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Abstract: Collaborative search with multiple Autonomous Underwater Vehicles (AUVs) significantly
enhances search efficiency compared to the use of a single AUV, facilitating the rapid completion
of extensive search tasks. However, challenges arise in underwater environments characterized by
weak communication and dynamic complexities. In large marine areas, the limited endurance of
a single AUV makes it impossible to cover the entire area, necessitating a collaborative approach
using multiple AUVs. Addressing the limited prior information available in uncertain marine
environments, this paper proposes a map-construction method using fuzzy clustering based on
regional importance. Furthermore, a collaborative search method for large marine areas has been
designed using a policy-iteration-based reinforcement learning algorithm. Through continuous
sensing and interaction during the marine search process, multiple AUVs constantly update the map
of regional importance and iteratively optimize the collaborative search strategy to achieve higher
search gains. Simulation results confirm the effective utilization of limited information in uncertain
environments and demonstrate enhanced search gains in collaborative scenarios.

Keywords: multiple AUVs; collaborative search; fuzzy clustering; reinforcement learning

1. Introduction

The ocean, which occupies more than 70% of the Earth’s surface, is not only a repository
of biodiversity but also exerts a profound influence on the global climate, food chain, and
human life. Therefore, comprehensive scientific research and the study of the oceans is of
paramount importance. In recent years, Autonomous Underwater Vehicles (AUVs) have
emerged as a crucial instrument in oceanographic research. In comparison to traditional
manned submersibles, AUVs offer several advantages, including low cost and flexible
operation. They are capable of carrying a variety of sensing devices, such as sonar, cameras,
and chemical analyzers, which enables them to adapt to a diverse range of oceanographic
research tasks, including seafloor topographic mapping, biodiversity observation, and
pollutant monitoring. In comparison to single AUVs, AUV clusters are capable of covering
a larger area of the mission zone in the form of formations. This enables the completion
of a wide range of patrol and surveillance tasks in a more expeditious manner, while also
markedly enhancing the detection capabilities of underwater vehicles. This latter point
represents a significant area of current research interest.

Collaboration between AUVs holds significant potential value in a variety of marine
tasks, including large-scale maritime search, environmental monitoring, resource explo-
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ration, and military missions. This potential value encompasses improvements in task
efficiency, the optimization of resource management, enhanced adaptability to complex
environments, and system scalability. By carefully designing and optimizing collabora-
tion strategies, the overall effectiveness of multi-AUV systems can be greatly enhanced,
particularly in complex marine environments where uncertainty and time sensitivity are
critical factors. Among these, the main focus of multi-AUVs cooperative search research is
on how multi-AUVs in known or unknown environments can effectively acquire target
information in formation or other collaborative formats, so both task allocation and path
planning need to be considered in the multi-AUV search problem [1].

In terms of task allocation, a novel consensus-based adaptive optimization auction
(CAOA) algorithm is proposed for the task allocation of multiple AUVs [2,3], which greatly
reduces the computational load while improving the system revenue, but its performance
degrades significantly in communication-constrained environments. Task allocation meth-
ods based on clustering algorithms include Euclidean distance clustering, K-means cluster-
ing, and fuzzy clustering [4,5], which demonstrates a degree of dominance on robustness
and computational efficiency. However, the key challenge of clustering-based task alloca-
tion is to identify the optimal number of tasks for each cluster, especially in an environment
of uncertainty. Intelligent optimization-based task allocation, on the other hand, makes use
of optimization techniques such as meta-heuristic algorithms to deal with the task allocation
problem and is particularly suitable for situations where the number of tasks is large and
the environment is complex [6]. Common intelligent swarm optimization methods include
genetic algorithm (GA) [7,8], particle swarm optimization (PSO) [9–11], and self-organizing
map (SOM). Among them, a decentralized task allocation method based on a decentralized
genetic algorithm was proposed [8] for multi-agent cooperative search. The advantages
of the PSO algorithm are simple implementation, few adjustment parameters, and fast
convergence. The modified PSO algorithm for the optimization of rescue task allocation
with uncertain time constraints was proposed [9], which focuses on the problem of robot
rescue task allocation. Sun et al. proposed a novel game allocation method for solving the
task allocation problem in underwater multi-AUV dynamic confrontations [12]. The pro-
posed method addresses incomplete information using a multi-objective evaluation model
and interval ranking, improving the convergence speed, accuracy, and global optimization
ability by increasing population diversity and iterative effectiveness, ensuring real-time
decision-making in complex game scenarios. Zhu et al. combined the improved SOM neu-
ral network with the Glasius Bio-inspired Neural Network (GBNN) approach to propose
an integrated algorithm for multi-AUV dynamic task assignment and path planning that
can solve the multi-AUV task assignment problem with good performance, where each
AUV can be assigned a specific task in a time-varying ocean environment [13]. Ma et al.
proposed a collaborative hunting algorithm based on the Bionic Neural Network (BNWN)
algorithm [14], improving the global search efficiency under incomplete navigation map
conditions and embedding a real-time reassignment method.

In terms of path planning, the path planning algorithm based on the geometric model
search belongs to the category of discrete optimal planning. It is a traditional path-planning
algorithm with a simple implementation process and mature technology. However, a high
level of model building is required by the algorithm, as it is closely related to the final
path planning results. Rajnarayan D G et al. proposed a multiple UUV search strategy
based on a segmentation strategy [15], where the search area is segmented into different
regions of uniform size and assigned to individual AUVs to detect the segmented region
based on a boundary algorithm to improve the search efficiency. Furthermore, Zhang et al.
proposed a 3D path planning method [16]. Cai et al. proposed an area partitioning method
to allocate the task to multiple AUVs and maintain the possible target area as a whole,
which can generate stable solutions to reduce the segmentation of target areas [17]. The
scholars above have primarily investigated the potential of partitioned search to reduce the
time required for search operations. Their findings offer insights and methodologies that
can be applied to the research topics addressed in this paper. However, the collaborative
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search problem they have studied primarily focuses on the rapid and efficient acquisition
of target information. In contrast, the large sea area search problem addressed in this
paper also requires consideration of the ability to cover the target area multiple times.
The path planning issues in complex dynamic environments can be solved by intelligent
algorithms and are suitable for path planning for AUVs. The main path planning strategies
are based on intelligent algorithms such as particle swarm optimization (PSO), ant colony
optimization (ACO), genetic algorithms (GAs), differential evolution (DE), and artificial
neural networks (ANNs). Zhang et al. designed a novel prediction-based path evaluator to
evaluate the fitness of possible paths and conducted multiple simulation experiments to
verify the effectiveness and superiority of the path planner [18]. However, the dynamic
obstacles were not considered.

In addition, reinforcement learning (RL) is known for its efficiency and practicality
in single-agent planning, but it faces numerous challenges when applied to multi-agent
scenarios [19]. In multi-agent reinforcement learning (MRL), a multilayer fully connected
neural network is used for value function approximation, which solves large-scale or
continuous space problems. However, in the complex dynamic environment affected by
wind and wave currents and seabed topography, it is easy to fall into local optima and
overfitting under partially observed environments because each agent lacks the information
that plays a key role in decision-making beyond the observation field. In particular, the
weak communication characteristics of the marine environment, where both perception and
communication between AUVs are highly noisy, make it highly uncertain if the strategies
of each AUV are used as communication messages. This poses a great challenge for
AUV task execution, and traditional reinforcement learning methods, such as Markov
Decision Process (MDP)-based methods, although successful in many applications, still
face challenges in dealing with uncertainty and ambiguity.

Whereas fuzzy reinforcement learning as an intelligent control strategy combines the
principles of fuzzy logic and reinforcement learning, fuzzy logic provides a way to deal
with imprecise and uncertain information, while reinforcement learning focuses on how
to optimize decision-making strategies based on interaction with the environment. By
combining the two, fuzzy reinforcement learning is able to learn how to make optimal or
near-optimal decisions in complex environments without full knowledge of the environ-
ment model [20]. This has better results in dealing with decision-making processes with
high uncertainty and complexity and also provides new ideas for multi-AUV search tasks.
Fathinezhad et al. proposed a supervised fuzzy Sarsa learning algorithm to find the optimal
action for each fuzzy rule through the supervised learning of fuzzy rules based on the Sarsa
algorithm, which was was validated by the E-puck robot’s movement in the E-puck robot
in an obstacle environment to verify that the method has the advantages of short learning
time and fewer failures [21]. A method of RL with an interpretable fuzzy system (IFS) based
on a neural fuzzy actor–critic (RLIFS-NFAC) framework was proposed, and the learned
IFS has also been successfully applied to control a real wall-following robot in unknown
environments [22]. Fu et al. focused on the policy-learning process in scenarios with
dynamic competitors that evolve dynamically with MARL and a competitive automultia-
gent learner with fuzzy feedback (CALF), showing that CALF significantly promotes team
competitiveness in adversarial competitions [23]. The two-stream fused fuzzy deep neural
network (2s-FDNN) was proposed to reduce the uncertainty and noise of information in the
communication channel and to improve the robustness and generalization under partially
observed environments [24].

However, the current research on fuzzy reinforcement learning in the field of AUV
is still relatively limited, especially in the scenario of multi-AUV collaborative search;
understanding how to train effectively with the help of fuzzy reinforcement learning under
the limited a priori information in order to improve the search efficiency and accuracy
is an urgent problem to be solved. Therefore, this paper aims to propose a multi-AUV
cooperative search method for dynamic and complex environments in the ocean based on
the fuzzy reinforcement learning method, constructing a fuzzy regional importance model
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based on grey system theory, clustering to generate an importance map of the mission
sea area based on limited a priori information, and then updating the map as a guide to
quickly determine the AUV cooperative search strategy within the map updating cycle
through the strategy-iteration algorithm of reinforcement learning in order to adapt to the
dynamic environment of the ocean and improve the search benefit under the requirements
of low communication.

2. Problem Formulation

Compared to a single AUV, a collaborative search with multiple AUVs can significantly
expand the search area and greatly enhance search efficiency. However, it also faces several
challenges. Taking the typical task scenario of patrolling a large marine area with multiple
AUVs to detect potential targets as an example, the main difficulties and limitations include
the following.

(1) Communication Constraints: Due to the unique properties of the marine environment
as a communication medium, long-distance underwater communication relies on
acoustic signals. However, acoustic communication has limitations such as low
bandwidth, uncertain latency, and errors in transmission, leading to incomplete or
inconsistent information among members of an AUV fleet.

(2) Perception Constraints: Limited by sensor accuracy and the interference and dynamic
nature of the underwater environment, the positioning and navigation of AUVs
under water are not always accurate, and misjudgments regarding targets and the
environment are possible.

(3) Energy Consumption Constraints: Although expanding the AUV fleet to perform
periodic patrols of large marine areas is feasible, the energy resources of individual
AUVs within the cluster are limited. Therefore, each AUV can only patrol a region
near its starting point.

(4) Individual Loss: The larger the AUV cluster, the more likely it is to encounter losses of
individual AUVs. The fleet must adjust the task sequence and re-plan movements in
real time according to environmental changes to respond quickly to external variations,
enhancing task efficiency and flexibility.

Therefore, collaborative search in large marine areas by multiple AUVs is a complex
issue with many research directions worth exploring. Considering all influencing factors
comprehensively is challenging. To focus the research while maintaining scientific rigor,
this paper selects the P324 underwater vehicle, designed by T-SEA Marine Technology
Co., Ltd. (Zhang Jiagang, China), as the research subject. Public images of this vehicle
are shown Figure 1. In the large marine area patrol scenario addressed in this paper, a
mother ship deploys multiple AUVs into the marine area. Each AUV patrols the clearly
bounded large marine area based on prior knowledge and environmental perception. In
this scenario, the AUVs operate using a distributed structure, where each AUV interacts
only with its neighboring AUVs. The confidence level of information exchange ranges from
0 to 1; within the neighboring range, the confidence level is 1, and outside the neighboring
range, it is 0. The size of the neighboring range is determined by the parameters of the
communication equipment installed on the AUVs. This paper analyzes scenarios where
there are no AUVs nearby, one neighboring AUV, and two neighboring AUVs.

Figure 1. P324.
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Given that the research focus of this paper is on designing effective strategies for
multi-AUV search in large marine areas, the multi-AUV collaborative search problem
discussed herein is simplified with the following assumptions:

(1) Hydroacoustic Communications: Although short-term instability may occur in acoustic
communication, it is assumed that within a patrol cycle, tasks, environmental data, and
state information updates can be progressively completed through interactions between
neighboring AUVs. That is, information may not be synchronized between AUVs that
are far apart, but this is consistent among neighboring AUVs. AUVs within the effective
range of acoustic communication are defined as neighboring AUVs, capable of direct
information exchange without the need for relay through other AUVs.

(2) Detection Range: It is assumed that each AUV’s detection range is confined to a single
grid width and can fully cover the sea area represented by that grid with satisfactory
accuracy for the mission requirements. Detection outside this range is not considered,
with confidence in the detection data ranging from 0 to 1, where 1 is within the range
and 0 is outside.

(3) AUV Deployment and Energy: AUVs are deployed by a surface mother ship, and
each AUV’s energy is quantified to support movement across 1000 grid spaces.

(4) Loss of Units: It is assumed that any lost units can be promptly replenished by
the mother ship, so the progress of the search mission is not affected by individual
losses, and any impacts can be mitigated through periodic updates of the map and
adjustments to the task sequence.

In the search task scenario within a large marine area, AUV clusters are distributed
in a designated area and continuously and repeatedly patrol and monitor the area in a
self-organized manner to gradually grasp the information of the target area. In this process,
repeated searches by multiple AUVs for the sea area will lead to a reduction in search
yield, which is the concern of this paper. This paper adopts a distributed decision-making
approach, allowing each AUV to evaluate the importance of marine areas based on existing
map information. Based on the assessed importance, optimal search/patrol strategies
are sought using the policy iteration algorithm. Subsequent motion planning for the
efficient patrolling of the marine area is then carried out according to the search strategies.
The grid map’s area importance model discussed in this paper is constructed based on
prior information and grey system theory. The importance evaluation provides a fuzzy
assessment of the marine environment under uncertain conditions. Although there are
deviations and disturbances compared to the actual marine characteristics, the model can
be refined by updating the map through perception information and interaction processes
during the multi-AUV patrol. This process continues as the patrol progresses, allowing
the model to gradually converge to the actual characteristics of the marine area. In the
distributed collaborative search by multiple AUVs, the discovery of a target in a particular
area increases the importance of that area and its surroundings. Conversely, repeated
patrols of the same area without finding a target reduce its importance due to a deeper
understanding of the area. Employing a distributed structure, the AUV cluster lacks a
centralized information aggregation and distribution center. Thus, information among
multiple AUVs is exchanged via acoustic communication among nearby AUVs. As the
search mission progresses, interactions form among all AUVs involved in the collaborative
search, ultimately updating the grid map for the AUV cluster to obtain more definitive
global information. However, the progress of map updates within the AUV cluster may
vary, and significant map discrepancies might exist between two distant AUVs. Since
these AUVs are sufficiently far apart, task conflicts are nearly nonexistent, and their search
missions minimally affect each other. Ultimately, as each member of the AUV cluster
updates the map, the cluster’s understanding of the grid map and area importance in the
patrol marine area will tend to converge. This continues until other disturbances occur, such
as the discovery of new targets or sudden changes in the marine environment, prompting
the cluster to repeat the process of information perception and interaction until a new
consensus is reached. The architecture designed in this paper is shown in Figure 2.
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Figure 2. Fuzzy decision-making architecture based on multi-AUVs perception and interaction.

3. Methods

The large-scale maritime cooperative search task scenario discussed in this paper
involves a situation where the boundaries of the maritime area are known, but the specific
locations or trajectories of the targets are uncertain. This represents a typical case of an
uncertain system characterized by incomplete information and inaccurate data. For the
study of uncertain systems, four general theories exist: stochastic system theory, fuzzy
system theory, grey system theory, and the theory of unascertained systems. Among
these, the grey system theory, introduced in 1982 by the Chinese scholar Professor Deng
Julong, offers a novel approach to addressing uncertainty in situations with limited data
and insufficient information. This theory focuses on systems where “some information is
known, while some information is unknown”, making it particularly suitable for evaluating
regional importance and clustering in the search process explored in this paper [25].

Regional Importance in Collaborative Search primarily indicates the probability of dis-
covering targets in the patrolled area. The likelihood of target appearances or discoveries in
different marine areas under uncertain conditions relates to the location distribution of the
area, familiarity with the area (e.g., number of detection attempts and patrol frequencies),
and other prior knowledge (such as historical tracks of targets). Considering that during the
search process, the target primarily adopts stealthy and covert maneuvers to gather more
maritime information, frequent depth changes are only necessary when evasive maneuvers
are required. Additionally, the multi-AUV cooperative search mission involves contin-
uous and repetitive coverage of the maritime area, making it crucial to avoid excessive
energy consumption due to frequent maneuvers. Therefore, greater emphasis is placed
on endurance, indicating that depth-fixed searches are advantageous for the execution of
the mission. Thus, simplifying the task planning for this scenario into a two-dimensional
problem is both reasonable and effective. Consequently, it is stipulated that AUVs primarily
move within the same plane, requiring no frequent movement out of this plane, and the
initial map depth is set to zero and updated only when a change in AUV depth is needed.
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For two-dimensional problems, employing the grid method for optimizing multi-AUV
search strategies is simple and effective and offers good real-time performance. In a grid
map, multi-AUVs do not require frequent communication interactions during the search of
large maritime areas. It is only necessary for neighboring AUVs to interact before deciding
to enter the next grid after searching the current one in order to avoid task conflicts in the
same grid. To support the resolution of search strategies based on the grid method, grid
clustering is required. Considering the varying importance of different grids in a patrol
scenario, this paper designs an importance evaluation and clustering method based on grey
system theory, enabling the reasonable division of the patrol area by clustering the grids.

3.1. Construction of a Set of Indicators for the Evaluation of Regional Importance

In the regional importance model presented in this paper, the prior knowledge of
the collaborative search task, such as historical tracks of targets and no-sail zones within
the marine area, is incorporated into a grid map for visual analysis as designated danger
and focus areas. Due to the fuzziness of sonar detection (where detected targets might
be false images), the number of times a target is detected is initially set to zero, reflecting
the lack of precise prior information. This necessitates the improvement of the model
through posterior knowledge acquired during continuous patrols. Consequently, various
types of distances have been selected as indicators for evaluating regional importance. The
importance of each grid σ is controlled by three indicators—distance from the port, marine
environment, and human attention level—with membership functions designed based on
expert knowledge.

Distance from Port SO: represented by the distance between the grid position and the
center of the port.

Marine Environment SH : characterized by the distance between the grid position and
challenging navigational areas such as reefs and shallow waters.

Human Attention Level SK: indicated by the distance between the grid position and
areas of significant human interest.

As shown in Equation (1) through (4), x, y represent the horizontal and vertical coordi-
nates, respectively. H (boundary) and K (boundary) denote the boundaries of challenging
navigational areas and areas of significant human interest, respectively.

σ = f (SO, SH , SK) (1)

SO =∥ x− y ∥ (2)

SH = min{∥ (x, y)−H(boundary) ∥} (3)

SK = min{∥ (x, y)−K(boundary) ∥} (4)

3.2. Regional Importance Assessment and Clustering Method Based on Grey System Theory
3.2.1. Construction of the Whitening Weight Function

The whitening weight function of a grey number reflects the degree of information
subjectively held about that grey number. This function is used to describe a grey number’s
“preference” for different values within its range. Generally, a whitening weight function
is designed by researchers based on available information, and there is no fixed formula
for its construction. However, the starting and ending points of the curve should have
meaningful interpretations.

Common whitening weight functions are shown in Figure 3. The functional forms are
as follows:

(a) Typical Whitening Weight Function
The general form of the function’s inflection point and piecewise function expression
are shown in Equations (5) and (6).

(b) Lower Bound Measure Whitening Weight Function
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The general form of the function’s inflection point and piecewise function expression
are shown in Equations (7) and (8).

(c) Moderate Measure Whitening Weight Function
The general form of the function’s inflection point and piecewise function expression
are shown in Equations (9) and (10).

(d) Upper Bound Measure Whitening Weight Function
The general form of the function’s inflection point and piecewise function expression
are shown in Equations (11) and (12).

f k
j [x

k
j (1), xk

j (2), xk
j (3), xk

j (4)] (5)

f k
j (x) =



0, x /∈ [xk
j (1), xk

j (4)]

x−xk
j (1)

xk
j (2)−xk

j (1)
, x ∈ [xk

j (1), xk
j (2)]

1, x ∈ [xk
j (2), xk

j (3)]

xk
j (4)−x

xk
j (4)−xk

j (3)
, x ∈ [xk

j (3), xk
j (4)]

(6)

f k
j [−,−, xk

j (3), xk
j (4)] (7)

f k
j (x) =


0, x /∈ [0, xk

j (4)]

1, x ∈ [0, xk
j (3)]

xk
j (4)−x

xk
j (4)−xk

j (3)
, x ∈ [xk

j (3), xk
j (4)]

(8)

f k
j [x

k
j (1), xk

j (2),−, xk
j (4)] (9)

f k
j (x) =



0, x /∈ [xk
j (1), xk

j (4)]

x−xk
j (1)

xk
j (2)−xk

j (1)
, x ∈ [xk

j (1), xk
j (2)]

xk
j (4)−x

xk
j (4)−xk

j (2)
, x ∈ [xk

j (2), xk
j (4)]

(10)

f k
j [x

k
j (1), xk

j (2),−,−] (11)

f k
j (x) =


0, x ∈ [0, xk

j (1)]

x−xk
j (1)

xk
j (2)−xk

j (1)
, x ∈ [xk

j (1), xk
j (2)]

1, x ∈ [xk
j (2), ∞]

(12)

The whitening weight functions for the model were designed using the Grey Variable
Weight Clustering method. The design references the triangular membership function
evaluation model from reference [25] and the whitening weight function construction
method described in reference [26]. The specific constructions are shown in Table 1.

Table 1. Index set and importance grading of grey levels.

K = 4 K = 3 K = 2 K = 1 K = 0

[0, 0, 0, 0] [0, 0, 0, 0] [30, 40, 85, 95] [-, -, 30, 40] [85, 95, -, -]
[8, 10, -,-] [5, 8, -, 10] [3, 5, -, 8] [1, 3, -, 5] [-, -, 1, 3]
[-, -, 5, 10] [5, 10, -, 20] [10, 20, -, 30] [20, 30, -, 40] [30, 40, -, -]

In the table, the indicators are briefly denoted as SO SH SK, with the set of importance
evaluation levels W = Extremely High (K = 4), High (K = 4), Moderate (K = 2), Low (K = 1),
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Extremely Low (K = 0). The numbers in brackets represent the coordinates of the inflection
points. A total of 15 whitening weight functions have been constructed to evaluate the
importance of each grid in three indicator dimensions. Taking the indicator SO as an
example, the meanings of some inflection points in the whitening weight functions are
explained as follows:

• K = 4 (Extremely High Importance) and K = 3 (High Importance) are both arbitrarily
set to 0

(a) (b)

(c) (d)

Figure 3. Common whitening weight functions. (a) Typical whitening weight function. (b) Lower
bound measure whitening weight function. (c) Moderate measure whitening weight function.
(d) Upper bound measure whitening weight function

The reason is that it is difficult to judge the importance based solely on the distance
from the port, and at most, areas where targets are unlikely or less likely to appear can
be estimated (see K = 1 and K = 0). Therefore, the membership values for these levels are
arbitrarily set to 0.

• K = 1, the Lower Bound Measure Whitening Weight Function is used

This represents that the distance from the port is less than 30. This value should be
classified under low importance (this journey is less than one-third of the maximum range,
suggesting it is only likely if staying at the mother port or in an accidental situation). A devia-
tion of 10 units on the right side means that when the distance from the port exceeds 40, it
should no longer be classified under low importance.

• K = 0 (Extremely Low Importance), the Upper Bound Measure Whitening Weight
Function is used

A value of 85 (Inflection Point 1) represents the maximum possible distance from
the port, which is calculated by multiplying the departure time by the maximum speed.
When greater than this value, the membership rapidly increases to 1, indicating a definite
extremely low-importance area (for this indicator). With a deviation of 10 units, at 95
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(Inflection Point 4) and beyond, the importance score of these grids should be recognized as
1, while within 85 it is 0, i.e., it should not be considered an extremely low-importance area.

• K = 2, the Typical Whitening Weight Function is used

Indicates that from Inflection Point 1 to Inflection Point 2, and from Inflection Point 2
to Inflection Point 4, the membership probability ascends on the left and descends on
the right.

By the complement of K = 4 and K = 5 under the universe, the completeness of the
importance evaluation under the indicator is ensured. Values of 40 (Inflection Point 2) and
85 (Inflection Point 3) mean that areas between 40 and 85 absolutely belong to moderate
importance; i.e., under normal circumstances, most areas considering only the distance from
the port, except for those that are exceptionally far (greater than the maximum range) or
exceptionally close (less than one-third of the maximum range), are considered of moderate
importance, which aligns with conventional understanding in such scenarios. Additionally,
a deviation of 10 units is set from Inflection Points 2 and 3 to the left and right as Inflection
Points 1 and 4, respectively. When less than 40 and more than 85, the membership rapidly
decreases until it is 0 at less than 30 and more than 95; i.e., it is impossible to be considered
a moderate-importance area (for this indicator).

3.2.2. Evaluation of Regional Significance

The critical value for subclass k of indicator j is defined as λk
j . Therefore, the critical

values for the four types of whitening weight functions are shown in Equation (13) through
(16). Thus, the weight for subclass k of indicator j is shownin Equation (17).

λk
j =

xk
j (2) + xk

j (3)

2
(13)

λk
j = xk

j (3) (14)

λk
j = xk

j (2) (15)

λk
j = xk

j (2) (16)

ηk
j =

λk
j

m
∑

j=1
λk

j

(17)

Then, we calculate λk
j (1 ≤ j ≤ 3, 1 ≤ k ≤ 5) and ηk

j (1 ≤ j ≤ 3, 1 ≤ k ≤ 5).
Finally, we compute the clustering coefficient matrix σ to obtain a clustering map of

regional importance. Calculating as shown in Equations (18) and (19), if max
1≤k≤s

{
σk

i

}
= σk∗

j ,

object i is said to belong to grey class k∗, determining the importance of the grid. By
assigning different colors to grids of different importance, the importance clustering of the
target marine area is completed.

σ =


σ1

1 σ2
1 . . . σs

1
σ1

2 σ2
2 . . . σs

2
...

...
. . .

...
σ1

n σ2
n . . . σs

n

 (18)

σk
j =

m

∑
j=1

f k
j (xij)η

k
j (19)

max
1≤k≤s

{
σk

i

}
= σk∗

j (20)
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In this paper, two scenarios are considered as examples, focusing on either a fixed
marine area or a target navigation route. The task area is set as a 100 × 100 grid map,
with the wharf coordinates set at [50, 0]. For the scenario with a fixed marine area, the
designated danger area dA is set at [(20, 20), (20, 40), (35, 40), (35, 20)], and the focus area fA
is at [(60, 20), (75, 20), (75, 55), (60, 55)]. For the target navigation route scenario, the danger
area dA is set at [(10, 10), (10, 20), (20, 20), (20, 10)], and the focus area fA is at [(60, 30), (80,
40), (80, 41), (60, 31)]. The marine area’s importance division obtained using this clustering
method is shown in Figure 4.

Figure 4. Grey clustering diagrams for marine area importance under the two scenarios.

In the diagram, different marine areas’ importance is represented by a gradient of
colors, where darker colors indicate higher importance. The importance distribution ranges
from 0 to 4. Using this clustering method allows for effective segmentation of the task area
based on varying levels of importance.

3.3. Multi-AUVs Cooperative Search Strategy Based on Fuzzy Reinforcement Learning

Traditional reinforcement learning methods employ Markov Decision Processes (MDPs)
as the mathematical model, constructing state and action spaces to define objective functions
and state/action rewards based on the analysis of the task scenario. Through continuous
iterative calculations, these methods aim to determine the optimal state values or the best
action strategies within the task environment. Given the fuzziness and uncertainty inherent
in the regional importance model constructed in this paper, it is reasonable to integrate
fuzzy logic with traditional reinforcement learning to address the multi-AUV collaborative
search problem and achieve optimal search gains.

The search reward R represents the cumulative reward value obtained by an AUV
while searching the grid map, indicating the effectiveness of the AUV’s search operations
under the weight of importance. As shown in Equations (21) and (22), k is the importance
level, j is the current number of searches for a grid, i is the step number in the search, z is
the AUV index, x, and y is the row and column numbers of the search grid used to identify
specific grids.

R =
1000

∑
i=1

riz, z = 1, 2, 3, . . . (21)

riz = kxy + 1− jiz (22)

3.3.1. Initial Patrol Strategy π0

AUVs start their search from different points and search one grid at each step. The
reward obtained is denoted by r, and r follows the formula provided in Equation (22),
indicating that the reward diminishes as a grid is repeatedly searched. The next step action
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is denoted by a and a = {0, 1, 2, 3, 4}, representing staying in place, moving left, moving up,
moving right, and moving down, respectively.

The initial patrol strategy π0 employs a random search strategy where AUVs start
from designated grids and randomly choose directions to move in, advancing one grid at
each step and receiving the grid’s importance as a reward. No reward is calculated upon
touching a boundary, and another direction is chosen to continue until the search reaches
the specified step length. Finally, the total search rewards for all AUVs are calculated.

3.3.2. Policy Evaluation

As shown in Equation (23), πk denotes the policy, j represents the number of iterations,
rk represents the immediate reward under the policy πk, γ is the discount factor, V(j)

k
represents the state–value matrix obtained in the j-th iteration under the policy πk, pπk

represents the complete probability distribution matrix obtainable for V(j)
k under the policy

πk. Equation (23) is iterated until
∥∥∥v(j+1)

πk − v(j)
πk

∥∥∥ ≤ 0.0001, and then the optimal state value
under the policy can be regarded as similar to Equation (24).

v(j+1)
πk = rπk + γPπkv(j)

πk, j = 0, 1, 2, . . . (23)

v∗πk = v(j)
πk (24)

3.3.3. Policy Improvement

As shown in Equation (26), the policy is updated at step K + 1 with the optimal state
value, and the specific formula is expanded as Equations (27)–(29).

v∗πk = v(j)
πk (25)

πk+1 = arg max
π

(rπ + γPπkv∗πk) (26)

qπk(s, a) = ∑
r

p(r | s, a)r + γ ∑
s′

p(s′ | s, a)v∗πk(s
′) (27)

a∗k (s) = arg max
a

qπk(s, a) (28)

πk+1(a|s ) =
{

1, a = a∗

0, a ̸= a∗
(29)

qπk(s, a) represents the reward obtained by taking action a in state s and continuing accord-
ing to policy πk until the end of the episode in the equation. The right side of the equation
is the expansion of the total probability formula.

a∗k (s) denotes the action, which leads to the maximum reward qπk(s, a); πk+1 is the
updated policy, and by continuously iterating and updating, the optimal policy π∗ can
be achieved.

Some of the pseudo-code for the strategy iteration algorithm is shown in Algorithm 1.
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Algorithm 1 Policy Iteration for Grid Environment

1: Initialization:
2: Initialize policy π with equal probability for each action
3: Set V(s) = 0 for all states s
4: Set γ = 0.9, θ = 0.00001
5: Policy Evaluation:
6: repeat
7: Set ∆ = 0
8: for each state s do
9: v← V(s)

10: V(s)← ∑a π(a | s)∑s′ P(s′ | s, a)[R(s, a, s′) + γV(s′)]
11: ∆← max(∆, |v−V(s)|)
12: end for
13: until ∆ < θ
14: Policy Improvement:
15: Policy stable← true
16: for each state s do
17: old_action← arg maxa π(a | s)
18: for each action a do
19: Q(s, a)← ∑s′ P(s′ | s, a)[R(s, a, s′) + γV(s′)]
20: end for
21: π(s)← arg maxa Q(s, a)
22: if old_action ̸= π(s) then
23: Policy stable← false
24: end if
25: end for
26: if policy stable then
27: exit
28: end if
29: Repeat:
30: Perform Policy Evaluation and Policy Improvement until policy is stable
31: End:
32: Return the optimal policy π and value function V

4. Simulation Results and Discussion

This paper presents a case study focusing on a fixed marine area task region, employing
the second operational scenario to validate the effectiveness of strategy optimization follow-
ing map updates. The study involves dividing a 10 km × 10 km area into a 100 × 100 grid,
with each grid measuring 100 m × 100 m. It is stipulated that each AUV’s detection range
fully covers a grid as it passes through. Due to energy consumption limitations, each AUV
can only travel through 1000 grids. Each grid, depending on its importance, provides
varying search yields (with initial reward values equivalent to grid importance). During
patrols, grids that are searched repeatedly have their importance decay within the map
update cycle, with a decay discount factor set at 0.9. The study compares the search gains
from a random search strategy and an optimized search strategy developed through policy
iteration based on reinforcement learning, without considering map changes within one
map update cycle. Both strategies involve AUVs traveling 1000 steps and calculating the
obtained search rewards.

Given the distributed search architecture designed in this paper, each AUV’s decision-
making on search strategies only considers the influence of nearby AUVs. The simulation
results will illustrate search strategies and rewards under scenarios with 0, 1, and 2 nearby
AUVs. The figures demonstrate the effectiveness of the area search in terms of search
rewards R, which represents the effectiveness of the marine area search.

As shown in Figures 5–7, the median and quartile traces for random behavior in the
figure represent the search reward curves obtained from 1000 random search strategies
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performed by the target AUV and its neighboring AUVs (if there are any). These curves
indicate the level of cooperative search efficiency under the initial strategy. The blue line
marked as FRL represents the search reward curves obtained by the target AUV and its
neighboring AUVs (if there are any) using a search strategy based on fuzzy reinforcement
learning, reflecting the cooperative search efficiency of the target AUV and its neighboring
AUVs. As can be observed, these curves are generally significantly superior to the initial
random strategy, and the advantage of the cooperative search strategy based on fuzzy
reinforcement learning (FRL) becomes more pronounced as the number of AUVs increases.

Average search rewards under different numbers of AUVs for random search strategy
and cooperative search strategy based on fuzzy reinforcement learning are detailed in
Table 2. The average search rewards decrease due to the increased number of nearby AUVs,
which leads to more frequent grid re-searches and thus faster reward decay. Similarly, the
search strategy based on fuzzy reinforcement learning shows a significant advantage in all
three cases.

[Condition 1]

[Condition 2]

Figure 5. Comparison of rewards for search strategies based on fuzzy reinforcement learning and
random search (1 AUV).
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[Condition 1]

[Condition 2]

Figure 6. Comparison of rewards for search strategies based on fuzzy reinforcement learning and
random search (2 AUVs).

To validate the stability of the method, this paper adopts the standard shown in
Equation (30), which is a more stringent criterion for determining the convergence of
strategy optimization. The search gain obtained by continuing the iteration of the strategy
is considered to be no longer increasing, and the iterations are terminated at the point when
delta ≤ 0.00001. The value of delta here represents the difference in rewards between the
strategy after iteration and the strategy before iteration. When this difference is less than
a certain threshold, we can consider that the current strategy to be unlikely to be further
optimized through continued iteration, indicating convergence.

In the fuzzy reinforcement-learning-based strategy iteration used in this paper, each
iteration sequence is designed to include 100 iterations. After 100 iterations, the current iter-
ation will end and proceed to the next iteration round, regardless of whether convergence
has been achieved. The 100-iteration design is intended to prevent slow convergence and
excessive computation time. Each new iteration round inherits part of the strategy from the
previous iteration, which helps to achieve rapid convergence over multiple iterations.The
convergence behavior during the policy iteration process are shown as Figures 8 and 9. It
can be observed that in each iteration cycle, the method consistently achieves convergence
within 100 iterations, and the speed of convergence increases with each subsequent cycle. It
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can be considered that this method has a relatively high computational efficiency, making
it suitable for cooperative search scenarios with time-sensitive requirements.∥∥∥v(j+1)

πk − v(j)
πk

∥∥∥ ≤ 0.00001 (30)

[Condition 1]

[Condition 2]

Figure 7. Comparison of rewards for search strategies based on fuzzy reinforcement learning and
random search (3 AUVs).

Table 2. Comparison of average search rewards based on FRL and random search.

Condition 1 Condition 2

Number of AUV
FRL

Search Rewards
Random

Search Rewards
FRL

Search Rewards
Random

Search Rewards

1 3653 1770.64 3007 1825.52
2 3370 1744.54 2920 1760.94
3 3194 1649.85 2862 1727.9
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[Condition 1]

[Condition 2]

Figure 8. The delta change curve for the three iterations (100 evaluation iterations per round of
improvement iterations).

[Condition 1]

[Condition 2]

Figure 9. The delta changecurve for ten iterations (100 evaluation iterations per round of improve-
ment iterations).

Additionally, the search gain curves for 1000-step searches using the Breadth-First
Search (BFS) and Depth-First Search (DFS) algorithms in two different scenarios were
analyzed. The simulation results are as follows, with the search gains detailed in Table 3. It
is evident that traditional DFS and BFS algorithms exhibit significant redundant searches
as the number of AUVs increases, leading to a rapid decline in search gains. In contrast,
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the search strategy based on fuzzy reinforcement learning demonstrates a clear advantage
in multi-AUV cooperative search, as shown in Figures 10–13.

Figure 10. Searching 1000 steps with BFS under condition 1.

Figure 11. Searching 1000 steps with DFS under condition 1.

Figure 12. Searching 1000 steps with BFS under condition 2.
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Figure 13. Searching 1000 steps with DFS under condition 2.

Table 3. Search rewards from 1000 steps with different strategies.

Condition 1 Condition 2

Number of AUV DFS BFS FRL DFS BFS FRL

1 3844 3013 3653 2921 1376 3007
2 6688 5161 6740 5061 2359 5840
3 8579 6495 9582 6467 3044 8586

5. Conclusions

The area importance model of the grid map in this paper is constructed based on
prior information and grey system theory. The evaluation of importance serves as a fuzzy
assessment of the marine area under uncertain conditions. By adopting a two-dimensional
gridding method for the task area, the model is greatly simplified. Utilizing the policy iteration
algorithm from reinforcement learning, the system optimizes search strategies for rapidly
identifying high-importance areas within the marine environment, providing quick solutions,
fast convergence, and substantial search gains. This approach offers valuable insights into the
collaborative search/patrol of multiple AUVs in fuzzy marine environments.

Here are the limitations and shortcomings:

(1) Dimensional Scalability: This study primarily explores two-dimensional area division
based on importance, which should also be applicable to three-dimensional division
and task planning. However, the addition of the vertical dimension could significantly
increase the number of grid areas, and the necessity of this in practical applications
needs to be assessed. Typically, AUVs do not frequently adjust their depth during
underwater operations, so it can be assumed that AUVs patrol within a fixed depth
grid, closely approximating the two-dimensional scenario described in this paper.
Only in specific areas would small-scale three-dimensional division and task planning
be conducted, making this method feasible and beneficial.

(2) Model Design Simplification: The design of the area importance model cleverly
uses the Euclidean distance between region locations and various points (starting
points, no-sail zones, focus areas) as different dimensional indicators for importance
evaluation. This approach allows for a succinct and efficient construction of the
state space based solely on location. However, the importance of an area in practical
situations involves more dimensions than just location (though location is almost
always a critical factor), possibly including hydrological environment characteristics,
the degree of area familiarity (substituted by patrol frequency in this study), and the
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impact of incidental events. Therefore, the construction of the state space should be
more complex and dynamic, requiring deeper research.
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