Revisiting the Upwelling Evolution along the Western Iberian Peninsula over the 21st Century Using Dynamically Downscaled CMIP6 Data
Abstract
:1. Introduction
2. Data and Methods
2.1. WRF Dynamical Downscaling
2.2. Computation and Validation of the Data
2.2.1. Calculation of the Upwelling Index
2.2.2. Validation of the Results
2.3. Spatiotemporal Evolution of the Upwelling Index
2.4. Spatiotemporal Evolution of the Azores High
3. Results and Discussion
3.1. Validation of the Results
3.2. Spatiotemporal Evolution of Coastal Upwelling
3.2.1. Past and Future Climatology
3.2.2. Future Averages and Trends
3.2.3. Changes during the Upwelling Season
3.3. Spatiotemporal Evolution of the Azores High
4. Conclusions
- Along the WIP coast, the seasonality of the upwelling will not be impacted by climate change. Consequently, the intensity of the monthly UI will continue to reach its highest values from April to September.
- An increase in UI is expected throughout the 21st century during these months of intense upwelling, as well as a decrease for those characterized by weak upwelling.
- Considering the months from April to September, the highest increases in UI are expected at the end of the century and in northern locations of the WIP. Therefore, a homogenization of the UI according to the latitude in the WIP is expected towards the end of the century.
- These changes are a consequence of the expected intensification and northward displacement of the Azores High.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Lat (°) | January | February | March | April | May | June | July | August | September | October | November | December |
---|---|---|---|---|---|---|---|---|---|---|---|---|
43 | −310 | −8 | 241 | 644 | 626 | 829 | 959 | 887 | 575 | 85 | 16 | −163 |
42.75 | −285 | 9 | 253 | 663 | 657 | 887 | 1065 | 966 | 577 | 102 | 26 | −151 |
42.5 | −269 | 25 | 254 | 667 | 657 | 891 | 1102 | 989 | 563 | 110 | 36 | −145 |
42.25 | −250 | 42 | 264 | 677 | 663 | 894 | 1125 | 1006 | 559 | 122 | 48 | −134 |
42 | −220 | 59 | 285 | 689 | 672 | 899 | 1146 | 1031 | 567 | 140 | 69 | −108 |
41.75 | −185 | 82 | 304 | 704 | 681 | 903 | 1159 | 1054 | 582 | 156 | 94 | −83 |
41.5 | −152 | 108 | 324 | 717 | 693 | 906 | 1169 | 1068 | 593 | 171 | 120 | −62 |
41.25 | −131 | 130 | 340 | 727 | 702 | 903 | 1168 | 1064 | 599 | 184 | 136 | −52 |
41 | −111 | 148 | 354 | 734 | 706 | 895 | 1160 | 1053 | 602 | 192 | 147 | −40 |
40.75 | −92 | 166 | 367 | 734 | 704 | 885 | 1139 | 1031 | 599 | 195 | 153 | −30 |
40.5 | −73 | 184 | 379 | 734 | 702 | 876 | 1115 | 1003 | 592 | 200 | 156 | −20 |
40.25 | −54 | 197 | 388 | 734 | 699 | 866 | 1093 | 981 | 586 | 203 | 163 | −9 |
40 | −31 | 209 | 399 | 731 | 697 | 856 | 1074 | 961 | 582 | 208 | 174 | 2 |
39.75 | −8 | 224 | 413 | 728 | 699 | 849 | 1057 | 939 | 579 | 218 | 188 | 16 |
39.5 | 20 | 244 | 429 | 727 | 707 | 856 | 1056 | 931 | 580 | 231 | 204 | 36 |
39.25 | 53 | 266 | 450 | 737 | 723 | 879 | 1075 | 941 | 593 | 252 | 224 | 65 |
39 | 75 | 281 | 465 | 750 | 753 | 924 | 1128 | 982 | 621 | 277 | 235 | 80 |
38.75 | 111 | 321 | 510 | 798 | 842 | 1046 | 1277 | 1117 | 705 | 330 | 262 | 107 |
38.5 | 136 | 340 | 527 | 803 | 844 | 1046 | 1273 | 1113 | 720 | 347 | 285 | 134 |
38.25 | 138 | 335 | 516 | 775 | 812 | 1010 | 1239 | 1078 | 701 | 336 | 285 | 132 |
38 | 138 | 330 | 504 | 753 | 791 | 988 | 1221 | 1056 | 682 | 326 | 280 | 127 |
37.75 | 140 | 325 | 486 | 734 | 778 | 972 | 1210 | 1044 | 669 | 318 | 273 | 121 |
37.5 | 145 | 324 | 467 | 714 | 769 | 961 | 1209 | 1041 | 657 | 312 | 267 | 117 |
37.25 | 160 | 336 | 469 | 706 | 775 | 966 | 1222 | 1050 | 655 | 318 | 277 | 133 |
Lat (°) | January | February | March | April | May | June | July | August | September | October | November | December |
---|---|---|---|---|---|---|---|---|---|---|---|---|
43 | −92 | 98 | 201 | 653 | 761 | 924 | 1064 | 863 | 572 | 144 | 64 | −242 |
42.75 | −78 | 103 | 218 | 671 | 800 | 977 | 1164 | 936 | 581 | 161 | 74 | −232 |
42.5 | −64 | 110 | 224 | 669 | 801 | 969 | 1194 | 957 | 566 | 165 | 83 | −225 |
42.25 | −45 | 122 | 242 | 672 | 805 | 962 | 1214 | 976 | 562 | 176 | 97 | −215 |
42 | −21 | 141 | 269 | 683 | 810 | 961 | 1240 | 1001 | 571 | 193 | 120 | −196 |
41.75 | 8 | 158 | 295 | 696 | 814 | 959 | 1258 | 1024 | 583 | 212 | 140 | −174 |
41.5 | 43 | 171 | 315 | 705 | 820 | 956 | 1267 | 1037 | 591 | 229 | 161 | −153 |
41.25 | 70 | 180 | 329 | 712 | 821 | 949 | 1264 | 1039 | 597 | 244 | 176 | −140 |
41 | 89 | 186 | 338 | 717 | 817 | 938 | 1254 | 1032 | 595 | 256 | 185 | −125 |
40.75 | 105 | 191 | 349 | 714 | 802 | 921 | 1234 | 1017 | 589 | 264 | 191 | −109 |
40.5 | 121 | 200 | 358 | 710 | 789 | 902 | 1209 | 997 | 583 | 270 | 200 | −93 |
40.25 | 138 | 213 | 367 | 708 | 778 | 888 | 1185 | 978 | 580 | 277 | 210 | −75 |
40 | 153 | 224 | 375 | 706 | 765 | 873 | 1164 | 961 | 578 | 286 | 221 | −56 |
39.75 | 169 | 237 | 383 | 706 | 755 | 860 | 1142 | 945 | 576 | 297 | 230 | −36 |
39.5 | 187 | 251 | 396 | 715 | 754 | 860 | 1136 | 944 | 582 | 310 | 242 | −12 |
39.25 | 215 | 269 | 409 | 728 | 768 | 876 | 1150 | 956 | 601 | 330 | 261 | 21 |
39 | 230 | 279 | 430 | 752 | 798 | 913 | 1203 | 1002 | 631 | 351 | 272 | 32 |
38.75 | 255 | 306 | 479 | 813 | 887 | 1036 | 1365 | 1142 | 715 | 397 | 297 | 56 |
38.5 | 282 | 331 | 493 | 816 | 884 | 1035 | 1358 | 1146 | 722 | 413 | 317 | 93 |
38.25 | 288 | 329 | 481 | 794 | 850 | 1001 | 1316 | 1114 | 700 | 405 | 315 | 101 |
38 | 290 | 321 | 470 | 772 | 827 | 980 | 1294 | 1096 | 685 | 397 | 309 | 101 |
37.75 | 287 | 305 | 459 | 754 | 809 | 960 | 1280 | 1087 | 675 | 388 | 304 | 101 |
37.5 | 285 | 290 | 454 | 736 | 791 | 949 | 1275 | 1086 | 666 | 378 | 301 | 106 |
37.25 | 289 | 295 | 460 | 727 | 787 | 953 | 1282 | 1101 | 672 | 382 | 316 | 117 |
Lat (°) | January | February | March | April | May | June | July | August | September | October | November | December |
---|---|---|---|---|---|---|---|---|---|---|---|---|
43 | −204 | −17 | 259 | 629 | 685 | 998 | 1041 | 871 | 623 | 83 | 155 | −280 |
42.75 | −186 | −11 | 283 | 649 | 709 | 1039 | 1142 | 942 | 635 | 104 | 154 | −258 |
42.5 | −174 | −6 | 294 | 646 | 703 | 1028 | 1168 | 956 | 613 | 116 | 149 | −245 |
42.25 | −155 | 2 | 313 | 650 | 703 | 1019 | 1183 | 966 | 601 | 131 | 152 | −233 |
42 | −128 | 16 | 340 | 664 | 714 | 1014 | 1196 | 984 | 604 | 152 | 158 | −208 |
41.75 | −100 | 41 | 363 | 678 | 728 | 1014 | 1203 | 1000 | 611 | 172 | 166 | −179 |
41.5 | −71 | 64 | 385 | 690 | 740 | 1013 | 1203 | 1011 | 619 | 190 | 180 | −150 |
41.25 | −51 | 83 | 401 | 694 | 748 | 1008 | 1196 | 1014 | 620 | 206 | 196 | −128 |
41 | −37 | 98 | 411 | 692 | 751 | 997 | 1182 | 1012 | 618 | 217 | 208 | −110 |
40.75 | −22 | 111 | 418 | 686 | 750 | 980 | 1157 | 1003 | 609 | 226 | 212 | −90 |
40.5 | −7 | 118 | 425 | 680 | 746 | 961 | 1130 | 988 | 596 | 235 | 217 | −71 |
40.25 | 6 | 127 | 429 | 675 | 743 | 946 | 1108 | 975 | 587 | 239 | 222 | −52 |
40 | 23 | 136 | 439 | 671 | 742 | 932 | 1087 | 960 | 584 | 243 | 229 | −31 |
39.75 | 43 | 147 | 450 | 667 | 744 | 919 | 1064 | 949 | 579 | 247 | 237 | −9 |
39.5 | 64 | 161 | 465 | 666 | 752 | 917 | 1059 | 952 | 580 | 257 | 248 | 17 |
39.25 | 92 | 182 | 482 | 674 | 768 | 931 | 1073 | 973 | 590 | 274 | 268 | 52 |
39 | 108 | 199 | 496 | 693 | 800 | 973 | 1125 | 1026 | 620 | 291 | 279 | 70 |
38.75 | 142 | 236 | 538 | 757 | 883 | 1103 | 1290 | 1167 | 709 | 339 | 308 | 99 |
38.5 | 172 | 252 | 541 | 757 | 885 | 1100 | 1291 | 1169 | 708 | 356 | 332 | 125 |
38.25 | 182 | 245 | 520 | 729 | 859 | 1065 | 1248 | 1140 | 683 | 345 | 330 | 128 |
38 | 185 | 236 | 500 | 706 | 842 | 1042 | 1223 | 1125 | 669 | 335 | 325 | 127 |
37.75 | 186 | 228 | 477 | 687 | 827 | 1025 | 1210 | 1117 | 659 | 325 | 315 | 127 |
37.5 | 187 | 225 | 458 | 670 | 816 | 1014 | 1203 | 1117 | 652 | 318 | 309 | 132 |
37.25 | 196 | 235 | 468 | 668 | 820 | 1016 | 1216 | 1128 | 660 | 328 | 317 | 142 |
Lat (°) | January | February | March | April | May | June | July | August | September | October | November | December |
---|---|---|---|---|---|---|---|---|---|---|---|---|
43 | −333 | −248 | 251 | 664 | 811 | 1125 | 1290 | 1064 | 793 | 102 | 106 | −134 |
42.75 | −310 | −221 | 255 | 682 | 849 | 1195 | 1402 | 1188 | 800 | 122 | 115 | −112 |
42.5 | −297 | −203 | 249 | 681 | 843 | 1188 | 1415 | 1234 | 771 | 127 | 120 | −98 |
42.25 | −282 | −180 | 253 | 693 | 840 | 1175 | 1409 | 1262 | 753 | 140 | 127 | −81 |
42 | −254 | −144 | 267 | 710 | 846 | 1163 | 1398 | 1286 | 743 | 159 | 139 | −55 |
41.75 | −221 | −112 | 288 | 728 | 854 | 1154 | 1384 | 1298 | 742 | 180 | 160 | −21 |
41.5 | −190 | −84 | 311 | 744 | 859 | 1141 | 1365 | 1298 | 736 | 202 | 180 | 9 |
41.25 | −168 | −63 | 331 | 756 | 861 | 1124 | 1343 | 1288 | 727 | 219 | 192 | 33 |
41 | −153 | −47 | 344 | 763 | 857 | 1098 | 1312 | 1269 | 714 | 228 | 199 | 48 |
40.75 | −135 | −32 | 353 | 760 | 848 | 1061 | 1271 | 1237 | 694 | 233 | 205 | 62 |
40.5 | −117 | −15 | 362 | 755 | 836 | 1026 | 1232 | 1201 | 674 | 240 | 210 | 74 |
40.25 | −100 | 3 | 370 | 751 | 825 | 996 | 1200 | 1170 | 662 | 247 | 218 | 86 |
40 | −83 | 22 | 383 | 750 | 817 | 967 | 1169 | 1139 | 654 | 256 | 229 | 99 |
39.75 | −66 | 44 | 398 | 747 | 810 | 941 | 1140 | 1106 | 648 | 269 | 237 | 115 |
39.5 | −42 | 67 | 417 | 751 | 815 | 928 | 1128 | 1090 | 649 | 286 | 252 | 138 |
39.25 | −12 | 100 | 441 | 762 | 834 | 933 | 1134 | 1100 | 664 | 316 | 272 | 161 |
39 | 6 | 124 | 461 | 779 | 867 | 974 | 1190 | 1156 | 699 | 348 | 285 | 180 |
38.75 | 38 | 169 | 510 | 848 | 972 | 1115 | 1372 | 1323 | 797 | 415 | 313 | 216 |
38.5 | 64 | 192 | 528 | 858 | 973 | 1111 | 1368 | 1324 | 798 | 438 | 335 | 244 |
38.25 | 63 | 191 | 513 | 824 | 936 | 1068 | 1333 | 1290 | 775 | 435 | 338 | 245 |
38 | 61 | 185 | 499 | 801 | 911 | 1040 | 1316 | 1271 | 758 | 430 | 334 | 244 |
37.75 | 60 | 178 | 484 | 778 | 895 | 1019 | 1309 | 1261 | 745 | 427 | 326 | 246 |
37.5 | 64 | 177 | 472 | 755 | 881 | 1004 | 1307 | 1257 | 737 | 426 | 323 | 251 |
37.25 | 85 | 191 | 481 | 753 | 879 | 1007 | 1318 | 1267 | 745 | 438 | 337 | 265 |
References
- Pauly, D.; Christensen, V. Primary production required to sustain global fisheries. Nature 1995, 374, 255–257. [Google Scholar] [CrossRef]
- Arístegui, J.; Barton, E.D.; Álvarez-Salgado, X.A.; Santos, A.M.P.; Figueiras, F.G.; Kifani, S.; Hernández-León, S.; Mason, E.; Machú, E.; Demarcq, H. Sub-regional ecosystem variability in the Canary Current upwelling. Prog. Oceanogr. 2009, 83, 33–48. [Google Scholar] [CrossRef]
- Cropper, T.E.; Hanna, E.; Bigg, G.R. Spatial and temporal seasonal trends in coastal upwelling off Northwest Africa, 1981–2012. Deep Sea Res. Part I Oceanogr. Res. Pap. 2014, 86, 94–111. [Google Scholar] [CrossRef]
- Gómez-Letona, M.; Ramos, A.G.; Coca, J.; Arístegui, J. Trends in primary production in the canary current upwelling system—A regional perspective comparing remote sensing models. Front. Mar. Sci. 2017, 4, 370. [Google Scholar] [CrossRef]
- Bakun, A. Global climate change and intensification of coastal ocean upwelling. Science 1990, 247, 198–201. [Google Scholar] [CrossRef]
- Bakun, A.; Field, D.B.; Redondo-Rodriguez, A.; Weeks, S.J. Greenhouse gas, upwelling-favorable winds, and the future of coastal ocean upwelling ecosystems. Glob. Chang. Biol. 2010, 16, 1213–1228. [Google Scholar] [CrossRef]
- Narayan, N.; Paul, A.; Mulitza, S.; Schulz, M. Trends in coastal upwelling intensity during the late 20th century. Ocean Sci. 2010, 6, 815–823. [Google Scholar] [CrossRef]
- Gutiérrez, D.; Bouloubassi, I.; Sifeddine, A.; Purca, S.; Goubanova, K.; Graco, M.; Field, D.; Méjanelle, L.; Velazco, F.; Lorre, A.; et al. Coastal cooling and increased productivity in the main upwelling zone off Peru since the mid-twentieth century. Geophys. Res. Lett. 2011, 38, 7. [Google Scholar] [CrossRef]
- Barton, E.; Field, D.; Roy, C. Canary current upwelling: More or less? Prog. Oceanogr. 2013, 116, 167–178. [Google Scholar] [CrossRef]
- Bakun, A.; Black, B.A.; Bograd, S.J.; García-Reyes, M.; Miller, A.J.; Rykaczewski, R.R.; Sydeman, W.J. Anticipated effects of climate change on coastal upwelling ecosystems. Curr. Clim. Chang. Rep. 2015, 1, 85–93. [Google Scholar] [CrossRef]
- Sydeman, W.J.; García-Reyes, M.; Schoeman, D.S.; Rykaczewski, R.R.; Thompson, S.A.; Black, B.A.; Bograd, S.J. Climate change and wind intensification in coastal upwelling ecosystems. Science 2014, 345, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Varela, R.; Álvarez, I.; Santos, F.; Decastro, M.; Gómez-Gesteira, M. Has upwelling strengthened along worldwide coasts over 1982–2010? Sci. Rep. 2015, 5, 10016. [Google Scholar] [CrossRef] [PubMed]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Riahi, K.; Van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Chang. 2017, 42, 153–168. [Google Scholar] [CrossRef]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; Van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Rykaczewski, R.R.; Dunne, J.P.; Sydeman, W.J.; García-Reyes, M.; Black, B.A.; Bograd, S.J. Poleward displacement of coastal upwelling-favorable winds in the ocean’s eastern boundary currents through the 21st century. Geophys. Res. Lett. 2015, 42, 6424–6431. [Google Scholar] [CrossRef]
- Bograd, S.J.; Jacox, M.G.; Hazen, E.L.; Lovecchio, E.; Montes, I.; Buil, M.P.; Shannon, L.J.; Sydeman, W.J.; Rykaczewski, R.R. Climate change impacts on eastern boundary upwelling systems. Annu. Rev. Mar. Sci. 2023, 15, 303–328. [Google Scholar] [CrossRef]
- Alvarez, I.; Lorenzo, M.N.; Decastro, M.; Gomez-Gesteira, M. Coastal upwelling trends under future warming scenarios from the CORDEX project along the Galician coast (NW Iberian Peninsula). Int. J. Clim. 2016, 37, 3427–3438. [Google Scholar] [CrossRef]
- Sousa, M.C.; Decastro, M.; Alvarez, I.; Gomez-Gesteira, M.; Dias, J.M. Why coastal upwelling is expected to increase along the western Iberian Peninsula over the next century? Sci. Total Environ. 2017, 592, 243–251. [Google Scholar] [CrossRef]
- Vázquez, R.; Parras-Berrocal, I.; Koseki, S.; Cabos, W.; Sein, D.; Izquierdo, A. Seasonality of Coastal Upwelling Trends in the Mauritania-Senegalese Region under RCP8.5 Climate Change Scenario. Sci. Total Environ. 2023, 898, 166391. [Google Scholar] [CrossRef]
- Vázquez, R.; Parras-Berrocal, I.M.; Cabos, W.; Sein, D.; Mañanes, R.; Bolado-Penagos, M.; Izquierdo, A. Climate Change in the Canary/Iberia Upwelling Region: The Role of Ocean Stratification and Wind. Environ. Res. Lett. 2024, 19, 074064. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Zhiquan, L.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M.; et al. A Description of the Advanced Research WRF Model Version 4.3; No. NCAR/TN-556+STR; National Center for Atmospheric Research: Boulder, CO, USA, 2021. [Google Scholar] [CrossRef]
- Xu, Z.; Han, Y.; Tam, C.-Y.; Yang, Z.-L.; Fu, C. Bias-corrected CMIP6 global dataset for dynamical downscaling of the historical and future climate (1979–2100). Sci. Data 2021, 8, 293. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Horvath, K.; Koracin, D.; Vellore, R.; Jiang, J.; Belu, R. Sub-kilometer dynamical downscaling of near-surface winds in complex terrain using WRF and MM5 mesoscale models. J. Geophys. Res. Atmos. 2012, 117, D11. [Google Scholar] [CrossRef]
- Jerez, S.; López-Romero, J.M.; Turco, M.; Lorente-Plazas, R.; Gómez-Navarro, J.J.; Jiménez-Guerrero, P.; Montávez, J.P. On the spin-up period in WRF simulations over europe: Trade-offs between length and seasonality. J. Adv. Model. Earth Syst. 2020, 12, 4. [Google Scholar] [CrossRef]
- Lo, J.C.; Yang, Z.; Pielke, R.A. Assessment of three dynamical climate downscaling methods using the Weather Research and Forecasting (WRF) model. J. Geophys. Res. Atmos. 2008, 113, D9. [Google Scholar] [CrossRef]
- Pan, Z.; Takle, E.; Gutowski, W.; Turner, R. Long simulation of regional climate as a sequence of short segments. Mon. Weather. Rev. 1999, 127, 308–321. [Google Scholar] [CrossRef]
- Qian, J.-H.; Seth, A.; Zebiak, S. Reinitialized versus continuous simulations for regional climate downscaling. Mon. Weather. Rev. 2003, 131, 2857–2874. [Google Scholar] [CrossRef]
- Thomas, B.; Costoya, X.; Decastro, M.; Insua-Costa, D.; Senande-Rivera, M.; Gómez-Gesteira, M. Downscaling CMIP6 climate projections to classify the future offshore wind energy resource in the Spanish territorial waters. J. Clean. Prod. 2023, 433, 139860. [Google Scholar] [CrossRef]
- Thompson, G.; Field, P.R.; Rasmussen, R.M.; Hall, W.D. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Weather Rev. 2008, 136, 5095–5115. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather. Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.A.; Mitchell, K.; Ek, M.; Gayno, G.; Wegiel, J.; Cuenca, R.H. Implementation and Verification of the Unified Noah Land Surface Model in the WRF Model. In Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA, USA, 2004; American Meteorological Society, 14.2a. Available online: https://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm (accessed on 22 July 2024).
- Jiménez, P.A.; Dudhia, J.; González-Rouco, J.F.; Navarro, J.; Montávez, J.P.; García-Bustamante, E. A revised scheme for the WRF surface layer formulation. Mon. Weather. Rev. 2012, 140, 898–918. [Google Scholar] [CrossRef]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Atmos. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Y. Projected future changes of tropical cyclone activity over the Western North and South Pacific in a 20-km-mesh regional climate model. J. Clim. 2017, 30, 5923–5941. [Google Scholar] [CrossRef]
- Perkins, S.E.; Pitman, A.J.; Holbrook, N.J.; McAneney, J. Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functions. J. Clim. 2007, 20, 4356–4376. [Google Scholar] [CrossRef]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes in C, 2nd ed.; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Beaucage, P.; Glazer, A.; Choisnard, J.; Yu, W.; Bernier, M.; Benoit, R.; Lafrance, G. Wind Assessment in a Coastal Environment Using Synthetic Aperture Radar Satellite Imagery and a Numerical Weather Prediction Model. Can. J. Remote Sens. 2007, 33, 368–377. [Google Scholar] [CrossRef]
- Picado, A.; Lorenzo, M.N.; Alvarez, I.; Decastro, M.; Vaz, N.; Dias, J.M. Upwelling and Chl-a spatiotemporal variability along the Galician coast: Dependence on circulation weather types. Int. J. Clim. 2015, 36, 3280–3296. [Google Scholar] [CrossRef]
- Decastro, M.; Gómez-Gesteira, M.; Costoya, X.; Santos, F. Upwelling influence on the number of extreme hot SST days along the Canary upwelling ecosystem. J. Geophys. Res. Oceans 2014, 119, 3029–3040. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomas, B.; Costoya, X.; deCastro, M.; Gómez-Gesteira, M. Revisiting the Upwelling Evolution along the Western Iberian Peninsula over the 21st Century Using Dynamically Downscaled CMIP6 Data. J. Mar. Sci. Eng. 2024, 12, 1494. https://doi.org/10.3390/jmse12091494
Thomas B, Costoya X, deCastro M, Gómez-Gesteira M. Revisiting the Upwelling Evolution along the Western Iberian Peninsula over the 21st Century Using Dynamically Downscaled CMIP6 Data. Journal of Marine Science and Engineering. 2024; 12(9):1494. https://doi.org/10.3390/jmse12091494
Chicago/Turabian StyleThomas, Brieuc, Xurxo Costoya, Maite deCastro, and Moncho Gómez-Gesteira. 2024. "Revisiting the Upwelling Evolution along the Western Iberian Peninsula over the 21st Century Using Dynamically Downscaled CMIP6 Data" Journal of Marine Science and Engineering 12, no. 9: 1494. https://doi.org/10.3390/jmse12091494
APA StyleThomas, B., Costoya, X., deCastro, M., & Gómez-Gesteira, M. (2024). Revisiting the Upwelling Evolution along the Western Iberian Peninsula over the 21st Century Using Dynamically Downscaled CMIP6 Data. Journal of Marine Science and Engineering, 12(9), 1494. https://doi.org/10.3390/jmse12091494