−1 [54]. It should
be noted that the effect of entrainment at the lower boundary of ML depends on the
intensity of turbulence in it, which is determined by the wind speed in the surface layer
of the atmosphere. Consequently, the entrainment effect has a clear diurnal cycle, and
its day-to-day variability is determined by meteorological synoptic variations with a
characteristic time in the order of several days. In such a case, the entrainment effect can
be neglected with sufficient accuracy. Since the parameters ϑH , ϑE and ϑF are subject to a
high degree of uncertainty, their values obtained above can only be used for qualitative
estimates of SST variability but not for accurate modeling and forecasting. By the way, if
we assume that Ta − Tw = 1 ◦C [55], then the resulting sensible and latent heat fluxes
are in good agreement with the available observational data [56].

The ratio λ/C0, which is the reciprocal of the relaxation time τT , has the dimen-
sion of frequency and characterizes the aggregated effect of feedback in the atmosphere–
ocean system and its thermal inertia. Using the given parameter values, we find that
λ/C0 ≈ 1.2·10−7 s−1, and, therefore, the relaxation time is τT ≈ 3 mo. The variability of
SSTA described by Equation (7) is driven by various physical processes covering a fairly
wide range of time scales. In this paper, we shall consider the case when the correlation
time τε of the process ε′(t) is much less than the characteristic time of the process T′

w(t),
i.e., τε ≪ τT . For this reason, Equation (7) can be interpreted as a stochastic Langevin equa-
tion that is used in atmospheric, oceanic, and climate research (e.g., [49,57–62]). Random
process ε′(t) can be treated as a delta-correlated (in time) random process, for which the
correlation function is given by Rε(τ) = ⟨ε(t)ε(t′)⟩ = 2Dεδ(t − t′). Here, δ(·) is the Dirac
delta function, and Dε is the diffusion coefficient, defined as Dε =

∫ ∞
0 Rε(τ)dτ = σ2

ε τε,
where σ2

ε is the variance of a delta-correlated random process [63].
To account for the effect of deep ocean layers on SST variations, multilayer ocean

models can be used. The simplest one is the two-box model, the equations of which can be
represented as follows [64,65]:

C0
dT′

w
dt

= −λT′
w − γ

(
T′

w − T′
D
)
+ ε′, (10)

CD
dT′

D
dt

= γ
(
T′

w − T′
D
)
, (11)

where T′
D is the deep ocean temperature anomaly; γ = 0.73 Wm−2K−1 is the coupling

strength parameter; and CD ≈ 3.3·109 Jm−2K−1 is the effective heat capacity of the deep
ocean layer [66].
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The heat diffusion model applied to a semi-infinite medium is also a convenient
theoretical tool for studying the influence of deep oceans on SST variability [67]:

∂T′

∂t
= α

∂2T′

∂z2 , κ
∂T′

∂z

∣∣∣∣
z=0

= −λT′ + ε′, (12)

where α = 1.0 × 10−4 m2s−1 is the thermal conductivity; κ = αcw
p ρw is the heat diffusivity

of the ocean. Recall that in the notations used in this paper T′|z=0 = T′
w [54,68].

As is known, simple models such as those discussed above are very convenient and
valuable tools for exploring fundamental climate-forming processes, contributing to a better
understanding of the role of various physical mechanisms in the formation of weather and
climate. The latter is very important from the point of view of developing methods for
long-term weather and climate forecasts.

3. Results and Discussion

Equation (7) describes the seasonal dynamics of SSTA (“slow” process) affected by
short-periodic (“fast”) synoptic processes represented by random forcing ε′. In fact, sea-
sonal changes in SST are driven by a variety of physical processes spanning a wide range
of timescales, from seconds to weeks. Examples of such processes are microscale turbu-
lence, mesoscale processes (atmospheric fronts, cloud convection clusters), and synoptic
scale phenomena (atmospheric waves and eddies with a time scale of several days and a
spatial scale of several hundred kilometers). The deterministic effect of daily variations in
meteorological variables also makes a tangible contribution to changes in SST. Longer-term
events of various origins can also make a certain contribution to seasonal SST variations,
such as the Madden–Julian oscillations in the tropics, fluctuations in monsoon intensity, the
index cycle (in mid-latitudes), the periods of which vary from three to eight weeks, etc.

Stochastic Equation (7) determines the realization of random process T′
w(t), which,

due to its randomness, is uninformative. For this reason, we are more interested not in
the realization of a random process itself but in its probabilistic characteristics. A suitable
instrument for modeling and statistical study of random processes is the power spectral
density function (PSD), which represents the signal power (variance) as a function of
frequency [69,70]. PSD can be determined from the transfer function of the system in

question, when the input is an applied random signal: S(1)
T (ω) =

∣∣∣H(1)(ω)
∣∣∣2Sε [71], where

S(1)
T (ω) is the PSD of SST fluctuations; H(1)(ω) is the transfer function of system described

by Equation (7); ω is the real angular frequency; Sε is the PSD of random process ε′(t),
which can be obtained through the Wiener–Khinchin theorem [70]:

Sε =
1

2π

∫ ∞

−∞
e−iωtRε(τ)dτ =

σ2
ε τε

π
. (13)

The Fourier transform of both sides of Equation (7) yields the transfer function from
forcing ε′ to SSTA T′

w:

H(1)(ω) =
1

iωC0 + λ
. (14)

Then the SST power spectrum is

S(1)
T (ω) =

1
π

q2
ε /C2

0

ω2 + (λ/C0)
2 , (15)

where q2
ε = σ2

ε τε.
Power spectrum (15), driven by random forcing ε′, is well known to climatologists,

meteorologists, and oceanographers: at high frequencies (ω ≫ λ/C0), PSD is proportional
to ω−2 (“red noise”) and does not depend on feedbacks and ocean thermal inertia, while
at low frequencies (ω ≪ λ/C0) the spectrum is nearly constant. Thus, the ratio λ/C0
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determines the angular frequency ωc = λ/C0 at which the transition from one mode to
another occurs. The corresponding period of SST oscillations is tc ≈ 3 mo.

Since, as mentioned above, forcing is generated by short-periodic synoptic-scale
oscillations, we can assume that τε = 5 days, i.e., over relatively long time intervals,
the coherence within the series of meteorological and climatic observations vanishes and
forcing simply becomes a stationary delta-correlated process [72]. Determining the variance
of random forcing σ2

ε , generally speaking, is a non-trivial problem. In our study, forcing
represents the cumulative effect of several uncorrelated random processes, such as short-
term fluctuations in solar radiation fluxes, air temperature fluctuations, which largely
determine changes in sensible and latent heat fluxes, fluctuations in surface wind velocity,
which indirectly affect water entrainment from the thermocline, etc. Each of these random
processes is characterized by a certain variance σ2

i . Consequently, the variance of cumulative
forcing is equal to σ2

ε = ∑(i) σ2
i . The variances σ2

i can be derived from observations of
variations in solar radiation fluxes, surface air temperature, the intensity of heat exchange
between the ML and the thermocline, etc. It is quite clear that the resulting estimates can
vary greatly across seasons and geographical regions. Therefore, for the sake of simplicity,
we make use of the estimate σε ≈ 1.5 × 102Wm−2 [46,73].

At relatively long time intervals t ≫ τε, SST changes acquire the character of steady-
state irregular fluctuations, and the process described by Equation (7) becomes stationary,
whereby the SST variance does not depend on time and can be obtained by integrating the
PSD of SST fluctuation S(1)

T (ω) over the entire frequency domain [70]:

σ2
T =

∫ ∞

−∞
S(1)

T dω =
σ2

ε τε

λC0
. (16)

By substituting the values of all parameters into the above formula, we can find the
standard deviation of steady-state SST fluctuations: σT = 0.98 ◦C. This value looks quite
realistic and corresponds to observational data. It is clear that this value can be more
reliably estimated for a specific season and region. To estimate the effect of uncertainty in
the parameter λ on σT , we logarithmically differentiate both sides of Equation (16) with
respect to λ, and obtain

1
σT

∂σT
∂λ

≈ − 1
2λ

. (17)

Thus, a minor variation ∆λ in the parameter λ results in a small fractional change
∆σT/σT in the standard deviation of SST, namely ∆σT/σT ≈ −∆λ/2λ. Taking the value of
λ found above as a reference value, we find that a change in the parameter λ by 1 Wm−2K−1

(which is about 3% of the reference value of λ) leads to a change in σT by 1.4%.
To estimate the effect of uncertainty in the parameter λ on SST power spectrum, we

use the sensitivity function defined as a partial derivative of S(1)
T with respect to λ:

Ψ(1)
λ (ω) = −2q2

ε

π

λ(
λ2 + ω2C2

0
)2 . (18)

The transfer function of the two-box model can be found by taking the Fourier trans-
form of Equations (10) and (11):

H(2)(ω) =
iωCD + γ

C0CD
[
2iωβ +

(
ω2

0 − ω2
)] . (19)
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where ω0 =
√

γλ/C0CD is the natural frequency and β = [λCD + γ(C0 + CD)]/C0CD is
the damping coefficient of the overdamped harmonic oscillator described by Equations (10)
and (11). The corresponding power spectral density is of the form:

S(2)
T (ω) =

1
π

q2
ε

(
ω2C2

D + γ2)
4ω2β2 +

(
ω2

0 − ω2
)2 . (20)

By differentiating this equation with respect to λ, we obtain a sensitivity function
that allows us to estimate the influence of variations in the parameter λ on the SST
power spectrum:

Ψ(2)
λ (ω) = − 2q2

ε

πC2
0C2

D

γ2 + C2
Dω2[(

ω2
0 − ω2

)2
+ 4β2ω2

]2
2λβω2 +

(
ω2

0 − ω2)ω2
0

λC0
. (21)

For the two-box model, the SST variance is derived by integrating S(2)
T (ω) over fre-

quency from negative infinity to positive infinity:

σ2
T =

∫ ∞

−∞
S(2)

T dω =
σ2

ε τε

λC0

γC0 + λCD

(γ + λ)CD + γC0
. (22)

Next, consider heat diffusion model (12). The transfer function from stochastic forcing
ε′ to SSTA T′(t, z)|z=0 is of the form:

H(3)(ω) =
1

λ +
√

i
(

κρwcw
p ω

)1/2 . (23)

The expression for the power spectral density is, respectively

S(3)
T (ω) =

1
π

q2
ε

λ2 + λ
√

2κρwcw
p ω + κρwcw

p ω
. (24)

Power spectrum sensitivity can be estimated by the following sensitivity function:

Ψ(3)
λ (ω) = − q2

ε

π

2λ +
√

2κρwcw
p ω(

λ2 + κρwcw
p ω + λ

√
2κρwcw

p ω
)2 . (25)

First of all, it should be noted that power spectra of SST fluctuations have been
explored on several occasions previously via both observations and numerical simula-
tions (e.g., [37–39,44–47,73–79]). The results of these studies show, in particular, that
power laws with a certain scaling exponent ζ approximate observed SST spectra quite
well, i.e., ST(ν) ∝ ν−ζ , where ν is a regular frequency. The value of ζ depends on a
number of factors, such as time scales of processes, geographical region is a question,
and the underlined surface type [79]. For example, in [79], the spectrum of global mean
temperature variability was estimated using the gridded dataset of global historical
surface temperature anomalies HadCRUT4. For the frequency range corresponding to
intra-annual time scales, the scaling exponent was 0.80 ± 0.15. Almost identical results
were obtained in [78,80].

Figure 1 shows spectra of SSTA simulated by different models used in this study. It is
important to point out that in the ocean–atmosphere system, the formation mechanisms
of SST variability are highly complicated. Therefore, it would be naive to expect that the
extremely simple models are able to reproduce the theoretical spectra of SST fluctuations
in complete agreement with the observed spectra. However, there are regions of the
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global ocean that are dynamically inactive in relative terms. Such a region is, for example,
the north-eastern part of the Pacific Ocean. Here, vertical motions are negligible, and
the average annual current speeds are less than 0.5 cm/s. For such regions, observed
and simulated SST spectra are in good agreement with each other, and their shape in
the high frequency range corresponds to the ν−2 pattern, while at low frequencies the
spectra tend to a constant value. These results allow us to make the conclusion that in the
dynamically inactive ocean regions, the SST variability is mainly produced by the local
ocean–atmosphere interactions and can be described by linear stochastic models such as
one-box and two-box considered above. Meanwhile, there are areas of the global ocean
in which the observed SST spectra on the intra-annual time scale do not obey the ν−2 law
and, therefore, cannot be simulated by linear one- and two-box stochastic models. Such
areas include, for example, the subtropics of the North Atlantic, the north-western part of
the Pacific Ocean, and the Southern Ocean. In these areas, the formation mechanisms of
SSTA are mainly determined by ocean circulation rather than by local ocean–atmosphere
interactions [73–75]. The diffusion model can, to some extent, serve as a suitable tool for
simulating SSTA in such areas of the global ocean.
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Figure 1. Power spectra of SSTA derived from one-box, two-box and diffusion models: (a) Semi-log
plot; (b) log–log plot with dashed lines that show the characteristic ν−2 and ν−0.75 slopes.

For the concise comparative analysis of theoretical and observed power spectra of
SSTA, we computed four PSD for different geographical regions. Figure 2 provides the
power spectra of SSTA in two tropical regions of the Atlantic. The PSD of Tropical North
Atlantic SSTA (TNA SSTA) is shown in Figure 2a, while the PSD of Tropical South Atlantic
SSTA (TSA SSTA) is depicted in Figure 2b. The TNA SSTA are obtained from monthly
mean SSTA averaged over the region (5.5◦ N–23.5◦ N and 15◦ W–57.5◦ W), and the TSA
SSTA are derived from monthly mean SSTA averaged over the region south of the Equator
(Equator–20◦ S and 10◦ E–30◦ W). Time series of monthly mean SSTA obtained from the
NOAA Physical Sciences Laboratory cover the period 1948–2023. On intra-annual time
scales, the calculated PSD scaling exponents vary in the range of −1.7 ≤ ζ ≤ −1.5. Note
that the slope of the SST spectrum can be determined by applying a linear regression in the
log-log coordinate system to a specific spectrum’s frequency range.
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Figure 2. Observed power spectra of the tropical Atlantic SSTA: (a) the power spectral density of
Tropical North Atlantic SSTA; (b) the power spectral density of Tropical South Atlantic SSTA. The
Tropical North Atlantic SSTA are obtained from monthly mean SSTA averaged over the region (5.5◦ N–
23.5◦ N and 15◦ W–57.5◦ W), while the Tropical South Atlantic SSTA are derived from monthly mean
SSTA averaged over the region south of the Equator (Equator–20◦ S and 10◦ E–30◦ W). Time series
of monthly mean SSTA cover the period 1948–2023 (https://psl.noaa.gov/data/climateindices/list,
accessed on 22 September 2023). Dotted grey lines represent the 95% confidence interval. Dashed
lines show spectral slopes.

Spectra of observed SST fluctuations calculated for two randomly chosen mid-latitude
regions are shown in Figure 3 (we should note that partitioning the world’s ocean into
regions based on the similarity of power spectra is a time-consuming problem that requires
specific consideration). The left panel displays the PSD of mid-latitude North Atlantic SSTA,
which are derived from monthly mean SSTA averaged over the region (35◦ N–45◦ N and
35◦ W–45◦ W), while the right panel presents the PSD of mid-latitude North Pacific SSTA
that are monthly mean SSTA averaged over the region (35◦ N–45◦ N and 155◦ W–165◦ W).
Time series of monthly mean SSTA obtained from the Met Office Hadley Centre cover the
period 1945–2020. Estimated values of scaling exponents for PSD on the intra-annual time
scales vary in the range between −1.2 and −0.9. A rather powerful peak at a frequency
ν ≈ 0.083 mo−1 is clearly visible in the mid-latitude spectra. The period associated with
this cycle is the usual 12-month seasonal variability (seasonality).

Feedback parameter λ, as mentioned earlier, is the parameter with inherent uncertainty.
To estimate the effect of this uncertainty on the power spectrum of SST, we can use the
sensitivity function, which is defined as a partial derivative of PSD ST with respect to λ,
that is Ψλ = ∂ST/∂λ. Using Ψλ, we can, as a first approximation, quantify the influence
of uncertainty in the parameter λ on the corresponding uncertainty in the PSD, namely
∆ST ≈ ∆λ·Ψλ. Thus, sensitivity function Ψλ characterizes the response of the power
spectrum to changes in the feedback parameter.

Figure 4 shows the sensitivity functions of PSD with respect to the parameter λ, calcu-
lated in the frequency domain for the one-box, two-box, and diffusion models. From this
figure, it is clear that the absolute values of sensitivity functions increase with decreasing os-
cillation period, and this increase is nonlinear. On intra-annual time scales, the dependence
of PSD on the parameter λ obtained for the one-box and two-box models is insignificant.
For example, for SST fluctuations with an annual period, the absolute values of Ψ(1)

λ and

Ψ(2)
λ are practically identical and equal approximately to 1.2·10−2 K2mo/

(
Wm−2K−1

)
,

while for fluctuations with a six-month period, the absolute values of Ψ(1)
λ and Ψ(2)

λ are

https://psl.noaa.gov/data/climateindices/list
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about 10−3 K2mo/
(

Wm−2K−1
)

. Meanwhile, on inter-annual and intra-annual time scales,
the diffusion model PSD demonstrates significantly greater sensitivity to changes in the
parameter λ. For fluctuations with one-year and six-month periods, the absolute values
of sensitivity function Ψ(3)

λ are 7.2·10−2 and 5·10−2 K2mo/
(

Wm−2K−1
)

, respectively. It
should be noted that sensitivity functions are usually used when the variations in the
affecting parameter are small enough, ideally infinitesimal. If the parameter variations
are quite large, the direct modeling is applied to estimate the effect of these variations on
the model output. Figure 5 presents PSD computed for the base value of the feedback
parameter λ0 = 35 Wm−2K−1 and the perturbed parameter λ = λ0 ± ∆, where ∆ is 10%
change in base value of the feedback parameter. Calculations were performed using a
one-box model (left panel) and a diffusion model (right panel). Figure 5 shows that on
intra-annual timescales, uncertainty in the parameter λ has little effect on the power spec-
trum. Variations in the parameter λ more or less noticeably affect the power spectrum on
inter-annual and longer time scales. The power spectrum calculated using the diffusion
model is more sensitive to changes in the feedback parameter than the power spectrum
obtained using the one-box or two-box model. In general, the accuracy of determining the
feedback parameter is not critical when modeling SSTA on intra-annual time scales.
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Figure 3. Observed power spectra of mid-latitude SSTA: (a) the power spectral density of mid-
latitude North Atlantic SSTA; (b) the power spectral density of mid-latitude North Pacific SSTA. The
mid-latitude North Atlantic SST anomalies are obtained from monthly mean SSTA averaged over
the region (35◦ N–45◦ N and 35◦ W–45◦ W), while the mid-latitude North Pacific SSTA are derived
from monthly mean SSTA averaged in the region (35◦ N–45◦ N and 155◦ W–165◦ W). Time series
of monthly mean SSTA cover the period 1945–2020 (https://www.metoffice.gov.uk/hadobs/en4/,
accessed on 22 September 2023). Dotted grey lines represent the 95% confidence interval. Dashed
lines show the spectral slopes.

When analyzing obtained results, it is necessary not to demand more from the local
statistical theory than it is capable of providing. Indeed, it is naive to hope to describe the
SST variability over the entire frequency range with any given simple “unified” model.
This is hardly possible, if only because the object of study itself, the ocean mixed layer,
changes seasonally. The physics of processes at different time scales also do not remain
the same. Therefore, it is more fruitful not to emphasize the differences, which should be
obvious anyway, but, on the contrary, to pay attention to the similarity of the empirical
spectra to what is prescribed by simple local statistical theory. This is precisely what was
done in the first papers published on this topic by Hasselmann [49] and Frankignoul and
Hasselmann [37]. The results obtained confirm that the application of local statistical theory

https://www.metoffice.gov.uk/hadobs/en4/
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is very useful for describing and interpreting the variability of the ocean’s thermal state. It
should also be noted that the results of our study do not contradict the results of previously
conducted research.
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Thus, examined simple linear stochastic models describing local ocean–atmosphere
interactions are able to provide a physically plausible, at least qualitative, simulation of
power spectra of SST fluctuations on intra-annual time scales. However, the empirical
correlation time of SST fluctuations may exceed the estimate obtained using conceptual
stochastic models considered above [46,47,49,62,77] (Figure 6 shows this effect). This is
largely because simple models do not account for non-local processes of ocean–atmosphere
interactions and, therefore, the non-locality of atmospheric temperature response to SSTA.
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box model (black dashed line), and ACF for Tropical North Atlantic SSTA (blue) and ACF for
Tropical South Atlantic SSTA (red). SSTA from 1948 to 2023 were derived from NOAA SST data
(https://psl.noaa.gov/).

Nevertheless, the low-order stochastic models presented in this paper, describing local
ocean–atmosphere interactions, as well as the technique for estimating the sensitivity of SST
fluctuation power spectra to variations in the feedback parameter, can serve as a theoretical
tool for exploring the SST variability in different parts of the world’s ocean on intra-annual
timescales, taking into account the uncertainties in the feedback parameter. The value of
these models in practice is determined by the fact that all quantities describing the random
process of SST anomaly formation can be estimated directly from the heat balance equation
of the mixed ocean layer.

4. Conclusions

Despite significant advances in long-term weather forecasting achieved in recent years,
the accuracy of these forecasts remains quite low. As shown in a number of studies, the
formation of weather and climate in the middle and high latitudes of the Eurasian continent
is significantly affected by SSTA in the tropical North Atlantic. To better understand these
effects, as well as to develop new methods for long-term weather forecasting based on
machine learning, further study of SST variability in different parts of the world’s oceans is
required. In this context, conceptual climate models are effective research tools that allow
one to estimate the influence of various physical factors on the SSTA. In this paper, we
considered simple models, which can be used to study the influence of local effects due
to ocean–atmosphere interactions on SST variability. To explore non-local effects, highly
complex coupled ocean–atmosphere general circulation models are a valuable tool, requir-
ing vast intellectual and computational resources for the formulation and implementation
of numerical experiments. Nevertheless, sometimes, to examine the essential features of
non-local effects, conceptual models can be used that, in a simplified manner, describe the
atmosphere–ocean interactions while accounting for horizontal large-scale heat exchange.
An example of how non-local effects can be included in stochastic models was discussed in
the paper of Lemke [57], in which the author applied a non-local stochastic model to explore
surface temperature variability over time scales ranging from 10 to 104 years. However,
the study of non-local effects of atmosphere-ocean interactions is beyond the scope of this
paper and will be addressed separately.
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Appendix A

Long-range weather forecasting commonly comes down to predicting anomalies of
meteorological variables and weather phenomena, primarily surface air temperature and
precipitation anomalies, averaged over some sufficiently large region, having an area in
the order of several thousand square kilometers and a lead time of a few months. In such
cases, synoptic-scale atmospheric processes can be looked at through the lens of statistical
averages. In other words, relatively rapid fluctuations in atmospheric processes, involving
effects of continuous interaction with the ocean, can be considered as noise that does not sig-
nificantly affect the average state of the climate system (the first moment), which is mainly
determined by slow and stable processes, but affects only the variability of the climate
system (second moment). To develop new methods of long-range weather forecasting, it is
highly desirable to have a priori information on how sensitive temperature anomalies in a
particular region are to variations in weather and climate conditions, including sea surface
temperature variations, in remote areas of the planet. Putting it differently, the study of
asynchronous statistical relationships between weather anomalies in remote regions and
subsequent weather anomalies in the region under consideration is extremely important
for understanding the processes occurring in the climate system and, consequently, for
developing reliable methods for long-term forecasting. Additionally, it should be noted that
the local state of the atmosphere is very sensitive to unpredictable “meteorological weather
noise”. Nevertheless, to date, global coupled ocean–atmosphere models remain key tools
for studying large-scale interaction between ocean and atmosphere and estimating the
ocean’s role in the formation of weather and climate. Meanwhile, to study asynchronous
relationships between weather anomalies in different geographical regions, one can also
apply the mathematical concept of adjoint equations, whereas the effects of weather noise
on large-scale characteristics of the atmosphere and ocean can be explored within the
framework of quasi-local theory using simple stochastic models of the climate system, in
which the weather noise is represented as a random process with specified properties.

A historical digression into the theory of adjoint equations and their applications for
sensitivity analysis of linear and nonlinear systems can be found in [81]. The fundamentals
of the theory of sensitivity for linear and nonlinear systems based on the adjoint method
are described in [82–84]. To illustrate the main idea of the adjoint-based approach, let us
consider a simple evolutionary differential equation:

∂ϕ

∂t
+ Lϕ = f in

(
0, t f

]
×D,

ϕ = ϕ0 at t = 0,
(A1)

where ϕ(t, x) is the state variable with domϕ = D; t ∈
[
0, t f

]
is time; L is linear operator;

f (t, x) is some function.
Defining the adjoint operator via the Lagrange’s identity as (Lϕ, ϕ∗) = (ϕ,L∗ϕ∗),

where (·, ·) is a dot product, we can write the adjoint equation as

−∂ϕ∗

∂t
+ L∗ϕ∗ = f ∗ in (0, T]×D,

ϕ∗ = ϕ∗
T at t = t f .

(A2)
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Here, f ∗ and ϕ∗
t f

are some yet undefined functions, the specific form of which is
determined based on the physical meaning of the problem under consideration.

Multiplying (1) by scalar ϕ, and (2) by scalar ϕ∗, subtracting the first equation from
the second one and then integrating the obtained result over time from initial time, 0, to
some final time, t f , we get the following relation:

(ϕ, ϕ∗)t f
− (ϕ, ϕ∗)0 =

∫ t f

0
[( f , ϕ∗)− (ϕ, f ∗)]dt. (A3)

Note that ϕt f = ϕ
(

t f , x
)

and ϕ∗
0 = ϕ∗ (0, x). Now we can choose functions f ∗ and ϕ∗

T .
For example, we can take ϕ∗

t f
= 0 and f ∗ = 1 in selected subdomain Dϕ ⊂ D, then

ϕ =
1

Tmes
(
Dϕ

)[(ϕ0, ϕ∗
0 )−

∫ t f

0
( f , ϕ∗)dt

]
. (A4)

Here, the quantity ϕ is the value of function ϕ averaged over the subdomain Dϕ and
time interval 0 ≤ t ≤ t f ; ϕ∗ is the influence function; and mes

(
Dϕ

)
is the measure of Dϕ

(length, area, volume). Note that if L is a nonlinear operator, then the problem becomes
more complicated [83–85]; however, the basic idea of the method remains the same.

The use of adjoint equations for the analysis and long-term forecasting of temperature
anomalies was demonstrated, for example, in [85,86]. As shown in these papers, isolines of
adjoint functions (influence functions) quantify the degree of influence of heat exchange
processes between the atmosphere and ocean on the formation of temperature anomalies
in remote areas. The areas with the highest values of the adjoint functions were called
energy-active zones of the ocean, since in these areas the atmosphere-ocean heat exchange
reaches its maximum.
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