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Abstract: In this paper, we further develop a novel, efficient approach to the problem of signal
detection against background noise based on a nonlinear residual functional called the neuron-like
criterion function (NCF). A detailed comparison of the NCF-based technique and the conventional
correlation criterion function (CCF)-based matched-signal detection is performed. For this purpose,
we calculated the detection performance curves for both techniques and found the range of the
problem parameters in which the NCF-based detector shows a certain advantage. The latter consists
of achieving a fixed value of detection probability at a lower threshold value of the input signal-to-
noise ratio (SNR) compared to the CCF-based detector. Special attention is given to the practically
important scenario of receiving a weak signal against the background of non-stationary noise with
a certain trend (positive or negative) of its intensity. For these two specific cases, modified NCFs
are given, which are then used for computer simulation. For both broadband and narrow-band
signals, the quantitative bounds of the most effective use of the derived NCFs are established and
interpreted. The real sea noise data obtained from two underwater acoustic arrays, one stationary
on the sea bottom and the other towed near the sea surface, are used for experimental validation.
The experimental data processing results confirm the simulation results and make it possible to
demonstrate the advantage of the NCF if the noise intensity shows a significant trend over the signal
observation interval. The latter case obviously corresponds to the use of the towed array in the
coastal area.

Keywords: underwater signal detection; noise background; criterion function; neuron-like function;
signal-to-noise ratio; non-stationary noise; experimental data; acoustic array

1. Introduction

Currently, artificial neural networks built by comparing with information process-
ing systems in natural neural networks are intensely studied and widely used to solve
various practical problems. Signal processing techniques and algorithms based on such
comparisons show their effectiveness in various applications. The scientific and applied
relevance of this study is due to the need to improve the accuracy of signal detection in
various environmental or technical conditions.

One of the well-known and generally accepted approaches to solving the signal
detection problem is matched signal filtering, which is based on the use of a replica of
the reference (test) signal and the CCF. It is known that the matched filter is the optimal
receiver in the case of a deterministic signal and white Gaussian noise. This technique
maximizes the output SNR (see, e.g., [1,2]). The commonly used Neyman–Pearson criterion
includes a preliminary assessment of the signal detection threshold based on a statistical
analysis of the received noise in the absence of a useful signal, and further calculation
of the probability of correct detection (PCD) proceeds from the condition of stationary
noise in the signal observation interval. Thus, this approach does not take into account
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the possible non-stationary behavior of the noise against the background from which the
signal is received.

One typical case is the temporal variability of the input noise intensity. Such a case
is indeed possible and to be expected in many practical scenarios. For example, in the
absence of a useful signal, the noise background at the receiver input may happen to have
an intensity lower than the time interval of the signal reception. In underwater acoustics,
variations in intrinsic noise may correspond to conditions of relatively close navigation
and/or rapid variability in weather conditions with respective changes in wind waves.
Despite the practical reasons, the study of such a scenario in signal detection is rather
poorly covered in the literature. Therefore, important issues arise here, namely, to first
obtain a preliminary estimate of the behavior of real noise in terms of its intensity level, and
then to find the correct (most effective) methods for signal detection in a non-stationary
noise background.

Our recent research has been motivated by these issues and has demonstrated the
NCF as an effective “tool” for signal detection in non-stationary noise, when applied to
underwater sound and the related fields [3,4]. However, the previously proposed NCF
did not take into account any features of the noise related to its significant temporal
variability. This means that the aforementioned issues have not been adequately explored.
This paper addresses these issues directly and derives two modifications of the NCF that
depend on whether the noise intensity trend is increasing (incremental noise) or decreasing
(decremental noise) at the receiver input.

For a comparative analysis of the linear approach based on the conventional CCF and
the nonlinear, neuron-like approach based on the NCF, we use the well-known Neyman–
Pearson criterion and calculate the dependence of the PCD on the input SNR, or the
detection efficiency. Also, a detector that provides a higher PCD for some given value of
the input SNR is commonly considered more efficient if the false detection probability, or
false alarm rate (FAR), is fixed. In other words, this means that such a detector provides
some given (previously required) PCD value for a lower SNR. We focused on quantitative
estimates of non-stationary noise behavior, in which the “hierarchy” of the two considered
approaches is reversed. This is the main motivation and specific goal of this study—to
develop a neuron-like approach to solve the proposed detection problem.

2. Materials and Methods

Our approach to signal detection and “building” a nonlinear threshold function is
theoretically based on the mathematical model of the McCulloch–Pitts neuron [5]. The basic
idea of the nonlinear algorithm and the basic transformation forming the output signal of
the NCF-based detector WNeu(τ) were illustrated in as follows [3]:

WNeu(τ) =
∫ T

0
[Q(t)× |x(t − τ)|]dt, (1)

Θ(t) =

0, i f − |x(t)| ≤ [y(t − τ)− x(t)]· y(t−τ)
|y(t−τ)|

1, i f − |x(t)| > [y(t − τ)− x(t)]· y(t−τ)
|y(t−τ)|

, (2)

where T is the time interval of the test signal, τ is the time shift, x(t) is the reference or test
signal, y(t) is the input signal with additive noise, and Q(t) is the NCF for the nonlinear
neuron-like transformation of the input signal. It “operates” with the instantaneous differ-
ence between the input and test signals, rather than their correlation as seen in a CCF-based
detector. As a typical threshold function, the NCF has only two possible values, 0 and 1.
Therefore, the principal function of NCF operations is to modulate the input signal, which
either “resets” the output signal samples in the areas of matching amplitudes of the input
and test signals, or, on the contrary, “resets” the non-matching areas of the signal. In this
way, NCF samples are formed.
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The linear correlation technique, which involves calculating the correlation coefficient
of the input y(t) and test x(t) signals, has the following well-known form [1]:

WCorr(τ) =

∫ T
0 y(t)·x(t − τ)dt√∫ T
0 y2(t)dt·

∫ T
0 x2(t)dt

. (3)

The difference between the NCF (1–2) and the CCF (3) is the replacement of the linear
multiplication operation of the signal samples with a signal modulation procedure at each
time sample.

As emphasized above, additive noise can have a natural trend of increasing or decreas-
ing, i.e., the noise variance can change up or down during the time interval when signals
are received. Our an alysis showed that the NCF should be modified to take this trend
into account. In the case of an increased noise intensity trend, the output signal WNeu

1 (τ)
should be calculated as follows:

WNeu
1 (τ) =

∫ T
0 Θ{y(t), x(t − τ)}dt∫ T

0 |x(t − τ)|dt +
∫ T

0 |y(t)|dt
, (4)

Θ{y(t), x(t − τ)} = max[|x(t − τ)| × L(t), |y(t)| × M(t)], (5)

L(t) =

1, i f − |y(t)| ≤ [x(t − τ)− y(t)]· x(t−τ)
|x(t−τ)|

0, i f − |y(t)| > [x(t − τ)− y(t)]· x(t−τ)
|x(t−τ)|

, (6)

M(t) =

1, i f − |x(t − τ)| ≤ [y(t)− x(t − τ)]· y(t)
|y(t)|

0, i f − |x(t − τ)| > [y(t)− x(t − τ)]· y(t)
|y(t)|

, (7)

where y(t) is the input signal, x(t − τ) is the test signal, and τ is the time shift. The NCF
was calculated for each sample.

In the case of a decreased noise intensity trend, the output signal should be calculated
differently, and the difference is in the calculation of the auxiliary functions L(t) and M(t)
as follows:

L(t) =

0, i f − |y(t)| ≤ [x(t − τ)− y(t)]· x(t−τ)
|x(t−τ)|

1, i f − |y(t)| > [x(t − τ)− y(t)]· x(t−τ)
|x(t−τ)|

, (8)

M(t) =

0, i f − |x(t − τ)| ≤ [y(t)− x(t − τ)]· y(t)
|y(t)|

1, i f − |x(t − τ)| > [y(t)− x(t − τ)]· y(t)
|y(t)|

. (9)

We then numerically compared NCF-based techniques with conventional CCF-based
techniques in terms of their efficiency. The main quantity to be compared was the value of
the input SNR at which a given (fixed) PCD level was achieved. Thus, the smaller the SNR
value required to achieve the desired PCD level, the more efficient the criterion function.

For the comparative study, we performed the following signal processing steps:

(1) Random Gaussian noise with the given value of its variance is generated, or ready-
made experimental sea noise data are used;

(2) Chirp signals (signals with linear frequency modulation) are formed as desired signals;
(3) Statistical histograms are generated to estimate the probability distribution of the

correlation and neuron-like function values when receiving only the noise and when
receiving the desired signal against the noise background;

(4) On the basis of the Neyman–Pearson criterion, the position of the detection threshold
at a given (rather typical) value of FAR = 0.001 is determined;

(5) The dependence of the PCD on the input SNR, or conventional detector performance,
is calculated for both the CCF and NCF to be compared.
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3. Results

In this section, we review our results to demonstrate the hierarchy of NCF- and
CCF-based detectors and to identify a more efficient approach for detecting weak signals
in non-stationary noise. We used both computer simulations and experimental data to
compare the detectors in detail.

3.1. Computer Simulation Results

In this subsection, using only computer simulations, we consider the cases of increas-
ing and decreasing noise intensity trends.

Figure 1a shows the performance of NCF- and CCF-based detectors for an incremental
Gaussian noise model. In this case, the NCF calculation was computed according to
Equations (4)–(7). Here, it is seen that a given value of PCD, denoted as P*

CD, is achieved at
a lower SNR for the NCF (SNR*

Neu) than for the CCF (SNR*
Corr), and some fixed value of

the input SNR (e.g., the vertical dashed line that corresponds to the value –24 dB) leads to a
higher value of PNeu

CD compared to PCorr
CD . We obtained similar conclusions for the case of a

decremental Gaussian noise model, as illustrated in Figure 1b. The NCF was calculated
here in accordance with Equations (4), (5), (8), and (9).
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As noted above, we paid special attention to the problem of quantifying the specific
limits of the most efficient use of the NCF-based detector. For this purpose, we introduced a
special quantity that is considered an intrinsic characteristic of non-stationary noise, namely,
the quantity Nσ. It is defined as the ratio of the average noise intensity in the presence of
the desired signal (denoted as σS

N) to the average noise intensity in its absence (denoted as
σN) for some fixed SNR in the signal bandwidth:

Nσ =
σS

N
σN

. (10)

In the case where Nσ > 1, the noise is clearly incremental, and the NCF is calculated
using Equations (4)–(7). In the opposite case, where Nσ < 1, the noise is decremental, so
we use Equations (4), (5), (8), and (9).

In the context of our study, it is appropriate to interpret the Nσ value as the non-
stationary noise index (NSI). Then, the limits of a more efficient use of the NCF-based
detector can be determined by the NSI interval when the use of the NCF leads to a better
performance compared to the CCF. From Figure 1, we can easily estimate this effect as the
corresponding PCD difference, namely, the value of (PNeu

CD − PCorr
CD ).
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Figures 2 and 3 show the dependence of the PCD difference on the NSI value for
broadband and narrow-band test signals, respectively. In the studies using mathematical
modeling, as well as when processing the experimental data, we focused on scenarios
involving a weak signal against the noise background. In Figure 2, the frequency range of
the chirp signal is from 200 to 1000 Hz, and the sampling frequency is 10 kHz. The two
input SNR values are fixed at −24 dB (left) and −18 dB (right). In Figure 3, the frequency
range is from 200 to 400 Hz, the sampling frequency is 1 kHz, and the input SNR values
are −17 dB and −13 dB, respectively. When the PCD difference defined above is less than
0, this means that the CCF-based detector is more efficient, and it has the advantage of
achieving a given PCD level with a lower input SNR value.
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It can be seen from these two plots that the positions of the Nσ1 and Nσ2 boundary
points (market by green lines in Figures 2 and 3), when the NCF and CCF methods give the
same PCD value (where the difference is zero), are at approximately the same levels for the
illustrated cases. This means that the signal bandwidth is not a critical parameter for the
detector comparison.



J. Mar. Sci. Eng. 2024, 12, 1540 6 of 10

In Figures 2 and 3, we can see another important point. The CCF-based detector shows
its advantage if the NSI value is approximately in the following range:

0.65 < Nσ < 1.35. (11)

The estimate (11) can be heuristically interpreted as the condition of “effective sta-
tionarity” of additive noise when the variability of its input intensity over the observation
interval is relatively small. In the opposite case, where

Nσ < 0.65, Nσ > 1.35, (12)

the NCF-based detector is considered more efficient and preferable. Moreover, we see that
the more the value of Nσ differs from a given range (11), the greater the relative advantage
of the NCF. This result confirms the expected conclusion that signal detection techniques
based on nonlinear signal transformation have a certain advantage in non-stationary noise.

3.2. Experimental Results, Data Set No. 1 (Bottom-Mounted Acoustic Array)

Statistical analysis of ambient sea noise and the study of its effect on underwater
acoustic signal detection have been carried out by many authors (see, e.g., [6–16]). In this
paper, we use sea noise data obtained in two field experiments. Their main difference was
that the background noise implementations in each were significantly different in nature.
In the first experiment, the sea noise intensity level was stationary over a fairly long time
interval, while in the second experiment, the noise intensity level varied significantly.

In the first experiment, an acoustic array consisting of 180 hydrophones was used,
and laid at the sea bottom at a depth of 240 m. The noise signals were recorded with a
sampling frequency of 250 Hz, and the total recording interval was about 70 s, which was
composed of segments of 2 s each. Figure 4a shows the statistical histograms of the noise
values for several samples. Data processing showed that the noise intensity did not change
much during the observation interval, so the noise was stationary. This is mainly due to the
stationary installation of the array at a sufficient depth where the external environmental
factors such as weather conditions do not have such an effect.
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Simulated chirped pulses in the frequency range of 50 to 150 Hz, with a duration of
2 s, were generated as the desired signal to be received against the sea noise background.
Figure 4b shows the detection performance for this case. It can be seen that the CCF-
based detector (curve 1) has a marked advantage over the NCF-based detector (curve
2). For example, at a given PCD level P*

CD = 0.99 (dotted line 3), the input SNR values
corresponding to these detectors differ by about 3 dB in favor of the CCF. This difference is
indicated by the vertical dashed lines 4 (for CCF) and 5 (for NCF).

3.3. Experimental Results, Data Set No. 2 (Towed Acoustic Array)

In the second field experiment, an acoustic array consisting of 16 hydrophones was
used. The array was towed behind a ship at a depth of 15 m in the coastal shallow-water
area. During the tests, the wind speed was fairly stable at about 3 m/s and the wind wave
strength was 2–3 points. The vessel was traveling in a straight line at a speed of three
knots. Due to the motion of the vessel, the towed array was stretched in such a way that
its tail part was 3–4 m closer to the surface. Due to all these instabilities, the towed array
experienced noticeable oscillations in both depth and in course.

Noise signals were recorded with a sampling frequency of 16,000 Hz and a recording
duration of 160 s with short segments of 1 s each. Analysis of the noise data showed a
fundamental difference from the data of experiment No. 1; in this case, the noise intensity
was essentially unstable and increased several times during the observation time, i.e., the
noise was, in our terms, incremental. The non-stationary behavior of the noise is illustrated
in Figure 5a, which shows normalized statistical histograms of the noise signals for several
samples. It is observed that the experimental estimates of the noise variance differ by a
factor of 3–4, in contrast to the noise histograms shown in Figure 4a for experiment No. 1.
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The chirp signal was generated in a frequency range of 200 to 1000 Hz, with a duration
of 1 s, and was added to the experimental noise. Using Equations (4)–(7), the detector
performance was then calculated for the NCF-based detector and compared with the
CCF-based detector, similar to all the previous examples.

Figure 5b shows the obtained results (notations are the same as in Figure 4b). Here,
the advantage of the NCF-based detector can be clearly seen, as one would expect from
the simulation results presented in Section 3.1. For example, a fixed value of P*

CD = 0.99
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(dotted line 3) (as in Figure 4b) is achieved for the NCF-based detector (line 2) with an
input SNR value of less than 3 dB, which is less than the value needed for the CCF-based
detector (line 1). This difference is indicated by the vertical dashed lines 4 (for CCF) and
5 (for NCF). Thus, the hierarchy of the discussed detectors is reversed, and this is only a
consequence of the different noise behavior.

4. Discussion

The results of a comparative study of two different approaches to the construction of
the detector criterion functions indicate that the statistical properties of additive noise are a
factor that significantly affects the choice of the most efficient one. The problems that were
raised as the main motivation of our study have been resolved.

First, numerical simulation of the chirp-signal detection against the background
of non-stationary noise (Figures 1–3), and then detector modeling using natural data
(Figures 4 and 5) clearly showed that the use of the NCF-based detector has an advantage
under conditions of a certain (positive or negative) trend of noise intensity. This is clearly
demonstrated by achieving a fixed PCD value at an input SNR that appears to be signifi-
cantly (several dB) lower when compared to that corresponding to the use of a conventional
CCF-based detector. This qualitative result is considered to be theoretically significant
and practically important, since the non-stationary nature of the noise background is quite
typical of the ambient or technical conditions accompanying the signal detection problem in
a wide variety of applications. Such a signal reception scenario is of particular importance,
for example, in sonar applications, since marine noise is “sensitive” to various natural
factors. In addition, the signal reception conditions related to the use of extended antenna
arrays of various types can also significantly affect the noise intensity variability over the
observation/signal processing interval.

As for quantitative estimates, they are determined by the value (10), which we call
the noise non-stationarity index. The obtained inequalities (11) and (12) are important
here because they clearly show in what sense the noise can be considered stationary or, on
the contrary, significantly non-stationary with a certain intensity trend. These inequalities
quantify the limits of the most efficient use of NCFs derived for increasing or decreasing
noise intensities. The detectors were compared in the cases of both broadband and narrow-
band signals and for different values of the input SNR, with an emphasis on the weak
signal scenario.

At the same time, we are far from claiming a definitive, general answer to the issues
discussed. First, our analysis was limited to the case of non-stationary noise only, where
its intensity trend had a certain sign, positive or negative. Obviously, these variants do
not exhaust all the possible varieties of real detection scenarios in practical applications.
Furthermore, we restricted ourselves to the case of a deterministic desired signal (e.g., chirp
signals were exploited), which does not introduce any distortions into the propagation
channel. At the same time, such distortions are possible and even quite typical for natural
channels, particularly those over long distances. Underwater sound channels are a very
typical example of such unstable environmental conditions. The corresponding effects,
which can be interpreted as the effects of a random mismatch of the replica of the reference
test signal with the actual received signals, can be expected to have a significant impact on
detector performance. The issues outlined here require further study.

Another issue that should be considered among the stimuli for further study is related
to the known phenomenon of stochastic resonance (SR). This nonlinear phenomenon is of
a rather general nature in dynamical systems and has been intensively studied by many
authors (for example, [17,18]). Moreover, some recent works focused on SR in relation
to the signal detection problem of underwater sound [19]. In our opinion, there is some
physical similarity between the nonlinear signal processing technique proposed and the SR
phenomenon. However, this comparison seems to be not so clear in the case of an essentially
non-periodic (broadband) chirp signal, so its practical use for further development of our
approach is an interesting subject.
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5. Conclusions

In this paper, a comparative study of the effectiveness of using nonlinear neuron-like
and linear correlation procedures for detecting signals against the background of additive
noise was carried out. The comparison was performed both on the basis of simulated
noise data and on the basis of data from marine experiments with large acoustic arrays of
various types.

It is shown that in cases where the noise is non-stationary and its variance tends
to increase or decrease over the observation interval, the NCF-based detector has an
advantage over the conventional CCF-based detector. The interval of effective stationary
noise is established, which makes it possible to quantify the signal reception conditions in
order to make the right choice in favor of one criterion function of the detector or another,
namely, the linear CCF or the alternative nonlinear NCF.

This study has shown the practical importance of taking into account the possible non-
stationarity of additive noise, against which the desired signal is received, especially at low
values of the input SNR. The previously proposed approach based on NCF [3] was modified
to take into account the increase or decrease in noise intensity during the observation
interval. The results obtained indicate certain prospects for further development and the
application of nonlinear neuron-like signal processing techniques for signal detection in
real natural environments.
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