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Abstract: This review explores the recent advancements in welding techniques for aluminum plates
utilized in ships and offshore structures, with a particular focus on minimizing weld-induced de-
formation and residual stress to improve structural performance. Given the critical role of welding
in the construction and repair of marine structures, understanding the influence of these factors is
paramount. This article synthesizes current research findings, evaluates the effectiveness of vari-
ous welding methods, and highlights innovative approaches to reduce adverse effects. Through a
comprehensive analysis of experimental and simulation studies, this review identifies key strategies
for optimizing welding processes, thereby contributing to the durability and integrity of marine
structures. This synthesis not only highlights successful strategies for optimizing welding processes
but also offers guidance for researchers and practitioners in the field. This review also identifies
previously unaddressed gaps in the literature, particularly focusing on the underexplored interactions
between specific welding parameters and the long-term durability of marine structures, offering new
perspectives and directions for future research. It delineates critical challenges faced in the welding
of aluminum alloys for marine applications and offers targeted suggestions to address these issues,
thereby paving the way for advancements in welding practices and technology. The findings aim to
guide researchers and industry practitioners in selecting and developing welding techniques that
ensure the safety, reliability, and longevity of marine infrastructure.

Keywords: welding; residual stress; aluminum; shipbuilding; offshore structure; ultimate strength;
digital twin; finite element analysis

1. Introduction

The utilization of aluminum alloys in the construction of marine structures, such as
ships and offshore platforms, is driven by their favorable properties: lightweight, high
strength-to-weight ratio, and exceptional corrosion resistance. These characteristics are
particularly advantageous in reducing the overall mass of structures, which can lead to
significant improvements in operational efficiency and durability [1–3]. Driven by the
need for structural weight reduction and the operation of aluminum vessels and offshore
structures in more challenging seaway conditions, there has been a growing interest in
applying limit-state design and analysis procedures. These methods necessitate assessing
the ultimate strength of aluminum structural members [4,5].

The manufacturing of seagoing vessels from aluminum commenced post-World War
II, coinciding with advancements in fusion welding technology and the development of
the 5xxx series of aluminum alloys (commonly referred to as Al–Mg alloys) [6,7]. While
large merchant ships are typically constructed from steel, naval vessels, especially small to
moderate-sized merchant ships and high-speed patrol vessels, are increasingly utilizing
marine-grade aluminum alloys where reducing weight is crucial [8].

Aluminum is also extensively used in offshore platforms due to its corrosion resistance,
strength-to-weight ratio, and ease of fabrication [7,9]. It finds applications in superstruc-
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tures, living quarters, safety features like handrails and walkways, and critical systems
such as heat exchangers and cooling systems. It is the material of choice for building
helidecks and helipads, which benefit from its light weight and durability against harsh
marine conditions. Additionally, living quarters and other accommodation modules on
offshore platforms often feature aluminum to ensure structural integrity and resistance
to environmental wear. Lift boats and temporary work platforms also capitalize on alu-
minum’s light weight, enhancing their mobility and ease of repositioning. For masts and
communication towers, aluminum’s robustness and anticorrosive properties make it ideal,
ensuring long-term reliability. Moreover, in fire control systems, aluminum is favored for its
fire resistance and lightness, which are critical for safety components like panels and doors.
Its noncombustible properties enhance fire safety measures on platforms, showcasing its
versatility in marine engineering [10].

Standards for aluminum ships and offshore structures are crucial for ensuring safety,
durability, and performance. These standards cover various aspects such as material
properties, design criteria, fabrication processes, and testing methodologies. The Interna-
tional Association of Classification Societies (IACS), Det Norske Veritas (DNV), Lloyd’s
Register (LR), and Eurocode 9 offer classification options for ultimate hull-girder strength
assessment [11–14].

Recent advancements in welding technology have further enhanced the viability
of aluminum in marine applications [6,8,15]. Metal inert gas (MIG) welding, initially
developed in the 1940s for welding aluminum and other nonferrous materials, remains
the most prevalent industrial welding process today [16–18]. Nevertheless, innovative
welding methods such as friction stir welding (FSW) [19–23] and laser beam welding
(LBW) [24–26] have shown promising results in minimizing deformation and improving
the overall quality of the joints in aluminum structures.

However, the welding of aluminum plates is not without challenges, primarily due
to the material’s susceptibility to weld-induced deformation and residual stresses. These
phenomena can severely compromise the structural integrity and longevity of marine struc-
tures, making the study of advanced welding techniques a critical area of research [27–31].
A thorough sensitivity analysis grounded on a benchmark provided by the International
Ship and Offshore Structures Congress (ISSC) has demonstrated that the ultimate strength
of aluminum structures is significantly affected not only by the yield stress and the degra-
dation of mechanical strength in heat-affected zones (HAZs) but also by weld-induced
residual stresses (WRSs) and geometric imperfections [32].

Additionally, hot cracking and hydrogen-induced porosity are major challenges in
aluminum welding [7,21,23]. Hot cracking occurs due to aluminum’s susceptibility to
thermal stresses during solidification, requiring careful assessment through mechanical
tests and microscopic examination. Hydrogen-induced porosity, caused by the high sol-
ubility of hydrogen in molten aluminum, compromises weld integrity. Addressing these
issues involves meticulous pre-weld cleaning, the use of inert gas shielding, and strategic
post-weld treatments to enhance the structural reliability of welded joints.

Welding aluminum alloys requires a higher skill level than welding other materials
due to its quick reaction to heat and propensity for forming defects [33,34]. Aluminum
has a high thermal conductivity, which means that it dissipates heat quickly. This char-
acteristic can lead to uneven heat distribution during the welding process, making it
difficult to achieve consistent weld penetration, and this can increase the likelihood of
weld defects. The conventional welding techniques need to be adjusted or modified when
applied to aluminum alloys. For instance, aluminum’s high thermal conductivity requires
higher power settings or faster welding speeds than those used for steel to achieve similar
penetration [25,35–38].

Compared to laboratory experiments (e.g., [39–43]), the finite element method (FEM)
offers a more cost-effective and quicker alternative for analyzing the welding process. The
main FEM approaches used in welding simulations include the thermo–elasto–plastic (TEP)
method [28,44–46], the elastic method [30], and the inherent strain method [47–49]. More
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recently, Chen et al. [50–52] have developed models and techniques to predict distortions
and residual stresses induced in ship plates by welding. Additionally, the impacts of the
convection coefficient, finite element meshes, sequences, and boundary conditions have
also been explored [17,18,53,54]. On the other hand, highly detailed FEM simulations,
especially those involving complex weld geometries and sophisticated material behavior
models, can be computationally intensive. They require significant computational resources
and time, which can be a limiting factor in some applications.

This review aims to synthesize recent findings from the field, providing a comprehen-
sive overview of current technologies and methodologies in welding aluminum for marine
use, with a particular emphasis on identifying and analyzing the most significant challenges
in this field. The objectives of the research include the following: (1) reviewing the latest
developments in welding techniques suited for aluminum in marine settings; (2) assessing
the effectiveness of these techniques in overcoming common welding challenges; (3) ex-
ploring the impact of welding parameters on the structural integrity of marine aluminum
structures; and (4) proposing practical recommendations and future research directions
based on identified gaps in current knowledge. By highlighting the latest developments
and their implications for structural performance, this article seeks to contribute valuable
insights to both academic researchers and industry practitioners.

2. Literature Review Methodology

This review was systematically conducted to ensure a comprehensive analysis of recent
developments in aluminum welding for marine applications. The methodology employed
involved a structured literature search focusing on peer-reviewed journals, conference
proceedings, and authoritative industry reports and guidelines published within the last
decade. For this review, the Web of Science Core Collection database served as the primary
source for conducting a comprehensive literature search. It provided access to a wide range
of peer-reviewed articles, ensuring that the studies selected for review were relevant and of
high scholarly standards.

The selection criteria were based on relevance to aluminum welding technologies,
application to marine environments, and contributions to advancements in welding pro-
cesses or understanding of welding phenomena. Over 20,000 articles were identified on
the topic of aluminum welding, reflecting the broad and extensive research in this area. To
refine this vast pool of literature, articles were initially filtered by abstracts that matched
our specific research queries on welding techniques, heat effects, material properties, and
application-specific challenges. This filtering process significantly narrowed the scope,
resulting in a much more manageable subset of articles. Subsequently, full texts were
reviewed to ensure they provided significant insights into the current trends, challenges,
and innovations in the field.

To maintain the integrity of our review, only studies that met these criteria and offered
empirical data or theoretical analysis relevant to marine applications of aluminum welding
were included, culminating in the selection of 118 papers that form the core of this literature
review. This methodological rigor ensures that our conclusions are drawn from a broad
and relevant set of sources, providing a holistic view of the state of the art in the field.

The literature review for this manuscript primarily focuses on the most recent de-
velopments in aluminum welding for marine applications, with a significant emphasis
on publications from the last four years. Specifically, the review includes 51 references
from 2020 to 2024, demonstrating a strong orientation towards cutting-edge research and
the latest advancements in the field. In addition to this recent literature, we have also
incorporated three classic papers from the 1980s and 1990s, which are seminal works pro-
viding foundational insights that continue to influence current practices and theories. This
combination ensures that the review captures both the most up-to-date technologies and
the historical underpinnings of key methodologies, offering a comprehensive and relevant
overview of the subject.
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3. Fundamentals of Welding Aluminum for Marine Applications
3.1. Aluminum Alloys in Marine Construction

Aluminum alloys are increasingly utilized in marine applications due to their excellent
strength-to-weight ratio, corrosion resistance, and weldability. The specific aluminum alloy
series commonly employed include the 5xxx and 6xxx series, which are prized for their
superior durability in marine environments. These alloys not only withstand the corrosive
sea water but also offer significant weight savings over traditional shipbuilding materials
like steel. This reduction in weight translates to higher fuel efficiency and lower operating
costs, making aluminum alloys a favorable choice for modern marine construction projects.
The chemical compositions of aluminum alloys that comply with the IACS rules are listed
in Table 1, where the values are in percentage mass by mass maximum unless shown as a
range or as a minimum.

Table 1. Chemical composition of aluminum alloys for marine structures by IACS requirement.
Reconstructed table with data from [11].

Grade Si Fe Cu Mn Mg Cr Zn Ti Others

5059 0.45 0.50 0.25 0.60–1.2 5.0–6.0 0.25 0.4–0.9 0.20 0.15
5083 0.40 0.40 0.10 0.41–1.0 4.0–4.9 0.05–0.25 0.25 0.15 0.15
5086 0.40 0.50 0.10 0.20–0.7 3.5–4.5 0.05–0.25 0.25 0.15 0.15
5383 0.25 0.25 0.20 0.70–1.0 4.0–5.2 0.25 0.40 0.15 0.15
5456 0.25 0.40 0.10 0.50–1.0 4.7–5.5 0.05–0.20 0.25 0.20 0.15
5754 0.40 0.40 0.10 0.50 2.6–3.6 0.30 0.20 0.15 0.15

6005A 0.5–0.9 0.35 0.30 0.50 0.4–0.7 0.30 0.20 0.10 0.15
6061 0.4–0.8 0.7 0.15–0.4 0.15 0.8–1.2 0.04–0.35 0.25 0.15 0.15
6082 0.7–1.3 0.50 0.10 0.40–1.0 0.6–1.2 0.25 0.20 0.10 0.15

Some of the frequent alloying elements for aluminum include silicon, magnesium,
manganese, chromium, and copper, among others. Silicon (Si) is often added to aluminum
alloys to improve weldability by reducing the alloy’s melting temperature, which facilitates
easier formation of the weld pool. It is fairly inexpensive and also helps to reduce hot
cracking, a common issue in aluminum welding. Copper (Cu) can increase strength but ad-
versely affects weldability by making the alloy more prone to cracking. Alloys with higher
copper content typically require more careful welding techniques to manage these effects.
Both manganese (Mn) and chromium (Cr) act as stabilizers in aluminum alloys, improving
weldability by controlling grain structure during welding. Magnesium (Mg) enhances
the strength of the alloy but can reduce weldability if present in high amounts due to in-
creased cracking susceptibility. However, when balanced with silicon (as in the 6xxx series),
magnesium can enhance weld strength without significantly compromising weldability.

In the four-digit number system of aluminum alloys (e.g., 5083, 6082), the first digit
indicates the principal or major constituent alloy to describe the series, whereas the second
single digit indicates the modification made in the original alloy. The last two digits are
arbitrary numbers used to identify the specific alloy in the series. In this way, the material
properties can vary offering various options for different applications. For example, for
the numbers in the alloy 5383, the number 5 shows that it is of the magnesium alloy series,
the 3 means the third modification to the original alloy 5083, and 83 identifies it in the
5xxx series.

Research focusing on the structural response of aluminum alloys has primarily con-
centrated on the 5xxx and 6xxx series. These alloys are particularly favored for structural
engineering applications due to their superior mechanical properties. The 5xxx series,
known for its excellent corrosion resistance, is ideal for structural components that are
frequently exposed to harsh marine conditions. This series provides not only resilience
against corrosion but also maintains substantial strength, which is crucial for the structural
integrity of marine vessels. These characteristics are particularly important in applications
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where long-term durability and minimal maintenance are critical, such as in hulls and
deckhouse structures.

The 6xxx series is noted for its combination of strength and formability, allowing for
more complex designs without compromising the structural integrity. This series adapts
well to various fabrication processes, including intricate welding techniques required
for the complex geometries of modern marine architecture. It is particularly favored for
components like superstructures and framing where higher strength is necessary. Notably
versatile, the 6xxx series alloys are easily extrudable, allowing them to be formed into
complex shapes such as bulb, T-, and L-sections, along with closed-section stiffeners like
trapezoidal stiffeners. Commonly, these alloys are employed in constructing deck panels
and marine frames for ships [7].

Considering the ongoing challenges with mobility and congestion in the European
transport industry, it may be beneficial to explore the construction of new aluminum ves-
sels, such as catamarans and tourist ships. Aluminum profiles are essential in the design
of fast catamarans due to their lightweight and strong characteristics, which contribute to
increased speed and improved fuel efficiency. Notable examples include Austal’s Benchi-
jigua Express [55], a 127-meter trimaran fast ferry operating in the Canary Islands, and
the 112-meter-long Natchan World, built by Incat, which serves routes in Japan [56]. In
Portugal, Italy, and some other European countries, catamarans have been operating on the
rivers since 2004 [57].

It should be noted that there is a scarcity of literature specifically dedicated to the
global aspects of marine structures in the context of aluminum welding, as the majority
of the studies referenced are centered around the behavior of local structural members,
plates, and stiffened panels, which are fundamental structural components of ships and
offshore structures.

3.2. Welding Techniques for Aluminum in Marine Construction

Several welding techniques are commonly employed for joining aluminum in marine
construction, each with its advantages and applications.

3.2.1. GMAW/MIG

Gas metal arc welding (GMAW), also known as MIG welding, is popular for its
versatility and the high quality of welds it produces [8,41,58–60]. It employs consumable
wire electrodes that melt in an electric arc between the cut and the tip. The arc and weld pool
are shielded by a protective gas emitted from nozzles. Originally developed in the 1940s
for welding aluminum and other nonferrous materials, the MIG welding remains the most
prevalent industrial welding process today, despite the advent of innovative techniques [61].
However, it requires careful control of welding parameters to avoid common issues like
spatter and burn-through.

Most marine structural components, such as decks and bulkheads, can be constructed
using the GMAW process [1,6,7,40,41]. For instance, an experiment using the GMAW
process on a rectangular plate made of 5052-H32 aluminum alloy was detailed in [39].
Aluminum alloy 4043 filler wires with a diameter of 1.59 mm were utilized, with the
welding parameters set to a current of 260 A and an arc voltage of 23 V. The plate dimensions
were 1220 mm in length, 152.4 mm in width, and 12.5 mm in thickness. The welding torch
moved along the longitudinal upper edge of the plate at a constant speed of 7.34 mm/s.

3.2.2. CMT & AM

Recently, the cold metal transfer (CMT) welding process [61,62], often referred to as
the short arc process, has been identified as a variant of GMAW that utilizes different heat
input ratios.

In addition, additive manufacturing (AM) is revolutionizing the repair and fabrication
of aluminum structures [15]. This technology enables precise deposition of material, layer
by layer, to build or repair parts directly from digital models.
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3.2.3. GTAW/TIG

GTAW or tungsten inert gas (TIG) welding is preferred for its ability to produce high-
quality, precise welds on thinner materials [59,61]. It uses a wire filler that is outside the
welding arc. Though slower and more labor-intensive than GMAW, GTAW is excellent for
applications requiring high aesthetic quality and minimal post-weld machining. In [34],
GTAW was applied to test Al5083-H111 alloy plates with dimensions of 15 × 300 × 180 mm3.
The study considered heat inputs up to 5 kJ/mm and torch speeds ranging from 1 to 4 mm/s.

3.2.4. FSW

Friction stir welding (FSW) is a relatively newer technology that offers excellent control
over weld distortion and residual stresses [19–23,42–44], and it has been a game-changer
for the shipbuilding and marine industries.

A rotating tool with a slightly shorter probe than the plate thickness is pressed against
two adjoining plates, as illustrated in Figure 1. The probe generates frictional heat primarily
from the high normal pressure and shearing action at the shoulder, softening the material
around it. As the tool moves along the joint, the material is moved around the probe from
the retreating side, where rotational motion counters forward motion, to the surrounding
solid material. This extruded material solidifies to form a joint behind the tool.
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Figure 1. A visual representation of the FSW process detailing the critical zones and the interaction
between the tool and the workpiece during welding. Source: https://www.twi-global.com/technical-
knowledge/job-knowledge/friction-stir-welding-147 (accessed on 24 August 2024).

Developed in 1991, this solid-state process is particularly useful for joining thicker
aluminum plates commonly used in structural applications in ships and offshore platforms.
More specifically, FSW is employed across various marine applications such as shipbuilding,
underwater repairs, manufacturing of submersibles and propellers, offshore structures,
retrofitting, and other marine components [43]. It also plays a vital role in the underwater
maintenance and repair of offshore infrastructure like pipelines and oil rigs.

Additionally, FSW helps mitigate corrosion-related damage and maintains structural
integrity in challenging aquatic environments. A study focusing on the application of FSW
for joining aluminum 5451 components in marine structural applications was discussed
in [42]. The dimensions of the AA5451 plate used were 900 mm × 60 mm × 6 mm. The
study explored tool rotation speeds ranging from 1000 to 1400 rpm, feed rates from 16 to
20 mm/min, and three different tool pin profiles.

3.2.5. Laser Welding

Laser beam welding (LBW) is a precise, high-speed welding technique that uses
a laser beam to create a concentrated heat source, allowing for deep penetration and
minimal heat input [24–26,35–37]. This method is particularly beneficial for aluminum
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alloys as it minimizes thermal distortion and allows for strong, high-quality welds in thin
or thick sections.

Laser hybrid welding (LHW) combines the laser welding process with another welding
process, usually arc welding (like MIG or TIG), to take advantage of both methods [25]. This
synergy enhances weld quality by improving the consistency of the weld bead, increasing
penetration depth, and reducing porosity and cracking tendencies in aluminum alloys. This
technique is especially useful for joining thicker aluminum sections where single-method
welding might struggle with penetration and weld integrity.

3.2.6. Summary

The most appropriate welding method needs to be selected based on specific project
requirements and constraints encountered in marine environments. Table 2 summarizes
the advantages and limitations of the aforementioned aluminum welding techniques
commonly employed in marine construction. Each technique presents a unique set of
benefits and challenges, influencing their suitability for different marine applications.

Table 2. A comparative analysis of the advantages and limitations of various techniques used in
aluminum welding.

Welding Technique Advantages Limitations

MIG Fast, cost-effective, good for thick sections,
adaptable to automated systems Potential for porosity, requires skilled operators

TIG High quality, precise welds, low distortion Slower, costly, requires a high skill level

AM Allows complex geometries, customizable material
properties

High cost, requires specialized equipment and
expertise

FSW Excellent mechanical properties, no filler needed Limited to certain geometries, high equipment cost
LBW High depth-to-width ratio, minimal heat input High initial cost, limited to thin materials

3.3. Challenges in Welding Aluminum

Welding aluminum presents unique challenges that differ significantly from welding
steel. The high thermal conductivity of aluminum leads to faster heat dissipation, which
can affect weld penetration and increase the likelihood of weld defects such as porosity
and lack of fusion [6,63]. During the fabrication of aluminum alloys, porosity defects are
more likely to occur due to contamination of the wire surface compared to other metallic
materials, such as titanium and stainless steel [33]. Additionally, aluminum’s oxide layer,
which forms naturally when aluminum is exposed to air, has a higher melting point than the
underlying metal and can inhibit weld quality if not properly removed before welding [64].
Managing these challenges requires specific techniques and careful preparation to ensure
strong, durable welds. Additionally, the formation of an HAZ during welding presents a
complex problem, as its size, properties, and impact on the structural strength are still not
precisely predictable [4,6,43].

The properties of aluminum can vary significantly with temperature [6,45,46,65].
Figure 2 shows an example of the temperature-dependent material properties, including
the yield stress, Young’s modulus, thermal expansion coefficient, conductivity, specific heat,
density, and convection coefficient, of aluminum alloy 6082-T6. As temperature rises, the
yield stress of the material drops sharply, accompanied by relatively slower decreases in
Young’s modulus. Conversely, the thermal conductivity of aluminum alloy increases with
temperature, surpassing 200 W/m/K at 400 ◦C, which is approximately three to six times
higher than that of shipbuilding steel. The specific heat also varies but at a relatively slow
rate, approximately twice that of shipbuilding steel. It has also been noted that Young’s
modulus of aluminum alloys is approximately one-third that of steel.
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During welding, the HAZ in aluminum welds experiences a wide range of tem-
peratures, leading to changes in material behavior such as melting, solidification, and
thermally induced phase transformations. It is difficult to effectively model the HAZ to
predict changes in microstructure and mechanical properties, due to the varying degrees of
thermal exposure within the HAZ.

The stress–strain curve for aluminum alloys typically exhibits a more rounded profile
compared to that of steel [66]. In theoretical and numerical analyses of aluminum structures,
two primary types of material models are commonly used to assess ultimate strength: the
actual stress–strain relationship derived from mechanical testing and approximate models
such as the Ramberg–Osgood model. For accurate ultimate strength analyses of aluminum
marine structures, it is crucial to consider the actual material behavior to achieve reliable
results. In some studies [8,66], the Ramberg–Osgood approximation model is utilized
as a substitute for the actual material behavior model. This approach differs from that
used in steel structures, which are typically simulated using the elastic–perfectly plastic
material model.

As the temperature increases, the yield strength of the aluminum alloy decreases,
which can be described by the Arrhenius model [67]:

σy(T) = σ0exp
(
− Q

RT

)
(1)

where σy(T) is the yield strength at temperature T, σ0 is the yield strength at room tem-
perature, Q is the thermal activation energy, R is the gas constant, and T is the absolute
temperature. Additionally, the thermal expansion of aluminum alloys, affected by the
product of the thermal expansion coefficient and the change in temperature, also influences
the overall deformation during and after the welding process.

Furthermore, various defects such as porosity, inclusions, solidification cracking, and
shrinkage can occur during the fusion welding of aluminum alloys, which diminish the
aesthetics and mechanical properties of the welds [7]. Therefore, the marine sector needs
innovative welding technologies to improve both the appearance and mechanical strength
of welded structures.

3.4. Quality Control and Inspection Methods

The design of welds in aluminum structures must account for the material’s properties
and the specific requirements of marine applications [11–14]. This includes selecting appro-
priate joint configurations and ensuring that the weld geometry helps distribute stresses
evenly. Engineers must also consider the effects of thermal expansion and contraction in
aluminum to minimize stress concentrations that could lead to cracking. The post-weld
treatments [62,68,69] are crucial for restoring the strength and ductility affected by the
welding heat. These may include heat treatments for stress relief and tempering to enhance
the mechanical properties of the weld area.
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Ensuring the quality of aluminum welds in marine constructions is critical for the
safety and longevity of the structure. Nondestructive testing (NDT) methods such as ultra-
sonic testing [70,71], radiographic testing [72,73], and dye penetrant inspection (also called
liquid penetrate inspection) [74,75] are routinely used to detect internal and surface defects.
In addition, regular inspections are performed both during and after the construction
process to ensure that all welding standards are met, and the structural integrity of the
vessel or platform is maintained.

4. Simulation and Modeling of Welding Processes

FEM simulations of aluminum welding present a unique set of challenges due to the
material’s specific properties and the complexities of the welding process. Here are some
of the main challenges faced when using FEM to model aluminum welds:

4.1. Complex Geometry of Weld Joints

Aluminum structures often feature complex joint geometries that are challenging to
model accurately in FEM simulations. These geometries require refined meshing tech-
niques to ensure that the finite element model can capture the nuances of the weld path
and joint configuration. Figure 3 displays a finite element (FE) model of a plate welded
using MIG, simulated in ANSYS Mechanical APDL, featuring hexahedral elements and
regular connectivity, indicating a high-quality mesh and accurate solution outcomes. The
dimensions of the butt-welded plate are 300 × 150 × 6 mm3. Various element sizes (1.25,
2.5, 5, and 10 mm) are employed across different regions, including the fusion zone (FZ),
HAZ, and the base material (BM). Transitional elements are employed to bridge areas
with varying element sizes. Mesh refinement is specifically applied in the FZ and HAZ to
enhance precision, while larger elements in the BM help reduce computational effort.
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4.2. Material Properties Variation

Aluminum has a high thermal conductivity compared to other metals like steel. This
property leads to rapid heat dissipation during the welding process, which can affect the
heat input requirements and the thermal gradients experienced during welding. The HAZ
in aluminum welds is particularly susceptible to mechanical property deterioration due
to the thermal cycle of the welding process. FEM needs to effectively model the HAZ to
predict changes in microstructure and mechanical properties, which is difficult due to the
varying degrees of thermal exposure within the HAZ.

Accurately modeling the transient material properties in FEM simulations is crucial
but challenging, as it requires precise control and understanding of heat transfer mech-
anisms [6,76]. Despite extensive research, data on the temperature-dependent material
properties of the BM are scarce, particularly at high temperatures. Traditionally, models
have been developed based on room temperature property values and later validated.
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A new simplified model was proposed in [6] to aid in the evaluation of weld-induced
imperfections in structures composed of aluminum alloy 5052-H32:

k(T) = k0 + 0.13T

σs(T) =


σs0,

σs0 + 80 − 0.65T,
0.08σs0,

0 < T ≤ 100 ◦C
100 < T < 380 ◦C

T ≥ 380 ◦C

(2)

where k is the thermal conductivity of the aluminum alloy, T represents the temperature,
σs is the yield stress of the material, and the subscribed 0 means the value of the material
property at room temperature.

In this model, thermal conductivity and yield stress are treated as temperature-
dependent, using the proposed equations, while other material properties are considered
constant at room temperature values. This simplified approach is particularly beneficial
in welding simulations for aluminum alloys when high-temperature property data are
not available.

4.3. Numerical Approaches

Due to aluminum’s lower yield strength and higher coefficient of thermal expan-
sion, it is more prone to weld-induced distortions and residual stresses. Predicting the
extent and distribution of these distortions and stresses using FEM is complicated and
requires detailed models that can account for the complex interactions between thermal
and mechanical fields.

Due to the significant impact of thermal processes on mechanical responses, an un-
coupled thermal–mechanical formulation is commonly utilized to analyze the thermal–
mechanical behavior during the welding process [17,18,28,40,41,48]. This approach consid-
ers the influence of the transient temperature field on stress via linear thermal expansion
and incorporates temperature-dependent thermal physical and mechanical properties, as
shown in Figure 4. In this type of finite element analysis (FEA), thermal and structural
analyses are conducted independently and sequentially. The temperatures determined for
all nodes in the initial thermal analysis stage are applied as body loads in the subsequent
stage to the same geometric model to conduct the mechanical analysis.
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During the heating and cooling phases of the welding process, the total strain can be
categorized into various components, such as elastic strain, thermal strain, plastic strain,
creep strain, and strain resulting from phase transformations. The concept of inherent
strain encompasses the sum of thermal, plastic, creep, and phase transformation-induced
strains. Essentially, inherent strain includes all forms of strain except for elastic strain, as
expressed in the following equation:

εinherent = εtotal − εelastic = εthermal + εplastic+εcreep + εphase (3)
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Among all components of inherent strain, plastic strain is the predominant fac-
tor [28,30], which can be determined experimentally or assessed through TEP-FEAs. In the
case of welded joints made from high-carbon steel, inherent strain is primarily represented
by plastic strain, as the strain from creep and solid-state phase transformations is relatively
minor [28]. Inherent strains are acknowledged as a key factor contributing to welding dis-
tortion. In practical terms, inherent deformation is categorized into two types: longitudinal
inherent shrinkage force, known as tendon force, resulting from strong self-constraint, and
transverse inherent shrinkage/bending, caused by weaker self-constraint [30]. Welding
distortion is believed to arise from four specific components of inherent deformation: lon-
gitudinal shrinkage, transverse shrinkage, longitudinal bending, and transverse bending.
These components of inherent deformation are described by the following equations [65]:

δx = 1
h
s

ε
p
xdydz, δy = 1

h
s

ε
p
ydydz

θx = 12
h3

s
(z − h/2)εp

xdydz, θy = 12
h3

s
(z − h/2)εp

ydydz
(4)

where δx and δy are the longitudinal and transverse shrinkages, respectively; θx and θy
are the longitudinal and transverse bendings, respectively; x, y, and z are the welding
directions, transverse direction, and thickness direction, respectively; h is the thickness of
the plate; ε

p
x and ε

p
y are the plastic strains obtained from the TEP-FEA.

The convection in the TEP-FEA is accounted for by utilizing the temperature-dependent
values previously described in Section 3.3 [6,65]. For modeling radiation, the Stefan–
Boltzmann law is employed, utilizing an emissivity value along with the Stefan–Boltzmann
constant, which is approximately 5.67 × 10−8 W/m2/K4 [26,45]. In addition to the TEP-
FEM, elastic FEM that leverages inherent strain theory [28,30,47–49] can also be used to
predict welding deformation. Compared to TEP-FEM, this method requires significantly
less computational time, even for large and complex structures. Furthermore, the elas-
tic FEM only necessitates the elastic modulus and Poisson’s ratio at room temperature,
eliminating the need for temperature-dependent material properties. Figure 5 shows the
procedures for calculating the final welding-induced deformation of a structure using the in-
herent strain value, which can be calculated based on the results of maximum temperature,
temperature gradient, and reaction force from the heat transfer and TEP analyses.
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4.4. Heat Source Models

During the arc welding process, a weld pool forms when the base metal reaches its
melting point, preparing it for the addition of filler material. Heat source models help
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predict the thermal cycle during welding, which is essential for determining the resultant
microstructure and mechanical properties of the welded joint. By accurately modeling the
heat input, we can optimize welding parameters to reduce defects such as distortion and
residual stresses, ensuring the structural reliability of welded aluminum components in
marine applications.

The technique used to manipulate the weld pool significantly impacts the quality of
the resulting weld bead. One of the earliest analytical approaches to modeling the heat flow
during welding involved using conduction heat transfer principles and the Fourier partial
differential equation (PDE). To model the weld pool’s shape, a moving coordinate system
was adopted, allowing for the development of solutions applicable to simple heat sources
across various welding scenarios. In the 1960s, the concept of a Gaussian distributed heat
source was introduced to approximate the heat flux at the heating spot, as illustrated in
Figure 6.
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The heat flux decreases with distance from the center of the heat source and can be
mathematically described as follows:

q(r) = qmaxexp
(
−3r2

R2

)
=

3Q
πR2 exp

(
−3r2

R2

)
(5)

where qmax is the maximum heat flux in the center of the heat source, Q is the heat flux of
the arc, r is the distance between the point of the heat application and the center of the heat
source, and R is the radius of the heating spot.

Later, Goldak et al. [78] suggested that the heat flux within a weld’s heat source follows
a Gaussian distribution, leading them to propose a semiellipsoidal heat source model. To
enhance the model’s accuracy, they further introduced a double-ellipsoidal heat source
by combining two semiellipsoids with varying parameters, as depicted in Figure 7. This
3D model offers improved predictions of temperature distribution in welded structures,
achieving deeper penetration. It also accurately reflects the differing temperature gradients
observed at the front and rear parts of the heat source, as verified by experimental data.
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In this classic model for arc welding, the heat flux distributions within each semiellip-
soid are governed by distinct equations:

q f (x, y, z) =
6
√

3( f f Q)
abc f π

√
π

exp
(
− 3x2

a2 − 3y2

b2 − 3z2

c2
f

)
, z ≥ 0

qr(x, y, z) = 6
√

3( frQ)
abcrπ

√
π

exp
(
− 3x2

a2 − 3y2

b2 − 3z2

c2
r

)
, z < 0

(6)

where a, b, cf, and cr are geometric parameters; ff and fr are heat input proportions for the
front and rear parts, respectively; Q represents the total input heat energy; and x, y, and z
are the coordinates at a given point within the heat source. Note that the welding direction
is aligned along the z-axis in these equations. If the welding direction differs, the coordinate
system and parameters need to be adjusted accordingly.

It was concluded in [79] that the volumetric heat model (double-ellipsoidal model)
demonstrates higher accuracy for simulating the GTAW of aluminum plates compared
to the surface heat model. Additionally, using a volumetric heat flux distribution offers a
reasonable depiction of residual stress distribution, further validating the appropriateness
of the volumetric heat source model for capturing the temperature history during the
GTAW process on aluminum plates. Similar conclusions can be found also in research
on welded steel structures [80,81]. The boundaries of the FZ and HAZ are sensitive to
variations in heat source parameters, making accurate heat source modeling crucial for
correctly predicting welding distortion and residual stresses.

In an FSW process, heat production at the contact interfaces between the tool and
workpiece is critical to the process. This heat generation can be segmented into three
distinct components: (1) heat generated beneath the tool shoulder, (2) heat generated on
the pin side of the tool, and (3) heat generated at the tip of the tool pin [82,83], expressed
by the following equation:

QTotal = Q1 + Q2 + Q3 =
2π

3
τ

contact
ωR3

shoulder + 2πτcontactωR2
probeHprobe (7)

where Rshoulder is the tool shoulder radius; Rprobe and Hprobe are the radius and height of the tool
probe, respectively; ω is the tool angular rotation speed; and τcontact is contact shear stress.

Figure 8 presents a simplified tool design assumed for analysis, featuring a conical or
flat horizontal shoulder surface, a vertical cylindrical probe side surface, and a horizontal
flat probe tip surface. The conical shoulder surface is defined by the cone angle α, which is
zero in the case of a flat shoulder.
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4.5. Computational Resources

Highly detailed FEM simulations, especially those involving complex weld geometries
and sophisticated material behavior models, can be computationally intensive. They
require significant computational resources and time, which can be a limiting factor in
some applications.

In the TEM-FEAs within ANSYS, Solid70 elements, which possess 3D thermal con-
duction capabilities, are employed for solving the temperature field. When conducting
structural analysis, these elements are substituted with equivalent structural elements
like Solid185 [41,45,50–53,65]. ANSYS Parametric Design Language (APDL) was utilized
to create user-defined macros to simulate the movement of the heating source and the
deposition of molten metal droplets on the workpiece [6,17,18]. To accurately simulate
the addition of molten weld metal to the workpiece, the element birth and death feature
was employed [19,40]. Initially, all weld elements were deactivated at the start of the
structural analysis. As the temperature of these elements dropped below the solidification
temperature of 610 ◦C, characteristic of aluminum 6061-T6, they were reactivated [45]. This
process effectively models the deposition of weld elements onto the workpiece.

Similar to ANSYS, ABAQUS is also favored by researchers for conducting TEP-
FEAs [28,44,47,84,85]. In these simulations, an eight-node linear brick heat transfer element
(DC3D8) is utilized for thermal analysis, while the incompatible mode eight-node brick
element (C3D8I) is used to simulate the stress–strain fields in mechanical analysis [54]. In
addition, an in-house code based on JWRIAN (Joining and Welding Research Institute Anal-
ysis, from Osaka University) was developed for analyzing the nonlinear thermomechanical
behavior of welded structures in TEP-FEAs [30,48,49,86]. A typical TEP-FEA analysis can
take from a few hours to a couple of days on a well-equipped computer.

Additionally, ADINA [87,88], SYSWELD [89–91], Simufact Welding [92], MSC Marc [46],
COMSOL Multiphysics [93,94], DEFORM [95,96], and WELDSIM [76] are other popular
simulation tools frequently utilized for various welding applications in aluminum alloys.
ANSYS and ABAQUS excel in handling complex multiphysics scenarios but might require
longer computation time for highly detailed models. On the other hand, SYSWELD special-
izes in welding and heat treatment simulations and might offer faster solutions for standard
welding processes due to its tailored solver and built-in features specific to welding. Apart
from the different software used, factors such as model complexity, the solver’s parallel
processing capabilities, computer configuration, and expertise in advanced user-defined
functions or subroutines are key factors that influence computational time.

It is important to note that beyond these traditional methods, the evolving appli-
cations of machine learning (ML) [97,98], artificial intelligence (AI) [99,100], digital twin
(DT) [101,102], and other emerging technologies in welding simulations highlight the sig-
nificant potential and promising prospects in this new era. The integration of these new
technologies is transforming the field of welding simulations, enhancing the precision,
efficiency, and innovative capabilities of welding processes.

Figure 9 displays a digital twin concept for monitoring and control for the lap welding
of Al–Cu sheets [101]. Real-time temperature data were utilized to accurately predict the
instance of interface melting and control the resulting weld microstructure. The digital
twin model was calibrated using a finite element model, which was itself validated through
experimental data. A linear-regression-based recursive machine learning model, leveraging
a moving average of machine current and temperature history, was employed to predict
real-time interface temperatures with high precision. The proposed digital twin model can
be used to effectively monitor weld zone temperatures and control the process accordingly.
This approach overcomes the impractical measurements associated with using thermo-
couples and the limitations of infrared sensors in industrial settings, where the interface
requiring temperature monitoring is often obscured.

While AI and ML can provide faster solutions in some aspects, their effectiveness
heavily depends on the quality and quantity of the data available for training the models.
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4.6. Summary

In this section, the simulation and modeling of welding processes for aluminum
alloys are explored extensively through advanced FEM. The focus is on addressing the
complexities inherent in welding aluminum, such as rapid heat dissipation, the variation
in material properties with temperature, and the effects of welding geometry. Specific
attention is given to the accurate modeling of complex joint geometries to ensure high-
quality meshes that can accurately capture critical phenomena in the FZ and HAZ. This
section also discusses the challenges of modeling the transient material properties of
aluminum, which vary significantly under the thermal cycles of welding.

Furthermore, the manuscript delves into the application of uncoupled thermal–mechanical
analysis to simulate the welding process, utilizing advanced heat source models to predict
temperature distribution more accurately. This sophisticated approach helps in under-
standing the nonlinear effects of heat input on temperature gradients and residual stresses
within welded joints. The comprehensive simulation work discussed in this section not
only enhances the understanding of welding-induced phenomena in aluminum structures
but also aids in predicting the mechanical behavior of welds, crucial for the design and
integrity of marine and offshore structures.

5. Weld-Induced Deformation and Residual Stress: Impact on Structural Integrity
5.1. Measurements of Weld-Induced Deformation and Residual Stress

It is widely acknowledged that the ultimate strength of ship structures is significantly
influenced by the shape and amplitude of weld-induced imperfections, as well as the
presence of weld-induced residual stress [103,104]. In large-scale fabrication industries,
issues such as weld-induced deformation and WRS pose significant challenges by adversely
affecting fatigue, fracture resistance, and susceptibility to environmentally assisted cracking
(EAC) [6]. An approximate method was suggested to characterize the load-shortening
curves of stiffened plates, highlighting the impact of residual stresses [103]. A common
practice for aluminum welded stiffened panels [66] revealed that the ultimate limit state
(ULS) analysis methods adopted by each industry application provide a high degree of
inconsistency. In this respect, the development of the ULS analysis methods common to all
types of aluminum welded panel structures is desirable.

Thermocouples, widely used for their broad temperature range, stability, and cost-
effectiveness, are popular transducers for measuring temperature in various welding
tests [18,40]. Type K thermocouples (chromel/alumel), which support oxidizing atmo-
spheres and have a working range from −200 ◦C to 1100 ◦C, were utilized in the welding
processes of aluminum alloys [89,96,105]. These thermocouples are commonly welded to
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metal parts using a capacitive-discharge technique, as illustrated in Figure 10, to ensure
uniformity, or clamped under a screw, with the data collected being transferred to a data
logger and a PC for recording.
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Figure 10 illustrates the placement of thermocouples on an AA6082 plate considered in
an experimental investigation of an FSW process operating at a rotational speed of 500 rpm
and a feed rate of 20 mm/s. The dimensions of the plate were 75 mm × 100 mm × 6.35 mm.
Eight L-shaped k-type thermocouples, each with a diameter of 3 mm, were positioned
at equal distances from the center line to monitor temperature variations—four on the
advancing side and four on the retreating side. To secure the thermocouples, 3 mm diameter
and 5 mm deep holes were drilled on both sides of the plate. The initial thermocouples
on each side were set at 14.5 mm from the center line, located just 3 mm from the end
of the shoulder diameter, to protect them from damage during welding. The FSW tool
was mounted in the quill of a vertical milling machine and rotated along its longitudinal
axis. The two plates were secured to a rigid base plate using clamps to prevent movement
during welding. Temperature measurements were taken using a UNILOG instrument
equipped with eight channels, consisting of a universal process data recorder that logs the
data into an Excel spreadsheet and a channel interface module that relays data from the
thermocouples to the recorder.

However, positioning thermocouples accurately within the FZ in arc welding, and
in the nugget or areas close to the thermomechanically affected zones (TMAZ) in FSW,
presents significant challenges [6]. Thermographic cameras and fiber optic sensors are also
employed in various other temperature acquisition systems [105].

Mechanical or optical extensometers are utilized to directly measure strain and defor-
mation on samples during the welding process. Additionally, 3D digital image correlation
(DIC) is a noncontact optical method that employs high-speed cameras and software to
monitor speckle patterns on the surface of the welding area, enabling the measurement of
deformation across the entire field of view. Photogrammetry is another technique that can
measure distortion in welded structures [107,108]. Prior to image acquisition, photographs
of a calibration grid are taken from various positions and angles to calibrate the camera.
Coded targets, as provided by the commercial software PhotoModeler 5, are attached to
the plate (see Figure 11), along with other targets that help define the coordinate system.
Through the mathematical intersection of straight lines in space, the precise position of
each point is determined. Employing photogrammetry, the 3D coordinates of points identi-
fied by coded targets are captured, allowing for accurate modeling of deformed surfaces.
The photogrammetry technique displayed in the figure was applied in experiments with
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small-scaled steel plates, but, undoubtedly, it also holds great potential for application in
measuring the deformation in welded aluminum plates.
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Essential factors for successful surface measurement include precisely calibrated
cameras, images with optimal geometric configuration, adequate local and global image
information to identify all matching candidates, and appropriate constraints and strategies
for verifying matching results [109]. Laser scanners are also used to generate a high-
resolution 3D profile of the workpiece before and after welding, providing a precise
assessment of deformation.

The methods being developed to measure residual stress in different components fall
into three categories: destructive (including the sectioning method and contour method),
semidestructive (such as hole drilling), and nondestructive techniques (including X-ray,
neutron diffraction, and ultrasonic inspection). The choice of technique depends on the
specific requirements of the measurement and the characteristics of the specimen. Con-
siderations include the depth and penetration of the measurement, the scale (macroscopic
or microscopic), the resolution needed, and the composition, geometry, and location of
the specimen. X-ray diffraction is a commonly used nondestructive technique for measur-
ing residual stress [73,80,81]. This method determines stresses by measuring the spacing
changes in the crystal lattice, considering factors such as Young’s modulus, Poisson’s ratio,
and the elastic anisotropy of the material.

Furthermore, idealizing the distribution of residual stresses has been a typical ap-
proach in numerous studies, primarily because obtaining an accurate distribution of WRS
in welded structures is challenging [84,104]. The adoption of modern simulation and
modeling tools has allowed for better prediction and mitigation of residual stresses during
the welding process.

5.2. Effects of Weld-Induced Deformation and Residual Stress and Mitigation Strategies

The most frequent defects in aluminum-plated structures created through welding in-
clude initial deflections, residual stresses, and softening in the heat-affected zone (HAZ) [8].
Unlike steel structures, which have extensive data on initial imperfections, information
on such imperfections in welded aluminum-plated structures is limited. This scarcity of
data introduces greater uncertainty in the design and construction of aluminum vessels
compared to their steel counterparts [8].

Research on the elastic local buckling strength of stiffened aluminum plates has shown
that ignoring welding residual stresses can reduce buckling strength by about 10–13% with
FSW, 14–17% with MIG welding, and 15–18% with TIG welding [110]. Furthermore, a
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study [111] examining the ultimate strength of welded aluminum stiffened panels under
combined biaxial and lateral loads highlighted the significant role of material softening in
the HAZ, while residual stresses were overlooked due to their comparatively minor impact.
Nonetheless, all welding effects, including residual stresses, must be carefully considered
when analyzing the strength of ship and offshore structures that are (partially) constructed
from aluminum alloys.

Methods to mitigate weld-induced distortion and residual stress can be categorized
into thermal and mechanical approaches. The thermal method modifies the temperature
of the entire component uniformly, either by heating or cooling. For example, circulating
water on the underside of plates during welding has been theoretically explored as a
way to control distortion [112]. Flame straightening is another thermal technique used
for corrective measures post-weld buckling. Additionally, line heating applied on the
opposite side of the weld can induce inverse bending, while spot heating can target
areas distant from the weld line [86]. The effectiveness of transient thermal tensioning
to eliminate buckling distortion in welded assemblies was experimentally demonstrated
and verified [113]. On the mechanical side, techniques such as shot peening and laser
peening are employed to alleviate undesirable surface tensile stresses and induce beneficial
compressive residual stresses [114]. In addition, the factor of time is critical in aluminum
welding, both in terms of the welding process itself and the cooling duration that follows.
Precise control over the time parameters ensures optimal heat input and distribution, which
are crucial for preventing defects such as porosity and excessive distortion. Furthermore,
the timing of the cooling phase is essential to achieve the desired mechanical properties
and to minimize residual stresses in the weld zone. Effective management of these time-
sensitive aspects is integral to maintaining the structural integrity and performance of the
welded aluminum components.

The future of mitigating weld-induced deformation and residual stress is promising,
with emerging technologies playing a pivotal role. Advances in ML/AI are set to rev-
olutionize how welding parameters are predicted and controlled, potentially allowing
real-time adjustments during the welding process to minimize distortions and stresses.
Research is also exploring the integration of sensor technology, digital technologies, and
intelligent systems within welding setups to provide continuous feedback and adjustments,
further enhancing the precision of welding operations [115–117]. This forward-looking
approach not only promises to improve the quality and efficiency of welded assemblies but
also aims to reduce costs and increase the longevity of engineering structures.

6. Further Discussions

The experimental results outlined in this paper demonstrate how various welding
parameters and techniques affect the physical and mechanical properties of aluminum
alloys. Notably, they highlight the critical impact of heat input and cooling rates on the for-
mation of residual stresses and deformations. The numerical simulations offered insightful
predictions about the thermal and mechanical behavior of welded joints under different
conditions. These simulations have been instrumental in understanding the complex inter-
actions within the weld zone, particularly the development of stress concentrations and
HAZs. By closely mirroring the experimental conditions, the numerical models not only
validated the experimental findings but also provided deeper insights into the variables that
are difficult to measure directly, such as internal temperatures and microstructural changes.

The bridge between the experimental and numerical analyses discusses the corre-
lations between observed material responses and predicted outcomes. This integration
has proven crucial for refining welding parameters to optimize joint integrity and mini-
mize defects. The discussion also extends to the practical implications of these findings,
emphasizing the need for precise control of welding parameters in industrial applica-
tions to enhance the durability and reliability of marine structures. Furthermore, the
combined insights from these analyses have identified potential areas for future research,
particularly in improving simulation accuracy with advanced computational techniques
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and exploring new material formulations to enhance weldability and performance under
marine conditions.

Throughout the preceding sections, several challenges have been identified in the
welding of aluminum alloys for marine applications. These include managing the high
thermal conductivity of aluminum, which complicates the welding process due to rapid
heat dissipation. This characteristic often leads to inconsistent weld quality, such as
porosity and inadequate fusion. Additionally, the susceptibility of aluminum alloys to
thermal and residual stresses during welding poses significant challenges in maintaining
the structural integrity of the welded joints. The variability in material behavior under
different welding settings further complicates the prediction and control of outcomes in
real-world applications. These challenges underscore the necessity for advanced research
and more refined welding techniques.

Addressing the primary challenges identified in this research, the following points
could be considered:

1. Optimize welding parameters:

Develop a comprehensive set of optimized parameters for different aluminum alloys to
improve weld consistency and quality. Adjust the heat input to balance between adequate
penetration and minimizing residual stress. Implement controlled cooling techniques to
manage the thermal gradients that contribute to residual stresses.

2. Enhance material preparation:

Improve surface preparation techniques to reduce contamination and improve the
consistency of welds. Standardize cleaning protocols to minimize surface oxides and
contaminants before welding. Establish guidelines for handling and storage to preserve
surface integrity prior to welding.

3. Advance simulation techniques:

Invest in the development of more sophisticated simulation models that can more
accurately predict complex behaviors during welding. Integrate microstructural evolution
into simulation models to predict changes in material properties post-welding. Utilize
sensors and monitoring technologies to provide real-time feedback on weld quality during
the process.

4. Research and development:

Foster continued research into new welding technologies and material formulations
that could enhance the weldability and performance of aluminum alloys in marine environ-
ments. Explore emerging welding technologies, such as laser welding or hybrid techniques,
that could offer more precise control and less thermal distortion. Support the development
of new aluminum alloys specifically designed to improve weldability and resistance to
environmental factors in marine settings.

5. Enhancing weld monitoring through advanced analytics:

Integrate data derived from NDT methods into AI and ML platforms, allowing predic-
tive models and digital twins to be developed and refined. These models are expected to
significantly enhance predictive maintenance, real-time monitoring, and process optimiza-
tion. In addition, challenges such as ensuring data integrity, managing vast volumes of
data, and developing models that can effectively interpret complex data patterns indicative
of weld integrity and potential failures are to be addressed.

7. Conclusions and Future Directions

The advancements in aluminum welding for marine structures have provided sig-
nificant insights into analyzing and minimizing weld-induced deformation and residual
stress, crucial for enhancing the structural integrity and performance of marine vessels
and platforms. This review has synthesized extensive research spanning experimental
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and simulation studies to highlight the critical role of innovative welding techniques in
improving the durability and safety of marine infrastructure.

Weld-induced deformations and residual stresses remain a pivotal concern due to their
potential to compromise the structural integrity and longevity of welded joints. Emerging
welding methods such as FSW and laser welding, compared to the traditional MIG and
TIG, have been shown to effectively minimize these defects, offering more reliable and
efficient solutions. There is a pressing need to explore advanced simulation technologies
and tools that can enable more precise predictions and a better understanding of the
complex interactions within the weld zone, facilitating the development of more robust
welding strategies. This includes the development of integrated models that combine
thermal, mechanical, and metallurgical factors to provide a holistic view of the welding
dynamics. Additionally, research should focus on the refinement of additive manufacturing
techniques for aluminum, which hold the promise of revolutionizing marine construction
with more intricate and lightweight designs.

Validating and calibrating FEM models of aluminum welding requires experimental
data, which can sometimes be difficult to obtain. Ensuring that simulation results align
with real-world welding behavior demands extensive testing and data collection, which can
be costly and time-consuming. More specifically, in the welding simulation by TEP-FEM,
significantly high temperatures are induced in the welded structures. The metals have
quite different thermal/mechanical behaviors at higher temperatures when compared with
their properties at room temperature. Hence, it is essential to take into consideration the
temperature-dependent material properties when evaluating weld-induced imperfections.
However, there are limited data on the temperature-dependent material properties of
the base metal, especially at high temperatures. Addressing these challenges requires a
combination of advanced numerical techniques, comprehensive material data, and robust
computational resources to ensure that FEM simulations can provide accurate and reliable
predictions for aluminum welding processes.

Looking ahead, the field is poised for transformative changes with the integration
of digital technologies. The prospective use of machine learning and AI in predictive
modeling promises to revolutionize welding practices by enabling real-time control and
optimization of welding parameters, thereby reducing defects and improving joint quality.
Furthermore, the concept of digital twins could provide a sophisticated means of mon-
itoring and adjusting the welding process in real time, enhancing the adaptability and
precision of welding operations in marine construction.

While the marine industry has traditionally lagged behind aerospace and automotive
industries in the adoption of new materials technologies, largely due to the stringent safety
and durability requirements imposed by the harsh marine environment, it is poised to
make significant strides. Ongoing research into new material formulations and advanced
welding consumables will continue to support the evolving needs of the marine indus-
try, potentially leading to the development of even more efficient and resilient welding
solutions. Continued research and development into new aluminum alloys and their com-
posites will likely yield materials that are not only lighter and stronger but also tailored to
withstand the specific challenges of the marine environment. In addition, addressing the
environmental impact of welding processes by developing greener and more sustainable
practices should also be a priority in future studies.

This review underscores the dynamic nature of the field and sets a clear trajectory
for future research and technological advancements, aiming to address the challenges and
harness the opportunities that lie ahead in the welding of aluminum structures for marine
applications. As we move forward, it will be essential to continue bridging the gap between
research and practical applications, ensuring that innovations in welding technology can
be effectively translated into improved performance and reliability of marine structures.
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