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Abstract: Achieving formation tracking control of underactuated autonomous underwater vehicles
(AUVs) under communication delays presents a significant challenge. To address this challenge, a
distributed prescribed performance control protocol based on a real-time state information online
predictor (RSIOP) is proposed in this paper. First, we innovatively designed an RSIOP to achieve
active compensation for the delayed state information of neighboring AUVs. Next, considering
formation performance and safety, a low-complexity and practical nonlinear mapping function was
used to implement prescribed performance tracking control for the AUV formation. Additionally, the
adverse effects of external disturbance uncertainties and input saturation are also considered. Finally,
the simulation tests demonstrated that the proposed formation control protocol can successfully
achieve the predetermined formation tracking tasks in the presence of time-varying communication
delays and external disturbances, while also enabling real-time changes in formation configuration
during the process. Throughout, the protocol maintains input saturation limits, and the actual control
inputs remain smooth, with no significant oscillations. Furthermore, comparative simulation tests
verified the necessity of the RSIOP developed in this study and quantitatively demonstrated that the
proposed control method exhibits superior performance in terms of formation control accuracy, error
convergence speed, and transient-state constraints.

Keywords: underactuated autonomous underwater vehicles; formation control; time-varying
communication delay; prescribed performance control

1. Introduction

Autonomous underwater vehicles (AUVs) constitute an emerging class of unmanned
underwater platforms that have experienced rapid advancements in recent years, driven by
significant progress in energy systems, sensing technologies, navigation, communication,
and control technologies [1–5]. However, with the expansion of oceanic endeavors and the
increasing complexity of underwater tasks, AUVs face significant challenges. The limited
energy capacity, the susceptibility to ocean currents and marine life disturbances, and the
relatively small operational coverage within a limited timeframe of single AUV platforms
are inadequate to meet the requirements of more complex, real-time, large-scale marine
missions [6,7]. These limitations highlight the urgent need for more robust and scalable
solutions, driving the focus toward multi-AUV systems. Today, multi-AUV systems have
been proven to collect more reliable data and exhibit higher efficiency, better fault tolerance,
greater robustness, wider mission execution areas, and lower system costs compared to
single AUVs [8–11]. Despite these advantages, the successful deployment of multi-AUV
systems poses considerable challenges, especially with respect to formation control and
communication reliability. The primary objective of AUV formation control is to manage
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the relative distance, speed, or orientation between AUVs, enabling them to move as
a unified group. This facilitates tasks such as transitioning from initial positions to a
designated location to form a specific formation or maintaining a certain formation during
navigation [12].

The success of AUV formation control relies heavily on effective communication
between vehicles. To achieve AUV formation, information transmission between AUVs
must be conducted through wireless communication within a network control system.
Acoustic communication has become the most widely used method due to its advantages
of longer underwater propagation distances and lower attenuation. However, due to its
relatively slow transmission speed and the time required for data parsing, underwater
communication is subject to significant delays. This results in each AUV receiving the
delayed state of neighboring AUVs rather than accurate, real-time states. These delays
can severely impact the control performance and stability of the formation control system,
making it a crucial challenge that must be addressed [13,14]. Recent research has made
progress in addressing the challenges posed by communication delays, yet significant gaps
remain. Li et al. [15,16] established the Lyapunov–Krasovskii equation and used linear
matrix inequality (LMI) to solve the time-varying communication delay problem, obtaining
boundary conditions for control system error convergence. Zhang et al. [17] modeled a fixed
communication topology and, combined with a consensus algorithm, proposed a leader–
follower control strategy designed to handle time-varying delays, establishing new stability
criteria to ensure the consistency of multi-AUV systems. Zeng et al. [18], utilizing matrix
theory and pertinent stability criteria, established sufficient conditions for the stability
of the error system under both scenarios, with and without communication delays. Yan
et al. [19] proposed a multi-UUV path-following controller based on a virtual leader to
address communication delays, using Shuler theory to provide sufficient conditions for
multi-UUV path-following convergence. While these approaches have advanced the field,
they primarily rely on the delayed states of neighboring AUVs and require knowledge of
the upper bound of communication delays. As a result, they address the communication
delay problem between AUVs in a passive manner, which limits their effectiveness in more
dynamic environments and presents certain limitations. Li et al. [20] studied fully actuated
AUVs and used curve-fitting methods to predict the leader’s state in a two-dimensional
formation, but the fixed-order model used had difficulties ensuring prediction accuracy. Du
et al. [21] pioneered an active communication delay compensation mechanism by designing
a data-driven state predictor to estimate the current motion state of neighboring AUVs in
real-time. However, the recursive step size of state estimation is dependent on the order of
the prediction model, which can result in prediction failures due to data loss, making it
potentially less suitable for practical AUV applications.

Moreover, another critical aspect of AUV formation control is the management of for-
mation state errors, which has direct implications for system performance and safety. While
several approaches have been proposed, challenges remain. Bechlioulis et al. [22] initially
introduced an innovative approach known as prescribed performance control (PPC) for
nonlinear systems. By transforming the constrained nonlinear system under the prescribed
performance function into an unconstrained one, they designed a robust controller to
maintain the error within predefined performance bounds. This method set a foundation,
yet it involves intricate transformations and handling of constraints. Since then, numerous
scholars have conducted research building upon this approach. For instance, Liu et al. [23]
transformed tracking errors into virtual errors using a specified performance function and
designed an adaptive region-tracking control scheme with transient performance using
backstepping technology. Similarly, Sun et al. [24] created a PPC strategy for trajectory
tracking control of fully actuated AUVs, utilizing performance functions and corresponding
error transformations. While effective, these methods share a common drawback: the need
for complex transformations to manage constrained tracking errors, which can complicate
implementation and limit practical applicability. Recognizing these challenges, Huang
et al. [25] used nonlinear mapping techniques to reduce the complexity of designing pre-
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scribed performance controllers, effectively addressing the PPC problem for underactuated
single AUVs. However, even with these improvements, PPCs often require large control
inputs at the initial stage. Due to the physical constraints of AUV equipment, actuator
input saturation becomes unavoidable, leading to performance degradation [26]. This issue
has been overlooked in the aforementioned studies, yet it is clearly a problem that urgently
needs to be addressed in formation control. Thus, while significant progress has been made,
these limitations underscore the need for further research to develop more practical and
robust PPC solutions that can be effectively implemented in real-world AUV formations.

In response to these challenges and research gaps, this paper centers on the formation
control of underactuated AUVs and develops a prescribed performance control protocol
for formation tracking under time-varying communication conditions. Unlike previous
studies, the proposed control protocol offers the following advantages:

(1) Combining time series analysis theory, an innovative real-time state information online
predictor (RSIOP) is proposed. This approach does not necessitate prior knowledge
of the upper bound of communication delays. Instead, it leverages the delayed
motion state information of neighboring AUVs to recursively obtain their current
state information. This approach not only ensures data validity but also achieves
real-time active compensation for time-varying communication delays.

(2) To enhance both transient and steady-state performance, the AUV formation’s motion
states are constrained using prescribed performance functions, which significantly
improves operational efficiency. Additionally, by incorporating nonlinear mapping
techniques, the complex transformations of constrained errors are avoided, resulting
in a more straightforward and intuitive control protocol design.

(3) The proposed approach addresses the adverse effects of input saturation and unknown
external disturbances in AUV formation control without the need for observers,
thereby simplifying the adjustment of control parameters.

(4) The formation is designed to be dynamic, enhancing its flexibility in practical applica-
tions and improving its ability to adapt to complex and evolving environments.

The rest of this paper is structured as follows. The preliminary and problem for-
mulations are presented in Section 2. Section 3 describes the solution to time-varying
communication delays. Section 4 presents the design of the prescribed performance forma-
tion tracking controller, along with a stability analysis of the closed-loop system. Section 5
offers the simulation results to validate the effectiveness of the control protocol. Finally, the
conclusions are summarized in Section 6.

2. Preliminary and Problem Formulations
2.1. Graphy Theory

Communication topology is a critical component in the formation control of AUVs.
It serves as a bridge connecting AUVs, establishing the mechanisms for information flow
exchange. Graph theory can be effectively utilized to describe communication topology,
providing robust theoretical support for formation control.

In this article, a weighted directed graph G = {V, E, A} is utilized to represent the
communication topology among AUVs within the network system. Assume there is
a virtual leader and N AUVs in the formation, with each AUV considered as a node.
V = {v0, v1, . . . , vN} represents the set of nodes in the formation, E ⊆ V × V denotes the
set of edges, and A =

[
aij
]
∈ R(N+1)×(N+1) is the weighted adjacency matrix. If an edge(

vi, vj
)
∈ E, it indicates that information from the jth AUV can flow to the ith AUV, and

aij = 1. The jth AUV can then be referred to as a neighbor of the ith AUV, and the neighbor

set of ith vehicle can be denoted as Bi =
{

j|
(
vi, vj

)
∈ E

}
. bi =

N
∑

j=0
aij specifies the number

of neighbors of the ith vehicle. The aij can be represented as follows:

aij =

{
1, i f

{(
vi, vj

)
∈ E, i ̸= j

}
0, otherwise
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Assumption 1. Within the communication network system, at least one path exists between any
two nodes, indicating that G is connected. Additionally, the virtual leader acts as the root node of
the system.

2.2. AUV Model

Consider a 5-DOF underactuated AUV mathematical model subject to external distur-
bances and saturation constraints. The north–east–down frame {NED} and the body-fixed
frame {B} of the ith AUV are established separately, as illustrated in Figure 1.
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Figure 1. Coordinate frame system of the AUV.

According to reference [27], the three-dimensional motion model of the ith AUV can
be derived.

.
ηi = J(ηi)vi (1)

Mi
.
vi + Ci(vi)vi + Di(vi)vi + gi(θi)=Ti + ∆i (2)

where ηi = [xi, yi, zi, θi, ψi]
T denotes the positions (i.e., surge, sway, and heave displace-

ments) and orientations (i.e., pitch and yaw angles) in the north–east–down frame.
vi = [vui, vi, wi, pi, ri]

T represents the velocities in the body-fixed frame. J(ηi) is the trans-
formation matrix and can be described as

J(ηi) =


cos(θi) cos(ψi) − sin(ψi) sin(θi) cos(ψi) 0 0
cos(θi) sin(ψi) cos(ψi) sin(ψi) sin(θi) 0 0

− sin(θi) 0 cos(θi) 0 0
0 0 0 1 0
0 0 0 0 1

cos(θi)


Mi = diag[m11,i, m22,i, m33,i, m55,i, m66,i] is the inertial matrix of the AUV.

Ci(vi) =


0 0 0 m33,iwi −m22,ivi
0 0 0 0 m11,iui
0 0 0 −m11,iui 0

−m33,iwi m11,iui 0 0 0
m22,ivi −m11,iui 0 0 0

 is the Coriolis and centripetal

matrix.
D(vi) = diag

{
Xu,i, Yv,i, Zw,i, Mq,i, Nr,i

}
represents the damping matrix.

gi(θi) = [0, 0, 0, ρigi∇iGML,i sin(θi), 0]T is the restoring moment matrix.
Ti = [T1,i, 0, 0, T4,i, T5,i]

T denotes the actual input control force.
And ∆i = [∆1,i, ∆2,i, ∆3,i, ∆4,i, ∆5,i]

T is the uncertain external disturbance.

Assumption 2. For the uncertain external disturbance ∆i, there exists a positive constant ∆i such
that ∥∆i∥ ≤ ∆i always holds.
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However, to address the underactuation problem, a coordinate transformation is
required to integrate the dynamics in all directions and involve all control inputs [28].

yi = Hi(ηi) = [xi + ℓi cos(θi) cos(ψi), yi + ℓi cos(θi) sin(ψi), zi − ℓi sin(θi)]
T (3)

where ℓi is a constant positive parameter that represents the distance between the virtual
control point Pi and the center of mass (COM) along the Ob,ixb,i axis, as illustrated in
Figure 1. Furthermore, by differentiating Equation (3) and incorporating Equations (1) and (2),
the new kinematic and dynamic equations for the AUV can be obtained.

.
η
∗
i = J∗1,i(ηi)v∗

i + J∗2,i(ηi, vi) (4)

.
v∗

i = (M∗
i )

−1(T∗
i + ∆∗

i − C∗
i (vi)v∗

i − D∗
i (vi)v∗

i − g∗i (θi)) (5)

where

J∗1,i(ηi) =

cos(θi) cos(ψi) −ℓi sin(θi) cos(ψi) −ℓi sin(ψi)
cos(θi) sin(ψi) −ℓi sin(θi) sin(ψi) ℓi cos(ψi)

− sin(θi) −ℓi cos(θi) 0



J∗2,i(ηi, vi) =

−vi sin(ψi) + wi sin(θi) cos(ψi)
vi cos(ψi) + wi sin(θi) sin(ψi)

wi cos(ψi)



C∗
i (vi) =

 0 m33,iwi −m22,ivi
(m11,i − m33,i)wi 0 0
(m22,i − m11,i)vi 0 0


v∗

i = [vui, qi, ri]
T , M∗

i = diag(m11,i, m44,i, m55,i), D∗
i = −diag

(
Xu,i, Mq,i, Nr,i

)
,

g∗i
(
θ∗i
)
= [0, ρi gi∇iGML,i sin(θi), 0]T , T∗

i = [T1,i, T4,i, T5,i]
T , ∆∗

i = [∆1,i, ∆4,i, ∆5,i]
T .

2.3. Actuator Dynamics

In practical applications, due to actuator limitations, the actual output force can-
not achieve the control command input force. The specific actuator model is shown in
Equation (6).

Tx,i = sat(ux,i) =


ux,i, i f ux,imin ≤ ui ≤ ux,imax
ux,imin, i f ui < ux,imin
ux,imax, i f ui > ux,imax

(6)

where ux,i is the command control input; ui = [u1,i, u5,i, u6,i]
T is the command control input

vector; and ux,imin and ux,imax denote the saturation constraints.
The existence of such hard saturation limits introduces nonlinearity in the input,

adding complexity to the subsequent controller design. Building on the ideas from ref-
erence [29], a dead-zone operator-based model (DOBM) is employed to reconfigure the
saturation phenomenon, which ensures the continuity of the closed-loop control system.

h(ux,i) = αx,iux,i −
∫ Ex,i

0
lx,i(εx,i)dzε,x,i(ux,i)dεx,i (7)

where lx,i(εi) is a density function that vanishes at a finite horizon Ex,i and satisfies lx,i(εi) ≥
0 ∀εi > 0; αx,i is a constant parameter, calculated from αx,i =

∫ Ex,i
0 lx,i(εx,i)dεx,i; and

dzε,x,i(ux,i) denotes a dead-zone operator, which is defined as (8). To simplify notation, we

denote Ωx,i =
∫ Ex,i

0 lx,i(εx,i)dzε,x,i(ux,i)dεx,i.

dzε,x,i(ux,i) = max(ux,i − εx,i , min(0, ux,i + εx,i)) (8)
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The dynamic model of the actuator can be formulated by integrating Equations (6)–(8)
as follows:

T∗
i = αiui − Ωi + oi (9)

where αi = diag[α1,i, α4,i, α5,i], Ωi = [Ω1,i,Ω4,i,Ω5,i]
T and oi = sat(ui) − h(ui). Subse-

quently, the relevant lemma, Lemma 1, is presented. Specifically, Lemma 1 elucidates that
lx,i(εx,i) and Ex,i can be appropriately chosen to approximate the limits of the saturation
constraint, provided that ux,imin and ux,imax are known. Given that the dead-zone-based
model h(ui) is continuous, it further implies that h(ui) and oi are bounded.

Lemma 1 ([30]). For any given input saturation limit ux,i,max, there always exists an appropriate
density function lx,i(εx,i) ensuring ux,i,max = lim

ux,i→∞
h(ux,i) =

∫ Ex,i
0 εx,ilx,i(εx,i)dεx,i. The detailed

approximation of saturation function effects are illustrated in Figure 2.
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(
εx,i
)
= max

(
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(
Ex,i − εx,i

)
, 0
)
. (a) Consider the scenario where u1,imax = −u1,imin = 100 N

with µ1,i = 0.005, E1,i = 200; (b) Consider the scenario where u4,imax = −u4,imin = 50 N·m with
µ4,i = 0.01, E4,i = 100. (c) Consider the scenario where u5,imax = −u5,imin = 25 N·m with µ5,i = 0.02,
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3. Approach to Address Time-Varying Underwater Acoustic Communication Delay

Due to the underwater acoustic communication delay τij, when the leader jth AUV
transmits its state information Φj(t) to the ith AUV, the latter can only receive the delayed
state information Φj

(
t − τij

)
at time t, as illustrated in the Figure 3, where the red arrows

indicate data information flow transmission.
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25

i i
u u N m= − =  with  =

5,
0.02

i , =
5,

50
i

E . 
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ij
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β
， ，2 ，p

 is the model coefficient; and ,ij
  is the bounded noise. 

By using the least-squares method to estimate the coefficient ,ij
β  , the following 

equation can be obtained: 

n
t

,n ij n
t −

 AUVith

1 ,1ij
t −

1
t

Data transmission interval 
ij



Begin time

,
Delay time 

ij n


 AUVjth

2
t

2 ,2ij
t −

Figure 3. Data information flow transmission.

Where Φj(t) =
[
ηj(t); vj(t)

]
=
[
Φ1,j(t), Φ2,j(t), · · ·Φ10,j(t)

]T denotes the state infor-
mation of j at the moment of data information transmission.

To address the formation-control accuracy issue caused by this delay, an autoregressive
model in the form of Equation (10) is introduced to model the AUV state information,
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inspired by time series theory [31]. The current state information of the jth AUV can be
inferred through time series analysis and multi-step prediction.

Φρ,j
(
t − τij

)
= ΦT

ρ,jβρ,ij + δρ,ij (10)

where Φρ,j =
[
Φρ,j

(
t − τij

(
1+ 1/nij

))
, Φρ,j

(
t − τij

(
1+ 2/nij

))
, · · · , Φρ,j

(
t − τij

(
1+ pij/nij

))]T
is the delayed state information of the jth AUV received by the ith AUV; σij = τij/nij is the
time step of information transmission; pij is the order of the autoregression model, which
can be determined using the Akaike Information Criterion (AIC) [32];

βρ,ij =
[

βρ,ij,1, βρ,ij,2, · · · , βρ,ij,pij

]T
is the model coefficient; and δρ,ij is the bounded noise.

By using the least-squares method to estimate the coefficient βρ,ij, the following
equation can be obtained:

^
βρ,ij = argmin

βρ,ij

∥∥∥Φρ,j
(
t − τij

)
− ΦT

ρ,jβρ,ij

∥∥∥2
(11)

Subsequently, the update law for βρ,ij is formulated as

.
^
βρ,ij(t) = Qρ,ij(t) (12)

.
Qρ,ij(t) = −cρ,ij,1Qρ,ij(t) + cρ,ij,2ΦT

ρ,j
(
Φρ,j

(
t − τij

)
− Φρ,j β̂ρ,ij(t)

)
(13)

where Qρ,ij(t) is the transition matrix; cρ,ij,1 and cρ,ij,2 are the positive tuning constants.
Define

β̃ρ,ij = βρ,ij − β̂ρ,ij (14)

Differentiating (14) with respect to Equations (12) and (13) results in

.
~
βρ,ij =

.
βρ,ij −

∫ t

0
cρ,ij,1ΦT

ρ,jΦρ,j
~
βρ,ij(T)e

−cρ,ij,2(t−T)dT −
∫ t

0
cρ,ij,1ΦT

ρ,jδρ,ije
−cρ,ij,2(t−T)dT (15)

The Lyapunov function is formulated as

V
(

~
βρ,ij

)
=

1
2

~
β

T

ρ,ij

~
βρ,ij (16)

By taking the derivative of Equation (16) with respect to Equation (15), and choosing
0 < cρ,ij,1 < 1, cρ,ij,2 > 0, we obtain

.
V
(

~
βρ,ij

)
≤ −Ei,1V

(
~
βρ,ij

)
+ Ei,2 (17)

with suitable positive constants Ei,1 and Ei,2, which demonstrates that the coefficient
estimation error can converge to a vicinity near zero.

Subsequently, we can design an RSIOP in the following manner:
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Φ̂ρ,j

(
t − τij

(
1 −

ϑij

nij

))
=



pij

∑
m=1

(
β̂ρ,ij,mΦρ,j

(
t − τij

(
1 +

m − 1
nij

)) )
ϑij = 1

ϑij−1

∑
m=1

(
β̂ρ,ij,mΦ̂ρ,j

(
t − τij

(
1 +

m − ϑij

nij

))

+
pij

∑
m=ϑij

β̂ρ,ijΦρ,j

(
t − τij

(
1 +

m − ϑij

nij

)) )
when ϑij ≤ pij

pij

∑
m=1

(
β̂ρ,ij,mΦ̂ρ,j

(
t − τij

(
1 +

m − ϑij

nij

))
when ϑij > pij

ϑij = 2, 3, · · · , nij

(18)

where Φ̂ρ,j denotes the predicted value of Φρ,j, ϑij denotes the index value during the
iteration process.

By performing nij iterations, the true value of the current state information of the jth
AUV Φ̂ρ,j(t) can be calculated, effectively resolving the communication delay issue.

4. Formation Control Protocol Design
4.1. Error Transformation with Prescribed Performance

This study is primarily dedicated to designing an adaptive control protocol to en-
able the formation to achieve a time-varying formation configuration with prescribed
performance under conditions of communication delays, external disturbances, and input
saturation. Additionally, the formation is guided to follow the desired trajectory generated
by the virtual leader. The block diagram of the proposed prescribed performance formation
control protocol for the ith AUV is shown in Figure 4.
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, ,0, , , , , ,

, ,0, , , , , ,
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exp

e i e i e i i e i

e i e i e i i e i

t t

t t





    
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 
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Figure 4. The block diagram of the proposed protocol for formation control.

First, the formation error for the ith AUV is characterized as

Γe,i = ∑
j∈Bi

[
aij

(
η∗i −

^
η
∗
j − dij

)]
(19)

where Γe,i = [xe,i, ye,i, ze,i]
T ; dij =

[
dx,ij, dy,ij, dz,ij

]T represents the distances between the
ith AUV and its neighbors in the x, y, and z directions, respectively, defining the desired
formation configuration to be preserved. In order to meet the performance requirements,
the formation error must adhere to the following performance function constraints:

−Γe,i(t) ≤ Γe,i(t) ≤ Γe,i(t), t ≥ 0 (20){
Γe,i(t) =

(
Γe,0,i − Γe,∞,i

)
exp(−σΓ,it) + Γe,∞,i

Γe,i(t) =
(

Γe,0,i − Γe,∞,i
)

exp(−σΓ,it) + Γe,∞,i
(21)
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where Γe,0,i, Γe,0,i, Γe,∞,i, Γe,∞,i, and σΓ,i are positive constants, with Γe,∞,i ≤ Γe,0,i and
Γe,∞,i ≤ Γe,0,i. As shown in Equations (20) and (21), as t approaches infinity, the formation
error will stabilize within the predefined error tolerance

[
−Γe,∞,i, Γe,∞,i

]
.

To guarantee that the errors Γe,i, Γ = x, y, z adhere to the prescribed performance de-
fined in Equation (21), a mapping function was designed to convert the original constrained
tracking errors into an unconstrained form.

W1,Γe,i = f
(

Γe,i, Γe,i, Γe,i
)
=

Γe,iΓe,iΓe,i(
Γe,i − Γe,i

)(
Γe,i + Γe,i

) (22)

We can observe that W1,Γe,i will tend toward infinity when the formation error Γe,i
reaches the prescribed bounds. Therefore, if the transformed state W1,Γe,i stays bounded, the
formation tracking errors will adhere to the prescribed performance, as long as the initial
states of the control system satisfy the performance constraint specified in Equation (20).

Subsequently, differentiating Equation (22) with respect to time results in

.
W1,Γe,i = PΓe,i

.
Γe,i + QΓe,i (23)

where PΓe,i =

(
Γ

2
e,i Γ

2
e,i+Γe,i Γe,i Γ

2
e,i

)
[(Γe,i−Γe,i)(Γe,i+Γe,i)]

2 , QΓe,i =
−
(

Γe,i

.
Γe,i+

.
Γe,i Γe,i

)
Γ3

e,i−
(

Γ2
e,i

.
Γe,i−Γ

2
e,i

.
Γe,i

)
Γ2

e,i

[(Γe,i−Γe,i)(Γe,i+Γe,i)]
2 .

4.2. Formation Control Law Design

Step 1. First, define W1,i =
[
W1,xe,i , W1,ye,i , W1,ze,i

]T
, Pi = diag

[
Pxe,i , Pye,i , Pze,i

]T , and

Qi =
[
Qxe,i , Qye,i , Qze,i

]T . Subsequently, by combining Equations (4), (19), and (23), the
following relationship is obtained:

.
W1,i = Pi ∑

j∈Bi

[
aij

(
J∗1,i(ηi)v∗

i + J∗2,i(ηi, vi)− J∗1,j

(
^
ηj

)
^
v
∗
j − J∗2,j

(
^
ηj,

^
vj

)
−

.
dij

)]
− Qi (24)

Following the backstepping procedure, the virtual control commands ςi for v∗
i are

designed as

ςi = J∗−1
1,i (ηi)

{
P−1

i (−K1,iW1,i + Qi)+

∑
j∈Bi

[
aij

(
−J∗2,i(ηi, vi) + J∗1,j

(
^
ηj

)
^
v
∗
j + J∗2,j

(
^
ηj,

^
vj

)
+

.
dij

)]}
/bi

(25)

where K1,i ∈ R3×3 is a positive-definite configuration matrix.
Step 2. To address the negative effect of the ‘explosion of complexity’ resulting from

differentiating ςi, a second-order robust exact differentiator with finite-time convergence
capability is introduced [33]. Lemma 2 is given.{

.
ς0,i = −s0,i|ς0,i − ςi|

1
2 sign(ς0,i − ςi) + ς1,i.

ς1,i = −s1,isign
(
ς1,i −

.
ς0,i
) (26)

where s0,i and s1,i are positive design parameters. ς0,i ∈ R3×3 and ς1,i ∈ R3×3, respectively,
denote the produce outputs and the outputs of this matrix; moreover, ς1,i can be used as a
substitute for

.
ςi.

Lemma 2 ([33]). As long as the resulting system is homogeneous and appropriate parame-
ters s0,i and s1,i are selected, this type of robust exact differentiator has finite-time convergence.
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Step 3. To achieve additional stability for the virtual control commands, the actual
control inputs are crafted as follows:

W2,i = v∗
i − ς0,i (27)

ui = −α−1
i

(
K2,iW2,i − biJ∗T

1,i (ηi)PiW1,i + C∗
i (vi)v∗

i + D∗
i (vi)v∗

i + g∗i (θi) + M∗
i

.
ς0,i

)
(28)

where W2,i denotes the velocity error. K2,i ∈ R3×3 is a positive-definite designed matrix.

4.3. Stability Analysis

Theorem 1. For the formation tracking control problem of the AUV model expressed by Equations
(1), (2), and (9) obeying Assumption 1 and Assumption 2. If the real-time state information
online predictor is designed as in Equation (18), with the virtual control input (25) and control
input (28) applied, then under conditions of communication delay, input saturation, and unknown
external disturbances, all signals within the closed-loop system will be uniformly ultimately bounded.
Moreover, if the initial formation error satisfies condition (20), the prescribed performance can be
achieved. This indicates that the AUV formation can follow the target trajectory while maintaining
the specified time-varying formation.

Proof of Theorem 1. The Lyapunov function is defined as follows to demonstrate the
asymptotic stability of the closed-loop signals.

V =
1
2

N

∑
i=1

(
V2

1,i + V2
2,i

)
(29)

V =
1
2

N

∑
i=1

(
WT

1,iW1,i + WT
2,iM

∗
i W2,i

)
(30)

Differentiating V with respect to time gives

.
V =

N

∑
i=1

(
WT

1,i
.

W1,i + WT
2,iM

∗
i

.
W2,i

)
(31)

Combining Equations (5), (9), (24), and (25), we further obtain

.
V =

N
∑

i=1

[
WT

1,i

(
−K1,iW1,i + biPiJ∗1,i(ηi)W2,i

)
+

WT
2,i
(
αiui − Ωi + oi + ∆∗

i − C∗
i (vi)v∗

i − D∗
i (vi)v∗

i − g∗i (θi)− M∗
i

.
ς0,i
)] (32)

Substituting the control input from Equation (28), we obtain:

.
V =

N

∑
i=1

(
−K1,iWT

1,iW1,i − K2,iWT
2,iW2,i − WT

2,i(−Ωi + oi + ∆∗
i )
)

(33)

.
V ≤

N

∑
i=1

(
−K1,i∥W1,i∥2 − K2,i∥W2,i∥2 + ∥W2,i∥∥Ωi∥+ ∥W2,i∥∥oi + ∆∗

i ∥
)

(34)

.
V ≤

N

∑
i=1

(
−K1,i∥W1,i∥2 − ∥W2,i∥(K2,i∥W2,i∥ −
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i i i i i i i i i i i i i i i i

b ∗

=

= − + +

− + + − − − − 

V W K W P J η W

W α u Ω ο Δ C v v D v v g θ M ς



  
(32)
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( )( )*
1, 1, 1, 2, 2, 2, 2,

1

N
T T T

i i i i i i i i i i
i=

= − − − − + +V K W W K W W W Ω ο Δ  (33)

( )2 2 *
1, 1, 2, 2, 2, 2,

1

N

i i i i i i i i i
i=

≤ − − + + +V K W K W W Ω W ο Δ  (34)

( )( )2

1, 1, 2, 2, 2,
1

N

i i i i i i
i=

≤ − − −V K W W K W   (35)

*
i i i i= + +Ω ο Δ  (36)

Based on Assumption 2 and the discussion below Equation (9), it can be concluded 
that 

( )*

1 1

N N

i i i i i
i i

a
= =

= + + <  Ω ο Δ  (37)

( )2

1, 1, 2,
1

N

i i i i
i

a
=

≤ − −V K W W  (38)

where 2, 2,i i i ia a= −K W ; one further has ( )0  0ior a< >V  as long as 2,i i>W Γ  

i)
)

(35)
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Substituting the control input from Equation (28), we obtain: 

( )( )*
1, 1, 1, 2, 2, 2, 2,

1

N
T T T

i i i i i i i i i i
i=

= − − − − + +V K W W K W W W Ω ο Δ  (33)

( )2 2 *
1, 1, 2, 2, 2, 2,

1

N

i i i i i i i i i
i=

≤ − − + + +V K W K W W Ω W ο Δ  (34)

( )( )2

1, 1, 2, 2, 2,
1

N

i i i i i i
i=

≤ − − −V K W W K W   (35)

*
i i i i= + +Ω ο Δ  (36)

Based on Assumption 2 and the discussion below Equation (9), it can be concluded 
that 

( )*

1 1

N N

i i i i i
i i

a
= =

= + + <  Ω ο Δ  (37)

( )2

1, 1, 2,
1

N

i i i i
i

a
=

≤ − −V K W W  (38)

where 2, 2,i i i ia a= −K W ; one further has ( )0  0ior a< >V  as long as 2,i i>W Γ  

i = ∥Ωi∥+ ∥oi + ∆∗
i ∥ (36)
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Based on Assumption 2 and the discussion below Equation (9), it can be concluded
that

N

∑
i=1
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=

= +V W W W M W   (31)

Combining Equations (5), (9), (24), and (25), we further obtain 

( )( )
( ) ( ) ( )( )

1, 1, 1, 1, 2,
1
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N
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T
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=
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1, 1, 2, 2, 2, 2,

1

N

i i i i i i i i i
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( )( )2
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1

N

i i i i i i
i=
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*
i i i i= + +Ω ο Δ  (36)

Based on Assumption 2 and the discussion below Equation (9), it can be concluded 
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( )*

1 1

N N

i i i i i
i i

a
= =

= + + <  Ω ο Δ  (37)

( )2

1, 1, 2,
1

N

i i i i
i

a
=

≤ − −V K W W  (38)

where 2, 2,i i i ia a= −K W ; one further has ( )0  0ior a< >V  as long as 2,i i>W Γ  

i =
N

∑
i=1

(∥Ωi∥+ ∥oi + ∆∗
i ∥) < ai (37)

.
V ≤

N

∑
i=1

(
−K1,i∥W1,i∥2 − ∥W2,i∥ai

)
(38)

where ai = K2,i∥W2,i∥ − ai; one further has
.
V < 0(or ai > 0) as long as ∥W2,i∥ > Γi

Γi =
ai

K2,i
(39)

After calculations, the final result is obtained as

V ≤ 1
2

N

∑
i=1

(
Γ2

1,i + Γ2
2,i

)
(40)

Γ1,i = max

 bi∥Pi∥
∥∥∥J∗1,i(ηi)

∥∥∥∥Γ2,i∥
K1,i

,

√
2V1,i(0)

Y1,i

, Γ2,i = max

(
ai

K2,i
,

√
2V2,i(0)

Y2,i

)
(41)

∥W1,i∥ ≤ Γ1,i, ∥W2,i∥ ≤ Γ2,i (42)

where Y1,i and Y2,i are appropriate positive constants. From the above conclusions, we
obtain that V is bounded as time approaches infinity, ensuring that all signals within the
closed-loop system are kept bounded. More importantly, the boundedness of the mapped
system states that W1,i is also ensured. From the analysis following Equation (22), it can
be concluded that the prescribed performance of the formation can be attained under the
proposed protocol. Therefore, Theorem 1 is proven. □

Remark 1. The proof demonstrates that by keeping the transformed errors W1,i and W2,i bounded,
the closed-loop system can achieve the prescribed performance stability. This indicates that the
proposed control protocol can achieve its objectives without reducing W1,i and W2,i to arbitrar-
ily small regions. Following this logic, as described in reference [34], the uncertainty distur-
bance
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i can be compensated even without any auxiliary control signals, as it only affects the
magnitude of W1,i and W2,i but does not alter the achieved stability properties. Separating the
tracking performance from the uncertainty disturbances significantly enhances the robustness of the
proposed control protocol.

5. Simulation Results

In this section, the proposed control protocol’s effectiveness is evaluated through a
series of simulation tests. All simulations in this study were performed using MATLAB
R2023a on a personal computer running Windows 10, equipped with an Intel Core i7-8750H
processor (2.20 GHz) and 16 GB of RAM.

The study focuses on an AUV formation, which includes a virtual leader and four
underactuated AUVs. Assume that the trajectory of the virtual leader is already loaded
onto AUV1, meaning that there is no communication delay between them. The main
physical parameters and partial hydrodynamic coefficients of the AUVs were measured
experimentally and are tabulated in Tables 1 and 2. Additionally, the communication
topology is shown in Figure 5, with the virtual leader designated as number 0.
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Table 1. Main physical parameters of the AUVs.

Parameters Value Parameters Value

mi 183 Kg Li 2.55 M
GML,i 0.0217 M ρi 1024 Kg/m3

Maximum
thrust 100 N Maximum Horizontal/Vertical

Rudder Force 25/50 N · m

Table 2. Partial hydrodynamic coefficients of the AUVs.

Parameters Value Parameters Value

m11,i 188 Kg m22,i 263 Kg
m33,i 263 Kg m44,i 271 Kgm2

m55,i 271 Kgm2 Xu,i 16.65|vui| Kg/s
Yv,i 149.68|vui| Kg/s Zw,i 142.23|vui| Kg/s
Mq,i 220.92|vui| Kg/s Nr,i 252.83|vui| Kg/s
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The virtual leader’s trajectory is defined as [(50 cos(0.01t)− 50 + 50 sin(0.02t)) m,
(50 sin(0.01 t) + 50 cos(0.02 t)− 50)m,(−0.1t)m]T . The initial position information, veloc-
ity information, and the desired relative position information between neighboring AUVs
are shown in Table 3.

Table 3. Formation state information settings.

Parameters Value

η1(0) [−1.35m, 1m, − 1m, 0rad, 0rad]T

η2(0) [−8.75m, − 7m , −2m, 0rad, 0rad]T

η3(0) [6.75m, − 7m, − 3m, 0rad, 0rad]T

η4(0) [−2.35m, − 15.5 m, − 2 m, 0rad, 0rad]T

vi(0) [0m/s, 0m/s, 0m/s , 0rad/s, 0rad/s]T

d10 [0m, 0m, 0m]T

d21 [−10m,
(
−5 cos

(
π

300 t
)
−5)m,

(
−0.5 cos

(
π

300 t
)
− 1.5

)
m
]T

d31
[
10m,

(
−5 cos

(
π

300 t
)
− 5
)
m,
(
−1.5 cos

(
π

300 t
)
+0.5

)
m
]T

d42
[
8m,

(
−8 cos

(
π

1200 t
))

m,
(
−1.5 cos

(
π

300 t
)
+1
)
m
]T

d43
[
−8m,

(
−8 cos

(
π

1200 t
))

m,
(
−1.5 cos

(
π

300 t
)
+2
)
m
]T

The communication delays between AUVs are set as τ21 = τ31 =
(
2 − 0.25 cos

(
π

600 t
))

s,
τ42 = τ43 =

(
1.5 + 0.25 cos

(
π

600 t
))

s. The external ocean current disturbances are defined as
∆i =

[(
1.3+2 sin

(
π
50 t
))

N,
(
−0.9+2 sin

(
π
50 t
))

N,
(
0.5 cos

(
π
10 t
))

N,
(
cos
(

π
10 t
))

N ·m,
(
− sin

(
π
50 t+π

3
)

−4 sin
(

π
100 t

))
N · m

]T . The values of the actuator dynamics model are set as described
below Figure 2. Additionally, Table 4 presents the main control parameters used in the
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simulation experiment. All parameters were selected empirically within the range that
ensures the stability of all closed-loop system signals, as determined by the stability anal-
ysis. Following this, a systematic tuning process was implemented, during which the
control gains were iteratively adjusted to find the optimal balance between robustness and
responsiveness, ultimately leading to a well-founded and effective determination of the
parameters.

Table 4. Key control parameters of the AUVs.

Parameters Value[
Γe,0,i, Γ

_ e,0,i

]T
[5.1, 1.1]T , if Γe,i(0) > 0 [1.1, 5.1]T , else[

Γe,∞,i, Γ
_ e,∞,i

]T
[0.1, 0.1]T[

cρ,ij,1, cρ,ij,2

]T
[0.8, 0.1]T[

s0,i, s1,i
]T [1, 0.1]T[

K1,i, K2,i
]T [0.2, 0.1, 0.1]T , [200, 200, 400]T

The simulation outcomes of the proposed control protocol are presented in Figures 6–10.
The trajectories of the AUV formation are shown in Figure 6, demonstrating that the
AUVs successfully follow the desired trajectory. The formation configuration transitions
from a quadrilateral to a triangle, achieving the predetermined formation transformation.
The position state information prediction errors

~
ηj(t) and the velocity state information

prediction errors
~
vj(t) of the AUV formation are illustrated in Figures 7 and 8, respectively.

In the legend, η̃ij and ṽij represent the estimates of the state information of the ith AUV for
the jth AUV. All state estimation errors converge within approximately 10 s. These results
indicate that the RSIOP can accurately and quickly estimate the current state information
Φj(t) of neighboring AUVs considering communication delays, thereby ensuring the
accuracy and stability of formation control. Observing the actual control inputs of the AUV
formation in Figure 9, we can conclude that the saturation constraints are not violated
under the dead-zone model. Additionally, all actual control input curves are smooth, with
no significant oscillations, aligning with the actuator’s executable capability in practical
scenarios. The formation error response, shown in Figure 10, indicates that the AUV
formation can achieve the prescribed performance with the designed control protocol. In
other words, both the transient- and steady-state performance of the formation are ensured.
The formation errors converge within 16 s and remain within the performance constraint
bounds. Moreover, the steady-state formation control error for each AUV in the x, y, and z
directions is less than 0.1 m Furthermore, it can be clearly observed that external uncertainty
disturbances and input saturation have minimal impact on the formation control accuracy,
indicating that the proposed control protocol exhibits good robustness. Thus, the validity
of Theorem 1 is verified.

To validate the effectiveness of the designed control protocol, the simulation results of
the proposed method were compared against those obtained from simulation tests using
the traditional backstepping control protocol. Additionally, during the simulations, the
designed RSIOP was not used to compensate for delayed state information. The simulation
conditions were kept entirely consistent with those in the previous simulations. The results
of the simulations are as follows:

Figure 11 shows the movement trajectories of the AUV formation under the traditional
backstepping control method. It is evident that, under the condition of not considering the
solution to communication delays, the control accuracy of the formation cannot be guar-
anteed, and the AUV formation cannot form the predetermined formation structure, thus
failing to complete the mission objectives. Figure 12 shows the formation error response
under the traditional backstepping control method. It can be concluded that the formation
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error needs to be reduced to within approximately 100 s and cannot be maintained within
the performance constraint bounds proposed in this paper, resulting in a significant de-
crease in control performance. To further quantify the control accuracy differences between
the two methods used in this study, we introduce integrated absolute error (IAE), which

is expressed as IAE(Γe,i) =
N
∑

i=1

∫ t
0 ∥Γe,i∥ dt, with Γe,i = xe,i, ye,i, ze,i. The maximum instanta-

neous formation error change is formulated as max(Γe,i) = max
(

N
∑

i=1
∥Γe,i∥

)
. The analysis

results, as shown in Table 5, indicate that the control protocol proposed in this paper has
superior control accuracy.
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Remark 2. The traditional backstepping method was chosen for comparison in this section, rather
than simply omitting the RSIOP, because without the state compensation provided by the RSIOP
under conditions of communication delays, the proposed prescribed performance control protocol
would not achieve convergence of the formation error. This phenomenon further underscores the
necessity and effectiveness of developing the RSIOP.

Although this paper has effectively addressed the issue of formation control under
time-varying communication delays, there are still some limitations. One of the key
limitations of the proposed formation control protocol with prescribed performance is that
it requires the initial formation error of the AUVs to be within the performance constraint
bounds. Moreover, the final value must be reasonably determined based on the AUVs’
performance capabilities, as determined through experience. If these conditions are not
met, the convergence of the formation control errors cannot be guaranteed. This is an
area that requires further investigation, particularly in developing strategies for handling
cases where the initial errors exceed the prescribed bounds. In addition, the application of
the real-time state information online predictor (RSIOP) and the prescribed performance
control (PPC) framework does involve certain computational complexities. In dynamic
environments, the algorithm must quickly adapt to changes in communication delays
and external disturbances. As the number of AUVs in the formation increases, this will
inevitably increase the computational burden. Ensuring that these computations can be
performed in real-time without causing delays in the control response is also a significant
challenge. To address this, we have already made some trade-offs at the algorithm level.
While the algorithm aims to maintain high accuracy in state prediction and control actions,
some approximations have been made to reduce the computational load. Furthermore, we
will explore the use of parallel computing techniques and hardware acceleration to enhance
the real-time performance of the algorithm in future work, especially in more complex and
dynamic scenarios.

6. Conclusions

In this brief, a distributed prescribed performance tracking control protocol is proposed
for underactuated AUV formation systems under time-varying communication delays,
which are constrained by external uncertainties and input saturation. The formation system
is required to achieve the specified formation configuration transformation while also
tracking the desired trajectory as a whole.

First, a delayed state information compensation method-based RSIOP is proposed to
mitigate the adverse effects of acoustic communication delays on formation control. Second,
a formation control protocol is developed by combining backstepping technology and
nonlinear mapping methods, taking into account external uncertainties, input saturation,
and predefined performance constraints during the design process. Furthermore, the
stability of the closed-loop system is established using the Lyapunov method. Lastly,
simulation results confirm the robustness and effectiveness of the proposed protocol.

In future work, we plan to consider more practical scenarios and further investigate
the limitations of the proposed protocol, such as computational complexity and sensitivity
to initial conditions. Additionally, we intend to validate the practicality of our algorithm
through experimental testing.
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