
Citation: Lee, C.; Cho, H.; Lee, S.

Analysis of Bi-LSTM CRF Series

Models for Semantic Classification of

NAVTEX Navigational Safety

Messages. J. Mar. Sci. Eng. 2024, 12,

1518. https://doi.org/10.3390/

jmse12091518

Academic Editors: Chenguang Liu,

Jialun Liu, Xiumin Chu and Xiao Lang

Received: 13 August 2024

Revised: 31 August 2024

Accepted: 31 August 2024

Published: 2 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

Analysis of Bi-LSTM CRF Series Models for Semantic
Classification of NAVTEX Navigational Safety Messages
Changui Lee 1 , Hoyeon Cho 2 and Seojeong Lee 1,*

1 Division of Marine System Engineering, National Korea Maritime and Ocean University, Busan 49112,
Republic of Korea; culee@kmou.ac.kr

2 Division of Maritime Information Technology, National Korea Maritime and Ocean University, Busan 49112,
Republic of Korea; hoyeoncho@g.kmou.ac.kr

* Correspondence: sjlee@kmou.ac.kr; Tel.: +82-51-410-4578

Abstract: NAVTEX is a key component in the Global Maritime Distress and Safety System (GMDSS)
that automatically transmits urgent maritime safety information such as navigational and meteoro-
logical warnings and forecasts to vessels. For the safe navigation of smart ships, this information
from different systems should be shared harmoniously in the Common Maritime Data Structure
(CMDS). To share NAVTEX messages as CMDS, words in NAVTEX messages must be semantically
classified and placed within the CMDS structure. While traditional parsing methods are typically
used to understand message semantics, NAVTEX requires natural language processing methods with
deep learning due to its unstructured messages. This paper applies six types of Bi-LSTM CRF-based
deep learning models to NAVTEX navigational safety messages and analyzes the results to find the
most suitable model for understanding the semantics of each word in NAVTEX messages. This tech-
nique can be applied to accurately convey the meaning of NAVTEX navigational safety messages to
equipment that requires navigational safety information on smart ships without human intervention.

Keywords: NAVTEX; GMDSS; CMDS; S-100; machine readable; deep learning; smart ship; NLP

1. Introduction

For decades, the shipping industry has used various methods and communications
technologies to protect ships and their crews. The NAVTEX system represents a core
component of the Global Maritime Distress and Safety System, generally used for the auto-
matic sending of maritime safety information to vessels, primarily related to navigational
warnings and meteorological warnings and forecasts [1].

As NAVTEX messages are the key element of ship operation, it is traditionally in-
terpreted by humans to reflect on navigational safety and make decisions. But in the
environment of smart ship operations, human intervention is reduced, and machines take
on this role instead. This means that instead of human interpretation, NAVTEX messages
should be automatically exchanged with systems like the Electronic Chart Display and
Information System (ECDIS) and autopilot to adjust routes according to navigational warn-
ings or to assist human decision-making through display interfaces. For communication
of safety information between smart devices without human intervention, it must be con-
verted into a machine-readable format [2]. So, it means that NAVTEX should be integrated
and shared through the Common Maritime Data Structure (CMDS), which is the standard
provided by the International Maritime Organization (IMO) for the structural interoperabil-
ity of data. A system that would correctly classify the meaning of each word and phrase
of a NAVTEX message and properly place them should, therefore, be considered if the
messages are to take the form of a CMDS.

An international standard exists for the form of NAVTEX messages, whereas the
text itself, within a message body, is in unstructured form for expressing the different
situations [3,4]. To understand the meaning of a structured message, parsing processes
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have typically been used [5]. Since navigational safety messages are in an unstructured
form, analysis with only the parsing method is quite hard. Thus, attempts to rightly
understand the meanings of the messages using deep learning-based natural language
processing techniques have risen. Especially, deep learning models like Bi-LSTM are
claimed to be able to learn word representations in context and, therefore, are theoretically
useful in processing NAVTEX messages [6].

In this paper, deep learning models based on Bi-LSTM CRF are applied to the classifica-
tion of meanings for navigational safety messages in NAVTEX. We compared and analyzed
different models based on Bi-LSTM CRF to find a suitable model for understanding the
meaning of NAVTEX messages. This will enable more accurate and efficient interpretation
of NAVTEX messages, facilitating their automated processing and conversion into the
CMDS structure, thereby contributing to the safe navigation of smart ships.

2. Background
2.1. Navigational Telex (NAVTEX)

NAVTEX is a system that transmits navigational warnings, weather forecasts, search
and rescue information, and other urgent maritime safety information to vessels. This
system was introduced as a key component of the GMDSS by the 1974 International
Convention for the Safety of Life at Sea (SOLAS Convention) [1]. NAVTEX operates on two
main frequencies: one is the international NAVTEX service, which broadcasts on 518 kHz
and is used globally; the other is the national NAVTEX service, which operates on 490 kHz
and is broadcast in local languages by individual countries.

The NAVTEX system is designed to automatically deliver information to ships within
specific geographical areas. It primarily uses text-based messages to provide critical infor-
mation related to maritime safety, and NAVTEX receivers installed on vessels automatically
receive and display these messages without requiring manual intervention.

NAVTEX messages have a standardized format and are composed of three parts
to provide essential information for the safe navigation of vessels at sea, as shown in
Figure 1 [3].
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Figure 1. Structure of NAVTEX message.

The first part is the header of the message, which identifies the start of the NAVTEX
message. All NAVTEX messages always start with the character “ZCZC”, indicating the
beginning of the message. In the header, there are technical codes that transmit the iden-
tification character (B1), the subject indicator character (B2), and the message numbering
characters (B3B4). The second part is the main content of the NAVTEX message, including
the transmission time, date of the message, navigational warnings, weather forecasts, and
critical maritime safety information. This part contains various detailed information, de-
pending on the situation, and provides clear and specific guidance. Especially, this part is
made up of an unstructured text format to express various situations. The third part is the
end of message instruction; all NAVTEX messages end with the word “NNNN” to indicate
the end of the message.
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2.2. Common Maritime Data Structure and S-100 Standards

Data compatibility is necessary for smooth data exchange, sharing, and utilization
between ship and shore, shore and ship, shore and shore, and shipboard systems. The
IMO enacted CMDS as a common data model that defines data structures and formats for
data exchange, sharing, and utilization [7]. It has adopted the International Hydrographic
Organization’s (IHO’s) S-100 standard as its base model. The IHO S-100 standard provides
the complete framework necessary for the lifecycle management of maritime data such as
data modeling, metadata, exchange formats, and data quality management. Through the
S-100 standard, numerous maritime data can be generated, distributed, and utilized in a
standardized format.

The S-124, a product of IHO S-100-based product specification provides navigational
warnings and their information in a structured format [8]. And it certifies the consistency
and accuracy of the information and intensifies interoperability between various maritime
information systems. Through the S-124 product, seafarers can quickly and accurately
access the necessary safety information.

NAVTEX messages are structured through the data structure of the S-124 standard. For
example, NAVTEX messages about navigational warnings or weather forecasts are classified by
the ‘Warning Hazard Type’ of the S-124 ‘Navigational Warning Feature’ as shown in Figure 2.
The detailed information of each message is broken down into various attributes of S-124, such
as ‘Geometry’ and ‘Restriction’. Through this, NAVTEX messages can be converted into a
structured data format and integrated into standard data structures like CMDS.

2.3. Bi-LSTM CRF as Natural Language Processing Technology

Natural language processing (NLP) is one of the applications of artificial intelligence
that makes computers understand, generate, and process human language [9]. It aims to
extract meaningful information from text or speech data used by humans and performs
numerous tasks. The problem of NLP is due to the fact that the main characteristic of
natural language is hard for computers to understand due to numerous factors such as
ambiguity, metaphors and similes, and irregular grammar. To solve this problem, NLP uses
technologies and knowledge from various fields such as linguistics, computer science, and
artificial intelligence to address these challenges of context dependency and ambiguity.

When it was a period of NLP in deep learning’s infancy, recurrent neural networks
(RNNs) were used. However, there were some problems in RNNs, such as gradient
vanishing problems and long-term dependencies [10]. To solve that problem, LSTM, a
variant of RNN, was used to introduce hidden state and cell state at one time to maintain
long-term memory. Bi-LSTM is a model that stacked LSTM bidirectionally, allowing the
capture of both past and future context in sentences [6]. Conditional random field (CRF)
is a statistical model that deals with sequence labeling problems [11,12]. It predicts the
optimal label sequence by considering the transition probability between labels and the
emission probability between input features and labels. Figure 3, it shows the structure of
the Bi-LSTM CRF Model. It is a model that combines Bi-LSTM and CRF as one, specialized
for sequence labeling problems. This model extracts contextual information and model
dependencies between labels from the input sequence using Bi-LSTM and CRF.

2.4. Begin, Inside, Outside (BIO) Tagging Scheme

The BIO tagging scheme is used very frequently in named entity recognition (NER)
for solving the sequence labeling problem [13]. In this tagging scheme, tokens are labeled
as being at the ‘Begin’, ‘Inside’, or ‘Outside’ of a named entity. Tags like ‘B-’ start with the
entity name, ‘I-’ means inside of a named entity, and ‘O-’ means outside of any named
entity. For example, the sentence “John Smith lives in New York” may be annotated with
the use of the BIO tagging schema like that in Table 1.

The BIO tagging scheme allows for a clear indication of entity boundaries. Through
this advantage, unstructured natural language can be easily converted into a structured
machine-readable data structure with a clear indication of entity boundaries.
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Table 1. Pairs of words and tags for an example sentence.

Word Tag

John B-PERSON
Smith I-PERSON
Lives O

In O
New B-LOCATION
York I-LOCATION
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2.5. Literature Review

Recent studies have increasingly applied NLP technologies in the maritime sector,
focusing on various aspects such as the classification of information on maritime accidents
and NAVTEX message classification.

Mackenzie et al. [14] proposed a method for extracting information about piracy
activities using deep learning techniques from unstructured maritime news articles. Their
approach identifies maritime incidents in the articles, extracts information related to piracy
using named entity recognition (NER), and analyzes the type and severity of these incidents.
Jidkov et al. [15] developed a maritime event log (MEL) pipeline that collects information
from various maritime documents and uses NLP and deep learning techniques, including
NER, to automate the extraction of navigational risks and the classification of information.

Recently, some studies have also focused on classifying NAVTEX messages using ma-
chine learning. Sun et al. [16] proposed an adaptive-weighted TF-IDF-based classification
model. In 2024, Sun et al. [17] further extended this field by developing a classification
model for NAVTEX navigational warning messages using deep neural networks (DNNs)
with an adaptive weighted TF-IDF approach. This study builds on earlier work on NAVTEX
message classification and highlights the continued relevance of deep learning models
in enhancing maritime safety information processing. Akyol and Keçeci [18] analyzed
NAVTEX messages published for the Mediterranean region, categorizing them by annual
message count, topic distribution, and type distribution to identify navigational risk trends.

Yan et al. [19] developed a content-aware, corpus-based model using BERT for the
analysis of marine accidents, highlighting the effectiveness of BERT-based models in content
recognition tasks within the maritime context. Shen et al. [20] explored the application of
BERT in combination with Bi-LSTM and CRF for Chinese semantic named entity recognition
(NER) in marine engine room systems, demonstrating the effectiveness of this layered
approach in specialized maritime environments.

Ezen-Can [21] compared LSTM and BERT models for small corpora, showing that
LSTM models could outperform BERT in terms of accuracy and performance when dealing
with limited datasets. This study underscores the advantages of simpler models like LSTM
when working with small datasets.

The study by Sun et al. focused on classifying the types of warnings in NAVTEX
navigational messages, while Akyol and Keçeci examined navigational risk trends through
manual literature analysis. This paper, however, focuses on the semantic classification of
NAVTEX messages, an area not previously explored, and compares Bi-LSTM CRF models,
which are advantageous for small datasets and limited-resource environments.
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3. Experiment for Semantic Classification of NAVTEX Navigational Safety Information

For the harmonized sharing of NAVTEX messages to be machine-readable, the mean-
ing of every word and phrase in the message must be put exactly into the structure of
CMDS, and to achieve this, semantic classification of NAVTEX messages is required. Al-
though recent NLP research predominantly utilizes transformer-based models such as BERT
and GPT, this paper selects LSTM-based models because they can maintain performance
even with the smaller size of the NAVTEX message dataset. Additionally, LSTM-based
models are advantageous in industrial systems with limited resources due to their smaller
model size. Therefore, in this study, we conducted experiments on converting NAVTEX
navigational safety messages into machine-readable data using six different application
models based on Bi-LSTM CRF and analyzed the results to find an optimal model.

Figure 4 shows the whole experimentation for finding the optimal model to semanti-
cally classify NAVTEX messages. First, this is a data collection stage where the NAVTEX
messages are collected from different sources for the preparation of data that is to be
analyzed. Afterwards, in the data preprocessing stage, irrelevant information is removed
from the collected data and converted into a form suitable for learning. The data is then
learned through six types of Bi-LSTM CRF models. After that, the semantics of the NAVTEX
messages are classified through those trained models for their performance evaluation.
Evaluation and model size comparisons are performed for all models, analyzing the opti-
mum model.
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3.1. Preprocessing

For the experiment, 8541 international NAVTEX messages were collected from the
NAVTEX message archive provided by Plovput in Croatia. These messages were transmitted
by the split radio station from August 2020 to March 2024 and were written in English.

The preprocessing of the collected data involved three steps: filtering, cleansing, and
semantic tagging. First, during the data filtering stage, messages relevant to the experiment
were selected. Specifically, we chose only the navigational warning messages, identified
by type code A, as these were the focus of the study. Among the selected messages, many
were notices to maintain or cancel alerts, which could introduce bias in semantic analysis.
Therefore, the number of messages was adjusted, resulting in 1634 messages remaining.

In the second stage of preprocessing, the cleansing process involved removing un-
necessary symbols, spaces, and extraneous characters from the messages using regular
expressions. First, symbols in parentheses containing letters or numbers were removed
according to Equation (1) so that all the reference symbols not directly relevant to the
message content are removed. This removed “(A)”, “(B1)”, etc. Then, alphabets followed
by a period and number according to Equation (2) were removed so that the numbering
that was irrelevant to message content had been deleted. Thus, for example, “A.1”, “B.2”,
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etc. were deleted. Finally, Equation (3) was used for clearing special symbols unrelated to
the core content of the message.

([A-Za-z0-9]) (1)

[A-Za-z].[0-9] (2)

[/,:;=-+~!\[]?<>()] (3)

Figure 5 shows an example of the original message (a) and the cleansed message (b)
after going through the message cleansing process using regular expressions. For instance,
dates were originally formatted with slashes, such as “27/03/2023”, where the slashes
were considered unnecessary symbols. These were removed to produce a standardized
format like “27032023”.
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In the third stage of preprocessing, semantic tagging was performed on each token
of the messages to facilitate supervised learning. To train machine learning models on
NAVTEX messages, semantic tags presented in Table 2 should be assigned to the tokens of
NAVTEX messages and represented as pairs of tokens and semantic tags.

This task is normally performed manually by human beings, but it is very time-
consuming; therefore, we prepared the training data through the prompt engineering
technique using Claude, an LLM. Human experts were involved in the re-examination of the
prepared training data according to rules and corrected the wrongly tagged semantic tags
to check data integrity. Messages that were not fully received through radiocommunication
and thus did not have a complete message format could not be processed, even with human
expert intervention. Therefore, these incomplete messages were removed, resulting in a
final dataset of 1617 messages. Figure 6 illustrates token–semantic tag pairs annotated with
the BIO scheme. In the BIO scheme, ‘ZCZC’ was given a tag meaning the start of an entity
name and the start of the message header. These works were assigned a tag, meaning
the inside of an entity name and an action to be taken by the recipient. Abbreviations
commonly used in the maritime field to quickly convey information were also considered
during the tagging process. For example, in Figure 6, ‘VRB’ is an abbreviation frequently
used to convey ‘Variable’ quickly.

For model training, the 1617 messages were randomly divided into a train set, a
validation set, and a test set at ratios of 80%, 10%, and 10%, respectively, resulting in
1293 messages for training, 161 for validation, and 163 for testing. The 80-10-10 split is
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a prevalent approach in machine learning, providing sufficient data for training while
minimizing the risk of overfitting and ensuring reliable evaluation of model performance.

Table 2. Semantic tags used for tagging NAVTEX Messages and their descriptions.

Semantic Tag Description

METADATA_START Start header of message. Always starts with characters, “ZCZC”
METADATA_CODE The 4-digit message identification code that follows METADATA_START.

METADATA_DATETIME Date and Time of Metadata.
METADATA_END The termination string ending with “NNNN” at the end of the message.

CONTENT_EVENTS Specific maritime or navigation-related events
CONTENT_INSTRUCTION Instructions or actions the recipient should take

CONTENT_DATETIME Date and time mentioned in the message
CONTENT_LOCATION_TYPE Type of location mentioned (Point, Area, etc.)

CONTENT_LOCATION_POINT Latitude and longitude coordinates
CONTENT_LOCATION_NUMBER Numbers indicating distance or radius (e.g., “within a radius of 500 m” where 500 is the number)

CONTENT_LOCATION_UNIT Units of distance or area
CONTENT_LOCATION_PLACENAME Names of places, ship names, IMO numbers, etc.

CONTENT_OTHER Other content that does not fall into the defined categories
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3.2. Training of Bi-LSTM CRF-Based Application Models

In this study, six model types for the semantic classification of NAVTEX navigational
safety messages were prepared. As shown in Figure 7, the Bi-LSTM CNN CRF model
builds on the Bi-LSTM CRF architecture by adding a convolutional neural network (CNN)
layer between the Bi-LSTM and CRF layers. The word-embedding layer first converts
input tokens into dense vector representations. These vectors are then processed by the
Bi-LSTM layer, which captures contextual information from both directions in the sequence.
The CNN layer follows, extracting local features from the Bi-LSTM outputs to enhance
representation. Lastly, the CRF layer performs structured prediction, ensuring coherent
output sequences that accurately reflect the semantic content of the NAVTEX messages.

In addition to Bi-LSTM CNN CRF, to improve performance, models were prepared
by adding a highway network layer, linear layer, or attention layer instead of a CNN layer
between the Bi-LSTM layer and CRF layer in Figure 7, or by stacking the attention layer and
linear layer to create a Bi-LSTM attention linear CRF model. Table 3 represents the architecture,
expected advantages, and disadvantages of Bi-LSTM CRF model and its variants.

We used WandB and the Bayesian optimization algorithm to select the hyperparameter
combination based on previous step results for required training with hyperparameters.
The AdamW optimizer, which applies weight decay to the Adam algorithm, and a loss
function called negative log-likelihood were used. In this case, the batch size, learning
rate, embedding dimension, hidden dimension, and dropout were specified with their
respective ranges and values, as in Table 4, to find the hyperparameters corresponding to
the lowest validation loss during 10 training epochs.



J. Mar. Sci. Eng. 2024, 12, 1518 9 of 16

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 10 of 18 
 

 

Bi-LSTM Linear CRF 
Embedding layer, Bi-directional 
LSTM layer, Linear layer, CRF 

layer 

Optimizes CRF input by trans-
forming LSTM outputs with lin-

ear layer 

Increased model complex-
ity, risk of overfitting 

Bi-LSTM Attention CRF 
Embedding layer, Bi-directional 
LSTM layer, Attention mecha-

nism, CRF layer 

Utilizes important contextual in-
formation for modeling label de-
pendencies by directly connect-

ing attention and CRF 

Increased training time 
due to computational load 

of attention layer 

Bi-LSTM Attention Lin-
ear CRF 

Embedding layer, Bi-directional 
LSTM layer, Attention mecha-
nism, Linear layer, CRF layer 

Enhances expressiveness by as-
signing high weights to im-

portant contextual information 
through attention layer 

Increased model complex-
ity and computational 

load due to attention layer 

 
Figure 7. Architecture of Bi-LSTM CNN CRF. 

We used WandB and the Bayesian optimization algorithm to select the hyperparam-
eter combination based on previous step results for required training with hyperparame-
ters. The AdamW optimizer, which applies weight decay to the Adam algorithm, and a 
loss function called negative log-likelihood were used. In this case, the batch size, learning 
rate, embedding dimension, hidden dimension, and dropout were specified with their re-
spective ranges and values, as in Table 4, to find the hyperparameters corresponding to 
the lowest validation loss during 10 training epochs. 

Considering the sensitivity of the experiments, the hyperparameter values were set 
within a defined range rather than being fixed to specific values. In each iteration, the 
optimal hyperparameters were selected from within this range, taking into account their 
sensitivity. This approach was used to minimize the likelihood of obtaining favorable re-
sults merely by chance due to different hyperparameter settings. 

For model training and testing, the hardware system used included an Intel® Xeon® 
Gold 5218R CPU, an NVIDIA A100 80GB GPU, and 80 GB of memory, running on the 
Ubuntu 20.04 operating system. The software framework utilized for implementation in-
cluded CUDA 11.8, CUDNN 8.7.0, and PyTorch 1.9.0. 

  

Figure 7. Architecture of Bi-LSTM CNN CRF.

Table 3. Pros and cons of Bi-LSTM CRF and its variant models.

Layers Expected Advantages Expected Disadvantages

Bi-LSTM CRF Embedding layer, Bi-directional
LSTM layer, CRF layer

Captures contextual information
and label dependencies well

Limited in learning
complex patterns

Bi-LSTM CNN CRF Embedding layer, Bi-directional
LSTM layer, CNN layer, CRF layer

Enhances expressiveness by
extracting local features

through CNN

Increased computational
load, leading to longer

training time

Bi-LSTM Highway CRF
Embedding layer, Bi-directional
LSTM layer, Highway network,

CRF layer

Improves learning capability by
controlling information flow with

highway network

Potential decrease in
training stability due to

gate mechanism

Bi-LSTM Linear CRF
Embedding layer, Bi-directional

LSTM layer, Linear layer,
CRF layer

Optimizes CRF input by
transforming LSTM outputs with

linear layer

Increased model complexity,
risk of overfitting

Bi-LSTM Attention CRF
Embedding layer, Bi-directional

LSTM layer, Attention
mechanism, CRF layer

Utilizes important contextual
information for modeling label

dependencies by directly
connecting attention and CRF

Increased training time due to
computational load of

attention layer

Bi-LSTM Attention Linear CRF

Embedding layer, Bi-directional
LSTM layer, Attention

mechanism, Linear layer,
CRF layer

Enhances expressiveness by
assigning high weights to

important contextual information
through attention layer

Increased model complexity
and computational load due

to attention layer

Table 4. Hyperparameters and its ranges.

Hyperparameter Searching Range

Batch size 8, 16, 32, 64
Learning rate 1 × 105 ~ 0.5

Embedding dimension 16, 32, 64, 128, 256, 512, 768
Hidden dimension 16, 32, 64, 128, 256, 512, 768

Dropout 1 × 105 ~ 0.1



J. Mar. Sci. Eng. 2024, 12, 1518 10 of 16

Considering the sensitivity of the experiments, the hyperparameter values were set
within a defined range rather than being fixed to specific values. In each iteration, the
optimal hyperparameters were selected from within this range, taking into account their
sensitivity. This approach was used to minimize the likelihood of obtaining favorable
results merely by chance due to different hyperparameter settings.

For model training and testing, the hardware system used included an Intel® Xeon®

Gold 5218R CPU, an NVIDIA A100 80 GB GPU, and 80 GB of memory, running on the
Ubuntu 20.04 operating system. The software framework utilized for implementation
included CUDA 11.8, CUDNN 8.7.0, and PyTorch 1.9.0.

4. Results and Analysis

The semantic classification of NAVTEX navigational safety messages was repeated
10 times for each of the six models: Bi-LSTM CRF, Bi-LSTM CNN CRF, Bi-LSTM highway
CRF, Bi-LSTM linear CRF, Bi-LSTM attention CRF, and Bi-LSTM attention linear CRF.

4.1. Analysis in Aspects of Performance

Figure 8 illustrates the F1 score over 10 iterations for each model, allowing for the
assessment of both the performance and stability of the models involved. The F1 score
represents model performance, with variance being used as an indicator of stability.
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Model performance is the most critical factor in determining its usefulness. To better
understand the model’s performance, it should be evaluated from multiple perspectives
using various metrics. Beyond basic evaluation measures like accuracy and precision,
advanced evaluation measures such as AUC-ROC, perplexity, and cosine similarity should
also be utilized to evaluate the model from different angles. In this paper, we chose
to evaluate model performance using the F1 score, which is a more practical metric for
classification tasks. The F1 score represents the harmonic mean of precision and recall,
meaning a high F1 score indicates a model that not only predicts accurately but also
effectively identifies most of the actual positive classes. Equation (4) defines the F1 score
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as follows: precision is the proportion of true positive classes among those predicted as
positive by the model, while recall is the proportion of actual positive classes that the
model correctly identifies. Thus, the F1 score serves as a key metric for comprehensively
evaluating model performance, as it balances these two important indicators.

F1 Score = 2 ×
(

Precision × Recall
Precision + Recall

)
(4)

Variance of the F1 score for every model was computed to check on the stability of the
models. Variance is a statistical indicator, depicted in Equation (5), which demonstrates
how data points are spread out from the mean and becomes an important component in
the assessment of how consistently the performance of model predictions are upheld.

Variance =
1
N ∑N

i=1(xi − µ)2 (5)

Here, N is the number of data points, xi is individual data point, and µ is the mean
value of the F1 score. When the variance of the F1 score is low, it indicates that the model’s
performance is consistently maintained, suggesting that the model performs well across
different datasets. High variance, on the other hand, means that performance fluctuates
significantly with respect to the dataset used, indicating low stability and the unreliability
of the model. Therefore, models with low variance are likely to show stable performance in
real operational environments due to their high consistency in predictions.

Table 5 shows the minimum, maximum, average, and variance of the F1 score for each
model. The minimum F1 score refers to a case where a model had the lowest performance,
while the maximum value refers to when a model had the best performance. The average
value describes the arithmetic mean of F1 scores over several iterations and gives knowledge
regarding the general performance level of the model. The variance at the same time shows
how far apart the values of F1 score move around the mean.

Table 5. Performance results of Bi-LSTM CRF and its variant models.

Models
F1 Score

Variance
Minimum Maximum Average

Bi-LSTM CRF 0.959932 0.969272 0.965227 0.000008
Bi-LSTM CNN CRF 0.956711 0.966339 0.963277 0.000009

Bi-LSTM Highway CRF 0.956591 0.966355 0.960198 0.000012
Bi-LSTM Linear CRF 0.960440 0.969239 0.965152 0.000010

Bi-LSTM Attention CRF 0.928789 0.963302 0.954988 0.000116
Bi-LSTM Attention Linear CRF 0.953776 0.963793 0.960680 0.000009

The evaluation of each model’s performance in terms of the F1 score and its variance
shows that while there is little difference in the overall F1 score, the significant differences
in variance between the models suggest different levels of stability. Interestingly, the basic
Bi-LSTM CRF model had the highest average F1 score and the lowest variance among all
the models in the Bi-LSTM CRF series.

In the Bi-LSTM CNN CRF model, the CNN layer can effectively capture local patterns
and may be useful with sequence data; however, its effect may not be prominent due to
the characteristics of NAVTEX messages, where global contextual information may be more
relevant. This suboptimal performance compared to the Bi-LSTM CRF model might be due
to the CNN layer’s bias toward local patterns, which limits its ability to capture the overall
context of NAVTEX messages. In the Bi-LSTM highway CRF model, the highway network
controls the flow of information between layers, making it easier to learn in deep networks;
however, its influence might be limited for the task at hand, similar to other NAVTEX message
analysis tasks where network depth might not be as crucial. The relatively lower performance
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may be due to the fact that, although the highway network supports deep learning, a simpler
structure might be more appropriate for the characteristics of NAVTEX messages.

The Bi-LSTM linear CRF model was high in average F1 score, and its variance was stable.
This model converts the output of the Bi-LSTM via a linear layer by using the activation
function ReLU before passing it into the CRF layer. The linear layer extracts core information
and filters out unnecessary information, simultaneously increasing recall and precision. These
characteristics further improved the model’s structural performance and stability. The reason
it performed just as high as the Bi-LSTM CRF is that the linear layer effectively transforms the
output of Bi-LSTM, thus optimizing the tagging performance of CRF.

The Bi-LSTM attention CRF model shows relatively high variance compared to other
models, indicating greater variability in performance. Although the optimal hyperpa-
rameters were selected based on sensitivity considerations within the range shown in
Table 5, the F1 score dropped significantly in the 7th iteration due to the use of suboptimal
hyperparameters. This means that finding the optimal hyperparameters requires consider-
able effort, and to ensure stable model performance, it is important to consider variance
when evaluating models. Additionally, the Bi-LSTM attention CRF model has structural
limitations when processing NAVTEX messages. The attention mechanism gives extra
weight to the important parts of the sequence. However, in NAVTEX messages, the content
is typically spread out, and important information might not be highly concentrated in
specific parts, which could limit the effectiveness of the attention mechanism. This is likely
the reason for the inconsistent behavior of this model.

The Bi-LSTM attention linear CRF model maintained consistent performance and
provided stable predictions compared to the Bi-LSTM attention CRF model, owing to the
combination of the attention mechanism and the linear layer. This is because, even though
important information in NAVTEX messages tends to be spread out rather than concen-
trated in specific parts, the linear layer effectively filtered this information, optimizing the
model’s performance.

4.2. Analysis in Aspects of Model Size

In real-world applications, such as on ships, not only is the performance of the model
crucial, but also resource efficiency, including memory usage and inference speed, due
to the limited computing resources available. In such constrained environments, it is
important to evaluate how efficiently the model uses memory and how much its size
fluctuates. Particularly in mobile environments like ships, a model that maintains stable
and consistent performance while using minimal resources is essential. Figure 9 visually
represents the size of each model over 10 iterations. This figure allows us to observe how
each model’s size fluctuates.

To comprehensively evaluate the model sizes, the minimum, maximum, average, and
variance of each model’s size are presented in Table 6. While the size of the model is important,
the variability in model size is a crucial indicator of how consistently the model can operate in
real-world applications. For instance, if the variability in model size is high, excessive memory
usage under certain conditions could lead to a decline in system performance.

Analyzing the size of each model, we can see that the Bi-LSTM CRF model has
a moderate size despite the absence of any layer between the LSTM and CRF layers.
Additionally, the moderate variance among the models suggests some fluctuation in model
size with different hyperparameter settings. As the base model of the Bi-LSTM CRF series,
it appears to have a mid-level size and variability.

The Bi-LSTM CNN CRF model has a relatively small size, with both a low average
and low variance. Although the CNN layer is added to capture local patterns, it does
not significantly impact the model size. The Bi-LSTM highway CRF model shows the
largest average size and the highest variance. The highway network facilitates learning in
deep networks by controlling the flow of information between layers, but this significantly
increases the model size. The high variance suggests that the model size can vary greatly
with different hyperparameter settings.
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Table 6. Size of Bi-LSTM CRF and its variant models.

Models
Size (Kbyte)

Variance
Minimum Maximum Average

Bi-LSTM CRF 354 6323 1882 3,855,208
Bi-LSTM-CNN-CRF 339 6662 1499 3,303,771

Bi-LSTM Highway CRF 484 8198 3042 6,274,171
Bi-LSTM Linear CRF 250 5268 1629 1,970,368

Bi-LSTM Attention CRF 284 5761 1956 2,849,085
Bi-LSTM Attention Linear CRF 449 15,282 3125 18,462,097

The Bi-LSTM linear CRF model has a relatively small size and low variance. This model
transforms the output of the Bi-LSTM through a linear layer using the ReLU activation
function before passing it to the CRF layer. The linear layer effectively filters the necessary
information, reducing the model size without greatly increasing its complexity.

The Bi-LSTM attention CRF model is of medium size. The attention mechanism
enhances model performance, but it also causes an increase in model size. The model’s
variability in size is relatively low, indicating that it maintains a stable size across various
hyperparameter settings.

The Bi-LSTM attention linear CRF model has the largest size and the highest variance.
Notably, in the 8th iteration, the model size increased significantly due to the selection of a
large hidden layer dimension during the hyperparameter optimization process. This sud-
den increase in model size, resulting from suboptimal hyperparameters, can be considered
a drawback. From a structural perspective, the combination of the attention mechanism
and the linear layer enhances model performance, but it also significantly increases the
model size. The high variance suggests that the model size can fluctuate considerably with
different hyperparameter settings.
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4.3. Comprehensive Analysis and Limitations

We analyzed the performance and size of each model in the semantic classification of
NAVTEX messages, considering them comprehensively. The Bi-LSTM-CRF model, as the
baseline model among the compared models, showed the highest average F1 score with
low variance, indicating excellent consistency in performance. Additionally, the model size
remained at a relatively moderate level with little variability, making it an efficient choice
in terms of hardware resources.

The Bi-LSTM-CNN-CRF model, in terms of performance, effectively captures local
patterns with its CNN layer, making it useful for sequence data analysis. However, due to
the nature of NAVTEX messages, where global contextual information may be more impor-
tant, its effectiveness may be limited. The Bi-LSTM linear CRF model showed performance
and stability levels similar to those of the Bi-LSTM-CRF model, with a relatively small
and efficient model size. The linear layer, using the ReLU activation function, effectively
transforms the output of the Bi-LSTM and passes it to the CRF layer, efficiently extracting
necessary information and filtering out unnecessary data. These characteristics provide a
balanced outcome in both performance and model size.

On the other hand, the Bi-LSTM attention-CRF and Bi-LSTM attention linear CRF
models use the attention mechanism to emphasize important information. However, due
to the nature of NAVTEX messages, their effectiveness is limited. In particular, the Bi-LSTM
attention linear CRF model shows high performance but has the largest model size and
very high variance, making it less efficient in terms of hardware resource usage. Therefore,
while these two models have high performance, they lack resource efficiency.

Considering the performance and model size together in semantic classification of the
NAVTEX messages, the balanced choices are the Bi-LSTM-CRF model and the Bi-LSTM-
Linear-CRF model. These two models maintained high performance, low variance, and
an appropriate model size, effectively performing the semantic classification of NAVTEX
navigational safety messages.

This paper’s experiment, however, deals with navigational safety messages only
among NAVTEX messages. Navigational safety messages are unstructured but consist
of sentences with somewhat fixed formats centered on keyword enumeration; it doesn’t
have completely natural language features. Hence, the basic Bi-LSTM-CRF model and
Bi-LSTM-Linear-CRF using a simple ReLU activation function showed good results. For
the rest of the NAVTEX message types, the natural language characteristics would be more
dominant and therefore would have to be considered all together to select an optimal model
for semantic classification. Moreover, the dataset used in this study is limited to messages
from the split radio station in Croatian waters, which may introduce bias related to specific
location information and word choices commonly used in that region. This geographic
and linguistic bias could limit the model’s generalizability to other regions or languages,
potentially leading to errors when deployed in different maritime contexts. To mitigate
these risks, it is essential to train models on a more diverse dataset, encompassing a broader
range of sea areas and message types.

It is important to recognize that relying on Bi-LSTM models for the analysis and
classification of NAVTEX messages comes with certain risks. One potential risk is the
occurrence of misclassifications or errors in the analysis, which could result from various
factors such as insufficient training data, model overfitting, or inherent ambiguities in the
unstructured text of NAVTEX messages. For instance, a misclassified navigational warning
could lead to incorrect or delayed responses by automated systems like ECDIS or autopilot,
potentially compromising the safety of the vessel.

To minimize the impact of these potential risks, future work should focus on integrat-
ing error detection mechanisms, improving model robustness through ensemble methods,
and incorporating human-in-the-loop systems where critical decisions are cross-validated
by human operators. This approach will help ensure that the safety-critical information
processed by these models remains accurate and reliable, thereby supporting the safe
navigation of smart ships.
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5. Conclusions

NAVTEX is one of the major components of the GMDSS, transmitting important
navigational and meteorological warnings, forecasts, and other urgent maritime safety
information to ships. The automatic exchange of this information with systems like ECDIS
or autopilot, without human intervention, to adjust routes or display messages is crucial
for the safe navigation of smart ships. Therefore, this information should be consistently
shared and integrated in line with the Common Maritime Data Structure (CMDS).

In this paper, we have implemented and compared six models: Bi-LSTM CRF, Bi-LSTM
CNN CRF, Bi-LSTM highway CRF, Bi-LSTM linear CRF, Bi-LSTM attention CRF, and
Bi-LSTM attention linear CRF for semantic classification regarding NAVTEX messages,
with a particular emphasis on all navigation safety messages in the context of NAVTEX
messages. We performed an analysis of the F1 Score and model size comprehensively to
evaluate the performance and resource efficiency to derive an optimal model. Based on
the experimental results, Bi-LSTM CRF and Bi-LSTM linear CRF have the most effective
performance in semantic classification for messages in the NAVTEX messages. The Bi-LSTM
CRF model achieved an average F1 score of 0.965227 with a variance of 0.000008 and an
average size of 1882 KB with a variance of 3,855,208 KB. The Bi-LSTM Linear CRF model
showed an average F1 score of 0.965152 with a variance of 0.000010 and an average size of
1629 KB with a variance of 1,970,368 KB. These models could demonstrate a high F1 score
in addition to extremely low variance and prove to be very resource efficient with their
relatively very small model size.

In the future, we will conduct studies that evaluate models by considering features
not only of navigational safety messages but also of other message types, including those
in the broader NAVTEX series, as well as data from more diverse sea regions. Furthermore,
we will compare model performance using various evaluation measures from multiple
perspectives and explore state-of-the-art techniques based on transformers.

In this paper, we compared and analyzed several models in the Bi-LSTM CRF series
and implemented the one most suitable to understand the semantics of NAVTEX messages.
The optimal model derived enables not only automated processing of NAVTEX messages
but also conversion into a machine-readable format fitting the structure of CMDS. This
would provide continuous and efficient sharing of maritime information, which would
result in improved operational efficiency and maritime safety for intelligent ships, and
further promote development within the entire maritime industry.
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