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Abstract: Influenced by the dynamics of supply and demand, the demand for maritime transport has
been increasing annually, putting significant pressure on container ports. To alleviate this pressure,
a new mixed-integer programming model for the integrated scheduling of tugboats, berths, and
quay cranes has been established. This model considers the uncertainties in vessel arrival times,
vessel berthing preferences, time-varying quay crane availability, and the constraint that quay cranes
cannot cross each other. The objective is to minimize the total costs including fuel consumption
during port stays, delays and waiting times for berthing and departure, berthing deviation costs,
tugboat assistance costs, and quay crane handling costs. To obtain high-quality solutions, an adaptive
large neighborhood search (ALNS) algorithm was employed to solve the model. The algorithm
incorporated five destruction operators and five repair operators that were specifically designed to
enhance the solution accuracy and efficiency for the integrated scheduling problem. Several case
studies of varying scales, based on a port in China, were used to validate the effectiveness of the
proposed model and algorithm. The experimental results demonstrate the model’s validity and show
that the ALNS algorithm designed for the integrated scheduling problem outperformed CPLEX and
other algorithms in terms of the accuracy and efficiency. Finally, a sensitivity analysis of the key
parameters provides recommendations for the integrated scheduling of tugboats, berths, and quay
cranes, offering valuable insights for port operations.

Keywords: waterway transportation; integrated tugboat–berth–quay crane scheduling; mixed-integer
linear programming model; adaptive large neighborhood search algorithm; uncertainty in vessel
arrival times; berthing preferences

1. Introduction

With the rapid development of the global economy and the continuous increase in
international trade volume, ports, as crucial nodes in the logistics and transportation sys-
tem, play an essential role in the efficiency and service quality. In port operations, the
scheduling of berths, quay cranes, and tugboats is a critical factor affecting port operational
efficiency. Therefore, optimizing the scheduling of these resources to improve port through-
put capacity and service levels has become a focal point of interest for both academics
and practitioners.

Berth allocation mainly involves the mooring arrangement of vessels at the port. An
optimized berth allocation can effectively reduce the vessel waiting times and improve
the overall utilization rate of the port. Quay crane scheduling relates to the loading and
unloading efficiency of cargo between the vessel and the dock, which is essential to ensure
the quick turnaround of port operations. Tugboat scheduling affects not only the speed of
vessel berthing and departure, but also the safety of port operations. In-depth research on
the scheduling of port resources has been conducted by some scholars, but most of these
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studies are limited to the optimization of a single resource, lacking systematic research on
the integrated scheduling of berths, quay cranes, and tugboats. Single-resource optimiza-
tion cannot meet the needs of modern port efficient operations; integrated scheduling is a
key approach to enhancing the overall port efficiency. Therefore, research on the integrated
scheduling of berths, quay cranes, and tugboats has significant theoretical and practical
implications in addressing bottlenecks in actual port operations. This work seeks to fill
this research gap by constructing a comprehensive integrated scheduling model and using
optimization algorithms to improve the collaborative utilization efficiency of port resources
and provide theoretical support and practical guidance for port operations, facilitating the
development toward intelligent and refined port management.

To improve the efficiency of port quayside operations, a mixed-integer programming
model for the integrated scheduling of tugboats, berths, and quay cranes is proposed in
this paper. The objective was to minimize the total costs including fuel consumption costs
during the vessel’s stay in port, penalties for waiting and delayed departure, berth deviation
penalties, tugboat fuel costs, and quay crane loading and unloading costs. Subsequently,
the integrated scheduling model was linearized, converting it into a linear mixed-integer
programming model. The CPLEX solver and the adaptive large neighborhood search
(ALNS) algorithm were then employed to solve it. The effectiveness of the model and
method was verified in the experimental results section. The contributions of this paper are
as follows:

(1) A linear integer programming model for the integrated scheduling of tugboats, berths,
and quay cranes was constructed, which can yield the optimal berth allocation scheme
using CPLEX for small-scale instances.

(2) An adaptive large neighborhood search algorithm tailored to the characteristics of the
integrated scheduling problem of tugboats, berths, and quay cranes was developed.
For large-scale instances, the adaptive large neighborhood search algorithm can obtain
near-optimal solutions in a relatively short time.

(3) Practical constraints such as the uncertainty of vessel arrival times, vessel berthing
preferences, the non-overlapping of quay cranes, and partially time-varying con-
straints of quay cranes were considered, thereby enhancing the applicability of the
integrated scheduling scheme.

(4) A continuous berth allocation layout was implemented, improving the utilization of
the port quay space.

(5) The model’s validity and the algorithm’s efficiency were verified through
data experiments.

The rest of this paper is organized as follows. Section 2 reviews the related literature on
port berth, quay crane, and tugboat scheduling, summarizing the deficiencies of the existing
research. Section 3 constructs the linear integer programming model for the integrated
scheduling of tugboats, berths, and quay cranes. Section 4 designs the solution method for
the model. Section 5 presents a case analysis to verify the effectiveness of the model and
algorithm. Section 6 summarizes the paper.

2. Literature Review

The literature related to the scheduling of tugboats, berths, and quay cranes is sum-
marized in this section. It provides a summary of the relevant studies in four aspects:
berth allocation, integrated scheduling of berths and quay cranes, tugboat scheduling, and
integrated scheduling of berths, tugboats, and quay cranes.

2.1. Research on Berth Allocation

Berth allocation can be categorized into three types: discrete, hybrid, and continuous.
In the research on discrete berth allocation problems, Imai et al. [1] aimed to minimize the
waiting and handling times for all vessels by constructing a nonlinear integer programming
model and designing a Lagrangian relaxation-based heuristic algorithm to solve it. Prencipe
et al. [2] focused on minimizing the in-port time of vessels by developing a linear mixed-
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integer programming model and designing a swarm optimization algorithm to solve it. Iris
et al. [3] developed a set-packing model for the strategic berth allocation problem at large
container ports and demonstrated the model’s excellence through the analysis of numerous
examples of varying scales.

In hybrid berth allocation, a large vessel can occupy multiple berths simultaneously if
there is sufficient space, and several small vessels can also dock at one berth concurrently.
Umang et al. [4] constructed a mixed-integer linear programming model with the objective
of minimizing the in-port time of all vessels and designed a squeaky wheel optimization
algorithm for its solution. Kordić et al. [5] aimed to minimize the total in-port costs of
all vessels by developing a linear mixed-integer programming model and designing an
exact algorithm based on the precipitation method to solve it. Venturini et al. [6] were
the first to propose the concept of the multi-port berth allocation problem, considering
both vessel speed optimization and emissions. They developed a MILP model for this
problem and demonstrated the model’s effectiveness and applicability through extensive
data experiments.

For continuous berth allocation problems, Ernst et al. [7] studied berth allocation
in export ports and established a two-stage linear mixed-integer programming model,
introducing two efficient inequalities to enhance the solvability of the model. Cheimanoff
et al. [8] also researched berth allocation in export ports, creating a mixed-integer linear
programming model, designing a variable neighborhood search algorithm to solve it,
and employing machine learning methods to adjust the algorithm parameters. Martin-
Iradi et al. [9] investigated continuous berth allocation problems in multi-port scenarios,
developing a mixed-integer linear programming model for this problem.

2.2. Integrated Scheduling of Berths and Quay Cranes

The integrated scheduling of berths and quay cranes also requires the consideration
of the division of the quay line, with related research primarily focusing on discrete and
continuous types. Xiang et al. [10] studied the discrete berth and quay crane integrated
scheduling problem, addressing uncertainties through the reservation of time slots. Wang
et al. [11] researched the continuous berth and quay crane integrated scheduling problem
under various uncertainties. In the continuous division, the quay line is divided into
multiple smaller berths, and vessels need to occupy several berths when docking, thereby
improving the utilization of the quay line.

Research on the integrated scheduling of berths and quay cranes involves numerous
variables and constraints, making it challenging to solve all variables simultaneously.
Therefore, related research often adopts a phased approach. Ji et al. [12] solved the berth
and quay crane integrated scheduling problem in two stages: the first stage determines
the berthing position, berthing time, and the number of quay cranes assigned to the vessel,
while the second stage allocates specific quay cranes to the corresponding vessels. Liu
et al. [13] used a rolling horizon strategy to solve the integrated scheduling problem of
sea-rail intermodal ports in two stages: the first stage determines the berth occupied
by the vessel and the number of quay cranes assigned to each vessel, and the second
stage uses a heuristic algorithm to solve the time variables. Chargui et al. [14] employed a
decomposition algorithm to divide the problem into a master problem and multiple scenario
sub-problems: the first stage solves the deterministic master problem, and the second stage
decides whether to solve the sub-problems based on the results of the master problem.

The research on the integrated scheduling of berths and quay cranes must consider
time-invariant or time-variant constraints on the number of quay cranes. The time-invariant
constraint means that the number of quay cranes assigned to the vessel remains unchanged
during its berthed period; the time-variant constraint means that the number of quay
cranes assigned to the vessel can change during its berthed period. Yu et al. [15] studied the
integrated scheduling of berths and quay cranes under time-invariant constraints, aiming
to balance the economic and environmental benefits. Li et al. [16] studied the integrated
berth and quay crane scheduling problem by considering quay crane maintenance issues
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and employed a time-varying strategy for the number of quay cranes. Iris et al. [17]
compared the integrated scheduling of berths and quay cranes under time-variant and
time-invariant strategies and found that the scheduling efficiency of time-variant strategies
was higher than that of time-invariant strategies due to the greater flexibility and efficiency
of fully time-variant strategies, which could improve the utilization of quay cranes. When
considering time-invariant constraints, the scheduling efficiency is generally lower than
when considering time-variant constraints. Time-variant strategies can be fully time-variant
or partially time-variant. The modeling and solving process for fully time-variant strategies
is more complex, while the complexity of partially time-variant strategies is not significantly
higher than that of time-invariant strategies.

When vessels enter and leave port channels, it is necessary to consider whether the
channel and berth depths meet the vessel’s draft requirements. Due to tidal factors, the
depths of the port berths and channels change periodically, significantly affecting vessel
entry, departure, and berthing. Malekahmadi et al. [18] studied the impact of tidal factors
on the berth depth, emphasizing that if the berth depth does not meet the vessel’s draft
requirement, the vessel cannot dock. Krimi et al. [19] studied the integrated scheduling of
berths and quay cranes in export ports, where vessels are unaffected by tides when entering
the port, but must take advantage of the tides when departing.

Uncertainty factors are inevitable in port operations, and research on the integrated
scheduling of berths and quay cranes should consider these uncertainties. Iris and Lam
et al. [20] addressed planned uncertainties by setting buffer times and using different buffer
times to handle different levels of uncertainty. Liu et al. [13] incorporated uncertainty sets
into the model to address uncertainties related to vessels and quay cranes and introduced
control parameters to manage the degree of uncertainty in the model.

The integrated scheduling problem of berths and quay cranes is an NP-hard prob-
lem. The type of model determines the solution method. For a mixed-integer linear
programming (MILP) model, heuristic algorithms and CPLEX can be used; for a nonlinear
mixed-integer programming model, only heuristic algorithms can solve the model. He
et al. [21] considered the fully time-variant strategy for the number of quay cranes, es-
tablishing a mixed-integer nonlinear programming model and solving it with a memetic
algorithm. Wang et al. [22] established a MILP model considering both single-rate and
piece-rate port carbon tax policies, employing equivalent and relaxed constraints to sim-
plify the model, and solving it with CPLEX. Cheimanoff et al. [23] developed a MILP
model for the integrated scheduling of berths and quay cranes, employing CPLEX and a
variable neighborhood search algorithm to solve the model. Iris et al. [24] developed a
MILP model for the integrated berth and quay crane scheduling problem. They improved
the model’s solving speed by introducing valid inequalities and designed an adaptive large
neighborhood search (ALNS) algorithm based on the problem characteristics to solve the
model. Finally, data experiments demonstrated the efficiency of the model improvements
and the effectiveness of the algorithm designed in their study.

2.3. Tugboat Scheduling

The tugboat scheduling problem can be divided into static and dynamic tugboat
scheduling problems. The static tugboat scheduling problem assumes that all vessels have
already arrived at the port before the scheduling begins. Xu et al. [25] studied the static
tugboat scheduling problem by considering the vessel relocation, establishing a three-stage
model including vessel berthing, shifting, and departure, and designed a hybrid simulated
annealing-ant colony optimization algorithm to solve the model.

The dynamic tugboat scheduling problem allows vessels to arrive at the port at any
time during the planning period, with all vessel arrival times known. Wei et al. [26] pointed
out that static scheduling does not conform to practical scenarios and proposed a mixed-
integer programming model where vessels can arrive at different times during the planning
period, designing a customized heuristic algorithm to solve the model. Sun et al. [27]
studied the dynamic tugboat scheduling problem in large-scale ports by considering the
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tugboat operation uncertainties and tugboat transit area restrictions. A mixed-integer
programming model was developed, and a reverse operation-based genetic algorithm was
designed to solve the model. The algorithm’s effectiveness was validated with data from
Zhoushan Port. Li et al. [28] considered the uncertainty of vessel arrival times, established
a stability model with the objective of minimizing the sum of vessel waiting costs and
tugboat fuel consumption, and then solved the model using a reinforcement learning
algorithm. Zhong et al. [29] considered the impact of tidal factors on tugboat assistance for
vessel entry, created a multi-objective mixed-integer linear programming model aiming
to minimize tugboat handling time and fuel consumption, and designed an NSGA-II
algorithm to solve the model. The algorithm and model’s effectiveness were validated
through experiments using data from Guangzhou Port. Kang et al. [30] studied the tugboat
scheduling problem considering uncertainties in vessel arrival times and tugboat towing
processes, established a mixed-integer linear programming model for tugboat scheduling,
and designed a self-organizing map (SOM) algorithm to solve the model.

Wei et al. [31] noted the path point selection patterns in port scheduling practices
and developed a mixed-integer linear programming model incorporating these patterns,
designing a branch-and-bound algorithm with six different effective inequalities to solve the
model. The algorithm and model’s effectiveness were validated through experiments with
data from Singapore Port. Jia et al. [32] considered the vessel berthing plans and different
vessel entry paths with the objectives of minimizing vessel delays, tugboat operation
costs, and unserved vessels. A mixed-integer linear programming model was established,
and a heuristic method based on Lagrangian relaxation and Benders decomposition was
designed to solve the model. The heuristic’s effectiveness was validated with data from
Shanghai. Wang et al. [33] aimed to improve tugboat utilization by developing a mixed-
integer programming model for tugboat scheduling by considering multiple vessel entry
path modes. An adaptive large neighborhood search algorithm incorporating a feasible
path detection procedure was designed to solve the model, and the model’s effectiveness
was validated through case studies.

2.4. Integrated Scheduling of Tugboats, Berths, and Quay Cranes

There is limited research on the integrated scheduling of tugboats, berths, and quay
cranes. To the best of our knowledge, Yang et al. [34] are the only researchers who have
studied this problem. The integrated scheduling of tugboats, berths, and quay cranes,
considering the economic benefits, was investigated. A nonlinear mixed-integer program-
ming model for the integrated scheduling problem was developed, and an adaptive satin
bower bird optimizer algorithm integrating chaotic mapping and quantum computing
strategies was designed to solve the model. In the tugboat scheduling part of their study,
each berthing and unberthing operation required a certain number of tugboats with specific
horsepower to be allocated to the vessel. The time required for berthing and unberthing
varied depending on the number of tugboats assigned. For berth allocation, the study
focused on discrete berth allocation layouts. In quay crane scheduling, a time-invariant
strategy for the number of quay cranes was employed, ensuring that the quay cranes did
not cross each other. Our study also investigated the integrated scheduling of tugboats,
berths, and quay cranes. Table 1 compares our study with the study by Yang et al. The
key differences include accounting for the uncertainty of vessel arrival times, utilizing a
continuous berth layout, implementing a time-variant strategy for quay crane allocation,
developing a linear mixed-integer programming model, and employing an adaptive large
neighborhood search algorithm to solve the model.
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Table 1. Comparison of the study details.

Reference Conditions Berth Quay Crane Model Method

Yang et al. (2024) [34] Vessel berthing
preference Discrete

Quay cranes
cannot cross each
other; quay crane

quantity is
time-invariant

Nonlinear
mixed-integer
programming

model

Adaptive satin
bower bird
optimizer
algorithm

This paper

Vessel berthing
preference; vessel

arrival time
uncertainty

Continuous

Quay cranes
cannot cross each
other; Quay crane

quantity is
time-variant

Linear
mixed-integer
programming

model

CPLEX,
CPLEX, adaptive

large
neighborhood

search algorithm

3. Model
3.1. Problem Description

As shown in Figure 1, the integrated scheduling problem of tugboats, berths, and quay
cranes studied in this paper can be described as follows. After arriving at the port, vessels
enter the anchorage area. If the number of available tugboats meets the required number
for assisting a ship in entering the port, the corresponding tugboats will be allocated to
facilitate its entry. If the available tugboats cannot meet the number requirements, the
vessel waits at the anchorage until sufficient tugboats are available. Similarly, if there are
not enough continuous berths available on the quay line, the vessel also needs to wait
at the anchorage until sufficient berths are free to enter the port. Once berthed, quay
cranes are immediately allocated to the vessel for loading and unloading operations. If
the vessel’s berthing position deviates from its preferred berth, additional container truck
transportation costs are incurred, referred to as berth deviation penalties in this paper.
Since all quay cranes move on the same track, they cannot cross each other. If the number
of available tugboats meets the required number for assisting a ship in leaving the port, the
corresponding tugboats will be allocated to facilitate its departure. If the available tugboats
do not meet the number requirements, the vessel waits at the berth until enough tugboats
are available for departure. Time-variant constraints on the number of quay cranes were
considered in this work. During the vessel’s waiting period after the completion of loading
and unloading operations, the quay cranes allocated to this vessel can move to other berths
to handle other newly berthed vessels. This study primarily addresses the uncertainty in
vessel arrival times by implementing a buffer period. After a vessel completes its loading
and unloading operations, the berth it occupied must remain vacant for a designated buffer
time before accommodating a new incoming vessel. As illustrated in Figure 1, after entering
the port, Ship 3 can only dock in the green-marked mooring area near the shoreline and
is prohibited from docking in the yellow-marked non-mooring area because Ship 5 has
just vacated that zone, which must remain unavailable for other vessels until the buffer
time has expired. This buffer period allows for adjustments in the loading and unloading
schedules when there are fluctuations in vessel arrival times. The larger the buffer interval,
the higher the stability of the model.

3.2. Model Assumptions

(1) The port water depth meets the draft requirements of all vessels; (2) vessels will
not be relocated, and each vessel can berth only once; (3) the berthing of vessels must meet
physical conditions; (4) each vessel has a preferred berth; (5) the safe distance between
vessels is included in the vessel length; (6) the number of quay cranes allocated to each
vessel has both upper and lower limits; (7) vessel deviation from the preferred berth will
incur additional container truck scheduling costs; (8) vessels start loading and unloading
services immediately after berthing; (9) the number of tugboats allocated to a ship should
meet the required number necessary for the ship’s entry or departure from the port; and
(10) each tugboat provides the same amount of horsepower.
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3.3. Model Parameters

The parameters and variables of the integrated scheduling model for tugboats, berths,
and quay cranes constructed in this paper are shown in Table 2.

Table 2. Model parameters and variables.

Notation Sets

v, v’ Vessel index
t Time period index
q Quay index
s Tugboat index
V Set of incoming vessels, V = {1,2, . . .|V|}
B Set of berths on the quay, B = {1,2, . . .|B|}
Q Set of quay cranes, Q = {1,2, . . .|Q|}
T Set of time periods, T = {1, 2, . . .|T|}
S Set of tugboats, S = {1, 2, . . .|S|}

C1 Parameter: vessel in-port fuel consumption rate
C2 Parameter: vessel delay departure and waiting cost per time unit
C3 Parameter: penalty cost per unit deviation from preferred berth
C4 Parameter: tugboat fuel consumption rate
C5 Parameter: quay crane usage rate
M Parameter: a sufficiently large number

GAP Parameter: the parameter represents the minimum buffer time interval between successive vessel berths in
the same berth space.

SNv Parameter: minimum number of tugboats required for vessel entry and exit
ATv Parameter: arrival time of vessel v
Lv Parameter: length of vessel v

PBv Parameter: preferred berth of vessel v
LDTv Parameter: latest departure time of vessel v
QUv Parameter: maximum number of quay cranes that can be allocated to vessel v
QLv Parameter: minimum number of quay cranes that can be allocated to vessel v
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Table 2. Cont.

Notation Sets

FTv Parameter: quay crane service hours required for vessel v
S1v Variable: time when vessel v starts berthing from the anchorage
ETvs Variable: time required for vessel s to enter the port when v tugboats are allocated
LTvs Variable: time required for vessel v to exit the port when s tugboats are allocated
S2v Variable: time when vessel v starts unberthing from the berth
BTv Variable: berthing time of vessel v
DTv Variable: departure time of vessel v
HTv Variable: loading and unloading time of vessel v at the quay
LQv Variable: index of the leftmost quay crane allocated to vessel v
RQv Variable: index of the rightmost quay crane allocated to vessel v
EHT Variable: time when vessel v finishes loading and unloading
Pv Variable: berthing position of vessel v

DSv Variable: deviation distance of vessel v from the preferred berth
Rv Variable: delayed departure time of vessel v

Xvv′ Variable: Xvv′ = 1 if vessel v’ berths later than vessel v depart, otherwise Xvv′ = 0
Yvv′ Variable: Yvv′ = 1 if vessel v is completely berthed to the left of vessel v′, otherwise Yvv′ = 0
Zvv′ Variable: Zvv′ = 1 if vessel v′ berths later than vessel v finishes loading and unloading, otherwise Zvv′ = 1
Qvq Variable: AQvq = 1 if q quay cranes are allocated to vessel v, otherwise AQvq = 1
SAvs Variable: SAvs = 1 if s tugboats are allocated to incoming vessel v, otherwise SAvs = 0
SEvs Variable: SEvs = 1 if s tugboats are allocated to outgoing vessel v, otherwise SEvs = 0
RTvt Variable: RTvt if tugboats are allocated to incoming vessel v in period t, otherwise RTvt = 0
CTvt Variable: CTvt = 1 if tugboats are allocated to outgoing vessel v in period t, otherwise CTvt = 0

AU1vq Variable: auxiliary variable introduced to linearize the model
AU2vst Variable: auxiliary variable introduced to linearize the model
AU3vst Variable: auxiliary variable introduced to linearize the model

3.4. Scheduling Model
3.4.1. Objective Function

F = F1 + F2 + F3 + F4 + F5 (1)

F1 = C1 ∑
v∈V

(DTv − ATv) (2)

F2 = C2 ∑
v∈V

[Rv + S1v − ATv + S2v − EHTv] (3)

F3 = C3 ∑
v∈V

DSv (4)

F4 = C4 ∑
v∈V

∑
s∈S

(sETvsSAvs + sLTvsSEvs) (5)

F5 = C5 ∑
v∈V

∑
q∈Q

(
qAQvq HTv

)
(6)

In the objective function, F1 represents the fuel consumption costs of all vessels during
their stay in the port, F2 represents the total penalties for the delayed departure and waiting
time of vessels, F3 represents the total penalties for the berth deviation of vessels, F4
represents the costs incurred by tugboats assisting vessels in entering and leaving the port,
and F5 represents the costs incurred by quay cranes loading and unloading vessels

3.4.2. Tugboat-Related Constraints

S1v ≥ ATv, ∀v ∈ V (7)
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BTv = S1v + ∑
s∈S

SAvsETvs, v ∈ V (8)

∑
s∈S

SAvs = 1, ∀v ∈ V (9)

tRTvt + M(1− RTvt) ≥ S1v, v ∈ V, t ∈ T (10)

∑
t∈T

RTvt = BTv − S1v, ∀v ∈ V (11)

(t + 1)RTvt ≤ BTv, ∀v ∈ V, t ∈ T (12)

∑
s∈S

sSAvs ≥ SNv, ∀v ∈ V (13)

S2v ≥ EHTv, ∀v ∈ V (14)

DTv = S2v + ∑
s∈S

SEvsLTvs, v ∈ V (15)

∑
s∈S

SEvs = 1, ∀v ∈ V (16)

tCTvt + M(1− CTvt) ≥ S2v, v ∈ V, t ∈ T (17)

∑
t∈T

CTvt = DTv − S2v, ∀v ∈ V (18)

(t + 1)CTvt ≤ DTv, ∀v ∈ V, t ∈ T (19)

∑
s∈S

sSEvs ≥ SNv, v ∈ V (20)

∑
v∈V

∑
s∈S

sSAvsRTvt + ∑
v∈V

∑
s∈S

sSEvsCTvt ≤ |S|, ∀t ∈ T (21)

Constraint (7) ensures that vessels can only enter the port and berth after arriving.
Constraint (8) ensures that the berthing time with tugboat assistance is related to the
number of tugboats assigned to the vessel. Constraint (9) ensures that the number of
tugboats assigned to a vessel remains constant during the tugboat-assisted berthing process.
Constraints (10) to (12) ensure the continuity of the vessel’s entry and berthing times.
Constraint (13) ensures that the number of tugboats allocated to incoming ships satisfies
the tugboat requirements for these ships. Constraint (14) ensures that vessels can only
depart after completing loading and unloading operations. Constraint (15) ensures that the
unberthing time with tugboat assistance is related to the number of tugboats assigned to
the vessel. Constraint (16) ensures that the number of tugboats assigned to a vessel remains
constant during the tugboat-assisted unberthing process. Constraints (17) to (19) ensure the
continuity of the vessel’s unberthing and departure times. Constraint (19) ensures that the
number of tugboats allocated to departing ships satisfies the tugboat requirements for these
ships. Constraint (20) ensures that the number of tugboats assisting vessels in entering
and leaving the port at any given time does not exceed the maximum number of tugboats
available at the port.
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3.4.3. Vessel-Related Constraints

S2v ≥ EHTv, ∀v ∈ V (22)

EHTv >= BTv + HTv, v ∈ V (23)

DSv ≥ Pv − PBv, v ∈ V (24)

DSv ≥ PBv − Pv, v ∈ V (25)

S2v + GAP ≤ BTv′ + (1− Xvv′), ∀v, v′ ∈ V, v ̸= v′ (26)

Pv + Lv ≤ Pv′ + (1−Yvv′), ∀v, v′ ∈ V, v ̸= v′ (27)

Xvv′ + Xv′v + Yvv′ + Yv′v ≥ 1, ∀v, v′ ∈ V, v ̸= v′ (28)

Pv + Lv ≤ |B|, v ∈ V (29)

Rv ≥ 0, v ∈ V (30)

Rv ≥ DTv − LDTv, v ∈ V (31)

DTv ≤ H − 1 (32)

Constraint (22) ensures that vessels can only depart after completing loading and
unloading operations. Constraint (23) ensures that vessels receive loading and unloading
services immediately after berthing and defines the relationship between the vessel’s
berthing time, loading and unloading time, and the completion time of these operations.
Constraints (24) to (25) ensure that the berth deviation distance for vessels is positive.
Constraints (27) to (28) ensure that the quay space and time occupied by any two berthed
vessels do not overlap. Constraint (29) ensures that vessels can only berth within the quay
area. Constraints (30) to (31) ensure that the delayed departure time for vessels that did not
experience a delayed departure is zero, and that it is positive for vessels that did experience
a delayed departure. Constraint (32) ensures that the vessel’s departure time is within the
planning period.

3.4.4. Quay Crane-Related Constraints

∑
q∈Q

qAQvqHTv ≥ FTv, ∀v ∈ V (33)

∑
q∈Q

AQvq = 1, ∀v ∈ V (34)

LQv ≤ RQv, ∀v ∈ V (35)

∑
q∈Q

qAQvq = RQv − LQv + 1, v ∈ V (36)
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∑
q∈Q

qAQvq ≤ QUv, v ∈ V (37)

∑
q∈Q

qAQvq ≥ QLv, v ∈ V (38)

RQv ≤ |Q| − 1, v ∈ V (39)

EHTv ≤ BTv′ + M(1− Zvv′), ∀v, v′ ∈ V, v ̸= v′ (40)

RQv ≤ LQv‘ + M ∗ (1−Yvv′) + M ∗ Zvv′ + M ∗ Zv′v − 1, ∀v, v ∈ V, v ̸= v′ (41)

Constraint (33) ensures that vessels can complete loading and unloading tasks within
the given time and conditions. Constraint (34) ensures that the number of quay cranes
assigned to a vessel is unique. Constraints (35) to (36) ensure that the quay crane numbers
assigned to the same vessel are consecutive. Constraints (37) to (38) ensure that the number
of quay cranes assigned to a vessel is within the available range of quay cranes for that
vessel. Constraint (39) ensures that the total number of quay cranes assigned to all vessels
does not exceed the total number of quay cranes. Constraints (40) to (41) ensure that the
quay cranes assigned to a vessel can transfer along the track to handle newly berthed
vessels after completing the loading and unloading operations for the current vessel, even
if the vessel needs to wait at the berth for sufficient tugboats to become available for
departure. This ensures that the number of quay cranes assigned to a vessel meets the
partial time-variant constraints.

Xvv′ , Yvv′ , Zvv′ = {0, 1}, v, v ∈ V, v ̸= v′ (42)

AQvq = {0, 1}, ∀v ∈ V, q ∈ Q (43)

AT1vs, AT2vs = {0, 1}, v ∈ V, s ∈ S (44)

AT1vt, AT2vt = {0, 1}, v ∈ V, t ∈ T (45)

S1v, S2v, BTv, DTv, HTv, LQv, RQv, EHTv, Pv, STIv,
ETIv, DSv, Rv = {0, 1, 2 . . . , ∞}, ∀v ∈ V

(46)

Constraints (42) to (46) ensure the type and range of values for the decision variables.

3.5. Model Linearization

In Equations (6) and (42), AQvqHTv is nonlinear. To linearize it, we need to introduce
an auxiliary variable AU1vq and use AU1vq to replace AQvqHTv. To ensure equivalence,
additional constraints (47) to (51) need to be introduced.

AU1vq ≥ HTv −M
(
1− AQvq

)
, ∀v ∈ V, q ∈ Q (47)

AU1vq ≤ HTv, ∀v ∈ V, q ∈ Q (48)

AU1vq ≤ MAQvq, ∀v ∈ V, q ∈ Q (49)

AU1vq ≥ −MAQvq, ∀v ∈ V, q ∈ Q (50)

AU1vq = {0, 1, 2 . . . ∞}, ∀v ∈ V, q ∈ Q (51)

In Equation (21), SAvsRTvt and SEvsCTvt need to be linearized by introducing auxiliary
variables AU2vst and AU3vst to replace SAvsRTvt and SEvsCTvt, respectively. To ensure
equivalence, additional constraints (52) to (58) need to be introduced.

AU2vst ≤ SAvs, ∀v ∈ V, s ∈ S, t ∈ T (52)
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AU2vst ≤ RTvt, ∀v ∈ V, s ∈ S, t ∈ T (53)

AU2vst ≥ SAvs + RTvt − 1, ∀v ∈ V, s ∈ S, t ∈ T (54)

AU3vst ≤ SEvs, ∀v ∈ V, s ∈ S, t ∈ T (55)

AU3vst ≤ CTvt, ∀v ∈ V, s ∈ S, t ∈ T (56)

AU3vst ≥ SEvs + CTvt − 1, ∀v ∈ V, s ∈ S, t ∈ T (57)

AU2vst, AU3vst = {0, 1, 2 . . . , ∞}, ∀v ∈ V, s ∈ S, t ∈ T (58)

4. Methodology

A mixed-integer linear programming (MILP) model for the integrated scheduling of
tugboats, berths, and quay cranes was constructed in this paper. Therefore, the model can
be solved using the CPLEX solver. However, due to the high complexity of the problem
and the large number of variables, the solution time of CPLEX is significantly long, and the
solution time increases exponentially with the size of the problem instance. This makes it
challenging to apply to practical port scheduling. Hence, a heuristic algorithm is required
to obtain a near-optimal integrated scheduling solution in a shorter time. To achieve
high-quality integrated scheduling solutions within a shorter period, the adaptive large
neighborhood search (ALNS) algorithm was employed to solve the model in this paper.

4.1. Solution Encoding

The solution encoding uses a multi-layer real number encoding format. As shown in
Figure 2, the solution encoding for a set of 10 arriving vessels is illustrated.
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4.2. Initial Solution Generation

Based on information such as the vessels, quay cranes, and tugboats, an initial feasible
solution was generated. The process for generating the initial solution is illustrated in
Figure 3.
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4.3. Destruction Operators
4.3.1. Random Destruction Operator

Randomly select σ vessels and remove their related information from the solution.
The IDs of the removed vessels are recorded in IDdel, and the solution after removing σ
vessels is denoted as Xre.

4.3.2. Temporal Destruction Operator

Calculate the temporal penalty F2 for all vessels, and sequentially remove the vessels
with the highest F2 values until σ vessels have been removed. The IDs of the removed
vessels are recorded in IDdel, and the solution after removing σ vessels is denoted as Xre.

4.3.3. Berth Deviation Destruction Operator

Calculate F3 for all vessels, and sequentially remove the vessels with the highest F3
values until σ vessels have been removed. The IDs of the removed vessels are recorded in
IDdel, and the solution after removing σ vessels is denoted as Xre.

4.3.4. Quay Crane Margin Destruction Operator

Define the quay crane margin for vessel v as ABQv = QUv − ∑
q∈Q

(
qAQvqHTv

)
. Calcu-

late the quay crane margin for all vessels, and sequentially remove pairs of vessels with
the highest and lowest ABQv values until σ vessels have been removed. The IDs of the
removed vessels are recorded in IDdel, and the solution after removing σ vessels is denoted
as Xre.

4.3.5. Tugboat Margin Destruction Operator

Define the tugboat margin for vessel v as ABTv = 2|S|− ∑
s∈S

(sETvs + sLTvs). Calculate

the tugboat margin for all vessels, and sequentially remove pairs of vessels with the highest
and lowest ABTv values until σ vessels have been removed. The IDs of the removed vessels
are recorded in IDdel, and the solution after removing σ vessels is denoted as Xre.

4.4. Repair Operators
4.4.1. Random Repair Operator

Randomly select a vessel from IDdel one by one and insert its schedule into Xre without
conflicting with the schedules of the remaining vessels. The insertion process for a vessel is
as follows: randomly allocate a certain number of tugboats to assist its entry into the port,
randomly allocate a certain number of quay cranes to it, calculate the vessel’s loading and
unloading time in the port, then randomly select a berth for it, and randomly allocate a
certain number of tugboats to assist its departure from the port. This process continues
until all vessels in IDdel are inserted, completing the loading and unloading operations.

4.4.2. Berth Priority Repair Operator

Sort the vessels in IDdel by the degree of deviation from their preferred berths in
descending order, and insert them into the solution in that order. The insertion process is as
follows: randomly allocate a certain number of tugboats to assist the vessel’s entry into the
port, randomly allocate a certain number of quay cranes to the vessel, calculate the vessel’s
loading and unloading time in the port, and then assign the vessel to the berth closest to its
preferred berth that can be processed the soonest. Ensure that there are no conflicts with
the schedules of the remaining vessels during insertion, and randomly allocate a certain
number of tugboats to assist with the vessel’s departure from the port.

4.4.3. Time Priority Repair Operator

Sort the vessels in IDdel by their temporal penalty F2 in descending order, and insert
them into the solution in that order. The insertion process is as follows: determine the
earliest possible entry time for the vessel, allocate the maximum available number of
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tugboats at that time to assist with the vessel’s entry into the port, allocate the maximum
available number of quay cranes at that time to the vessel, calculate the vessel’s loading and
unloading time in the port, and then assign the vessel to the berth that can be processed the
soonest, ensuring no conflicts with other vessels. Allocate the maximum available number
of tugboats at that time to assist with the vessel’s departure from the port.

4.4.4. Quay Crane Margin Priority Repair Operator

Sort the vessels in IDdel by their corresponding ABQ values in descending order,
and insert them into the solution in that order. The insertion process is as follows: first,
randomly allocate a certain number of tugboats to assist with the vessel’s entry into the
port, randomly assign the vessel to one of the available berths at that time, then allocate the
maximum number of quay cranes available at that berth at that time (not exceeding the
range of quay cranes available to that vessel), calculate the vessel’s port processing time
and departure time, and randomly allocate a certain number of tugboats to assist with the
vessel’s departure from the port.

4.4.5. Tugboat Margin Priority Repair Operator

Sort the vessels in IDdel by their corresponding ABT values in descending order and
insert them into the solution in that order. The insertion process is as follows: allocate the
maximum available number of tugboats at that time to assist the vessel’s entry into the
port, randomly assign the vessel to one of the available berths at that time, then randomly
allocate the quay cranes available at that berth at that time (within the vessel’s allowable
range), calculate the vessel’s port processing time and departure time, and allocate the
maximum available number of tugboats at that time to assist with the vessel’s departure
from the port.

4.5. Operator Manager

The operator manager in the ALNS algorithm is one of its core components, responsible
for selecting and managing the destruction and repair operators. The design of the operator
manager allows the ALNS algorithm to dynamically adjust the frequency and priority of
operator usage based on past performance, thereby improving the efficiency and quality of
the solution. The following details the key functions and operational mechanisms of the
operator manager:

(1) Roulette wheel selection method: The roulette wheel selection method is used
by the operator manager to randomly select destruction and repair operators based on
their weights. Each operator’s weight reflects its historical performance success, with
higher-weighted operators having a greater probability of being selected in the future.

(2) Adaptive update: After each iteration, the performance of the operators is evalu-
ated, and their weights are adjusted accordingly based on the improvement or deterioration
of the solution. For example, if an operator generates a higher quality solution, its weight
is increased; if the result does not improve or worsens, its weight is decreased.

(3) Performance evaluation: Performance evaluation is based on the extent of improve-
ment in the solution generated by the operator. This typically involves comparing the
quality of the solution before and after the operator’s application such as cost reduction,
service level improvement, etc.

(4) Weight adjustment: An exponential smoothing update rule is used for weight
adjustment to ensure that the operator’s weight reflects its recent performance. This helps
the algorithm avoid the pitfall of continually selecting operators that are no longer effective.

4.6. Adaptive Large Neighborhood Search Algorithm Process

The process of the adaptive large neighborhood search (ALNS) algorithm is shown in
Algorithm 1.
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Algorithm 1. Algorithm execution process.

ALNS

Input Parameters:
T: Initial temperature
T0: Termination temperature
qt: Cooling rate
I: Maximum number of iterations
Methods: Set of destruction and repair methods
Weights: Initial weights corresponding to the methods
Start
1. solution← GenerateInitialSolution ()
2. Set temperature T_initial to T
3. Set cooling rate to r
4. Initialize methods and weights
5. Repeat until termination condition is met:

6. improv← False
7. For i: = 1 to I Do

8. destroy_method← SelectMethod (Methods, Weights)
9. partial_solution← Destroy (solution, destroy_method)
10. repair_method← SelectMethod (Methods, Weights)
11. new_solution← Repair (partial_solution, repair_method)
12. If Evaluate(new_solution) better than Evaluate(solution) or AcceptByProbability():

13. solution← new_solution
14. UpdateWeights (Methods, Weights, Positive)
15. improv← True

16. Else:
17. UpdateWeights (Methods, Weights, Negative)

18. If not improv:
19. T← T * qt

20. If T < T0:
21. Break

End
Output Solution

4.7. Specific Quay Crane Scheduling Solution

After determining a feasible joint allocation plan, specific quay cranes are assigned to
each vessel based on this plan, and the specific quay crane scheduling scheme is determined.
Since the feasible berth and quay crane allocation plan has already been obtained, only
the variables LQv and RQv remain to be solved. An integer programming method can be
used to solve this, convert the solved variables into constants, and remove the constraints
related to these already solved variables. The transformed model consists of Equations (1)
and (35) to (41). Using CPLEX, the detailed quay crane scheduling scheme can be obtained
within 0.1 s.

4.8. Rescheduling of Uncertain Arriving Vessels

When it is determined that the arrival time of certain vessels is delayed, it is necessary
to reschedule the corresponding uncertain arriving vessels based on the original scheduling
plan. In the rescheduling plan, the schedule of the rescheduled vessels must not conflict
with the schedules of other vessels. This insertion process is the same as the solution repair
process in the ALNS. The IDs of the vessels that need to be rescheduled are stored in IDdel.
Therefore, during rescheduling, it is only necessary to call the repair operator in the ALNS
algorithm, based on the modified arrival times of the uncertain arriving vessels, to obtain
the corresponding rescheduling plan.
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5. Case Study Analysis

A port in Xiamen was studied in this paper, where the container handling quay is
1200 m long, equipped with twelve quay cranes and five tugboats. There are three types of
incoming vessel: small, medium, and large. The relevant parameters for these three types
of vessels are shown in Table 3. The minimum number of tugboats required for different
types of ships to enter or leave the port varies. Additionally, the more tugboats allocated
to a ship for its entry or departure, the shorter the time needed. Table 4 illustrates the
relationship between the time required for various types of ships to enter or leave the port
and the number of tugboats assigned to them. For instance, if five tugboats are allocated to
a large ship for its entry, the time required for this operation is 1 h. In this paper, time and
space were discretized, with the minimum spatial unit being 50 m and the minimum time
unit being 1 h. Therefore, the quay was divided into 24 small berths. Additionally, four
different scales of examples with 5, 10, 20, and 40 incoming vessels were generated. The
planning periods for these four different scales were 60, 120, 180, and 300 h, respectively.
The experiments were conducted on a computer equipped with an Intel(R) Core (TM)
i5-10400 CPU @ 2.90 GHz processor and 32 GB of RAM, utilizing example programs within
the Python framework PyCharm version 2023 and CPLEX solver version 12.6.

Table 3. Parameters of different types of vessels.

Vessel Type Length (m)
Quay Crane

Handling Time
(h)

Minimum
Required
Tugboats

Minimum
Required Quay

Cranes

Maximum
Required Quay

Cranes
Proportion (%)

Small [100, 200] [10, 50] 1 [2, 2] [2, 3] 30
Medium [200, 300] [20, 80] 2 [2, 3] [4, 5] 30

Large [300, 400] [80, 120] 3 [3, 4] [6, 7] 40

Table 4. Relationship between vessel entry/exit time and number of tugboats.

Type
Tugboats

1 2 3 4 5

Small 3 2 2 1 1
Medium - 3 2 2 1

Large - - 3 2 1
“-” indicates that the number of tugboats does not meet the vessel’s minimum number requirement.

5.1. Model Validation

To validate the effectiveness of the integrated scheduling model for tugboats, berths,
and quay cranes constructed in this paper, a small-scale example with five vessels was
randomly generated, and the GAP value was set to 1. The specific parameters of the
example are shown in Table 5. The example data were imported into CPLEX for solving,
and the integrated scheduling solution obtained by CPLEX is shown in Figure 4. This
solution satisfies the constraints of tugboats, berths, and quay cranes, and the berthing
time intervals between vessels with similar arrival times and the same berth meet the GAP
reservation length. Therefore, the MILP model constructed in this paper is effective.

To validate the effectiveness of the partial time-variant constraint on the number of
quay cranes used in this paper, a time-invariant MILP model was also constructed. In
the time-invariant model, the quay cranes allocated to a vessel can only provide loading
and unloading services for other vessels after the vessel departs. Five different small-scale
examples with five incoming vessels were generated, with the GAP value set to 1. The
example data were imported into the model for solving, and the results are shown in Table 6.
In this table, OBJ represents the objective function value and CT represents the solving time.
It can be observed that the objective function values of the integrated scheduling solutions
obtained by considering the partial time-variant quay crane strategy were all less than or
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equal to those obtained by considering the time-invariant strategy, and the solving times
were similar. This proves that the partial time-variant strategy for quay cranes considered
in this paper is feasible and effective.
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Table 5. Parameters of small-scale example.

Vessel Arrival
Time Length Preferred

Berth

Agreed
Departure

Time

Minimum
Quay

Cranes

Maximum
Quay

Cranes

Quay
Crane
Hours

Vessel
Type

1 1 4 4 23 2 3 30 Medium
2 1 5 17 27 2 4 66 Medium
3 9 7 15 35 3 6 109 Large
4 13 8 10 35 3 7 84 Large
5 17 5 19 28 2 4 22 Medium
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Table 6. Comparison of different quay crane transfer strategies.

Size
Time-Invariant Partially Time-Variant

OBJ CT OBJ CT

5

2357 115.98 2310 221.23
2125 105.72 2124 206.47
1853 5.76 1848 10.12
1587 16.63 1587 17.46
1925 5.52 1907 8.85

5.2. Algorithm Validation
5.2.1. Algorithm Parameter Tuning

The outer loop iteration counts I in the adaptive large neighborhood search (ALNS)
algorithm was set to 10, based on related research. The inner loop iteration count is
determined by T, T0, and qt. Let T0 and qt be 1 and 0.99, respectively. By using different
scale examples, we can find the initial temperature T that results in a low objective function
value and short runtime. Then, randomly generate four different scale examples with five,
ten, twenty, and forty vessels, set different T values for solving, and calculate the objective
function value OBJ and computation time CT, which are the averages of five runs under
the corresponding conditions. Perform a quadratic fit of the results, as shown in Figure 5.
The upper and lower limits of the curve on the vertical axis represent the maximum and
minimum values obtained by the algorithm. Analysis indicates that the optimal T values
for the four different scales of examples with 5, 10, 20, and 40 vessels should be 2000, 1000,
1000, and 500, respectively.
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5.2.2. Algorithm Comparison Analysis

To verify the effectiveness of the ALNS algorithm designed in this paper, four different
scales of examples were randomly generated based on the port’s vessel arrival patterns,
with five examples generated for each scale. These examples of small-scale were solved
using both ALNS and CPLEX, and the results are shown in Table 7. The analysis indicates
that for the small-scale instances, CPLEX can obtain the optimal tugboat–berth–quay crane
integrated scheduling solution within 5 h, while ALNS can achieve a feasible solution with
an average deviation of 0.72% from the optimal solution within 2 min, proving the effective-
ness of the proposed algorithm. Moreover, as the size of the test cases gradually increased,
the CPLEX solving time escalated significantly. When the example scale increased to more
than nine vessels, CPLEX failed to find the integrated scheduling solution within 5 h, while
ALNS was less affected by the increase in scale and could obtain a feasible integrated
scheduling solution within 3 min. In summary, the ALNS algorithm designed in this
paper is effective, has high solving efficiency, and is more suitable for solving large-scale
tugboat–berth–quay crane integrated scheduling problems for larger numbers of incoming
vessels.

Table 7. Comparison of ALNS and CPLEX solutions of small-scale instance.

Size
ALNS CPLEX Gap

/%OBJ F1 F2 F3 F4 F5 CT OBJ CT

5

2327 210 90 12 240 1775 63.82 2310 221.23 0.73
2149 194 80 25 260 1590 75.77 2124 206.47 1.17
1848 144 0 4 235 1465 12.86 1848 10.12 0
1588 172 10 1 195 1210 24.47 1587 17.46 0.06
1907 148 0 9 235 1515 35.47 1907 8.85 0

6

2543 242 100 16 275 1910 59.74 2523 722.87 0.79
2526 246 150 20 265 1845 66.97 2493 213.04 1.32
2645 244 180 36 275 1910 57.68 2607 303.16 1.45
2141 202 0 24 285 1630 51.56 2130 38.42 0.51
2201 200 60 26 285 1630 56.05 2194 331.75 0.31

7

2710 250 120 20 320 2000 67.86 2678 794.59 1.19
2807 270 160 27 325 2025 64.09 2782 1186.87 0.89
3444 296 270 48 355 2475 80.30 3410 478.75 0.99
2911 244 130 27 310 220 56.12 2892 110.85 0.65
3003 240 200 28 330 2205 58.37 2970 382.05 1.11

8

2931 260 140 21 370 2140 59.66 2884 10,295.84 1.62
3038 294 160 39 385 2160 66.54 3011 13,966.44 0.92
4296 348 470 53 405 3020 85.37 4284 12,785.59 0.28
3577 276 160 31 370 2740 73.89 3569 135.97 0.22
3702 288 230 39 410 2735 83.09 3674 9541.64 0.76

9

3684 308 190 31 430 2725 64.70 - - -
3700 334 160 41 430 2735 66.08 - - -
4623 382 590 56 445 3150 101.53 - - -
4032 322 160 45 440 3065 71.78 3999 4229.63 0.82
4144 326 270 43 435 3070 81.58 - - -

‘-’ represents that the optimal solution could not be found within 5 h. Gap = [OBJ(ALNS) −
OBJ(CPLEX)]/OBJ(CPLEX) × 100%.

To validate the superiority of the proposed algorithm, four different scales of examples
were randomly generated, with five examples generated for each scale. These examples
were solved using ALNS, large neighborhood search (LNS), variable neighborhood search
(VNS), and genetic algorithm (GA), respectively. The explanations regarding VNS, LNS,
and GA are presented in Appendix A. The specific GA operation process can be found in
Appendix B. The results are shown in Table 8. Analysis indicates that the solution quality
of ALNS was higher than that of other neighborhood search algorithms (LNS and VNS)
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and the swarm intelligence algorithm (GA). Additionally, neighborhood search heuristics
are less affected by the increase in example scale, whereas swarm intelligence heuristics
experience a significant increase in solving time due to the complexity of the problem and
the limitation on the number of solutions. Therefore, compared to other algorithms, the
ALNS has more advantages in solving the integrated scheduling of tugboats, berths, and
quay cranes.

Table 8. Comparison of solutions from different algorithms.

Size
ALNS LNS VNS GA

OBJ CT OBJ CT OBJ CT OBJ CT

5

2327 63.82 2400 76.334 2389 90.41 2426 172.10
2149 75.77 2321 64.95 2155 114.65 2210 156.78
1848 12.86 1860 10.87 1849 12.75 1904 143.21
1588 24.47 1590 13.22 1590 18.22 1654 105.92
1907 35.47 1909 19.19 1918 25.29 1977 123.45

10

4211 61.14 4292 102.08 4348 82.03 4674 412.34
4318 102.28 4474 70.13 4618 154.68 5008 347.56
4851 109.82 4941 61.66 5192 221.52 5530 468.78
4337 59.19 4568 98.17 4591 151.77 5074 385.21
4663 64.45 4934 67.95 4737 61.41 5520 492.90

20

8186 84.07 8453 97.25 8456 161.75 9659 987.65
8176 122.59 8199 90.91 8280 94.32 9892 865.78
8557 114.73 8855 127.54 8797 116.90 10,182 934.21
8462 121.39 8844 72.90 8647 74.34 9589 1078.90
8785 134.50 8811 89.06 8828 132.98 10,366 823.45

40

18,158 119.16 18,601 212.96 18,610 181.15 21,426 1956.34
17,597 178.71 17,737 108.90 17,846 190.13 21,292 2078.92
18,598 190.20 19,821 146.13 20,259 172.186 23,433 2345.67
18,956 195.78 20,414 164.04 19,318 135.55 24,074 2123.89
18,591 213.57 20,941 248.40 18,643 186.79 22,495 2290.10

5.3. Sensitivity Analysis

To validate the impact of uncertainty factors and berth preference on integrated
scheduling, different buffer time intervals (GAP) and berth deviation control coefficients
(C3) were set. A case with 20 arriving vessels was used as the research object, and the
objective function value (OBJ) as well as F1, F2, F3, F4, and F5 under different GAP and C3
conditions were calculated. The results are shown in Figure 6. Analysis showed that as C3
increased, OBJ also increased. The increase in OBJ was mainly related to the increase in F1,
F2, and F3. As C3 increased, the rate of increase in F3 gradually decreased, indicating that
the berth deviation of all vessels became smaller as C3 increased. Meanwhile, the combined
increase in F1 and F2 showed an increasing trend, indicating that an increase in C3 led to
longer vessel waiting times in the port, delayed departure times, and increased time in the
port. It is necessary to balance the berth deviation costs and time-related costs based on the
actual operating conditions of the port and select an appropriate C3 value.

An increase in the vessel buffer time GAP led to an increase in F1, F2 and OBJ, while
the values of F3, F4, and F5 remained relatively unchanged, resulting in an increased
OBJ value. Reserving a certain buffer time interval causes vessels with similar arrival
times and berths to wait for a period before entering the port for loading and unloading
services, thereby delaying the berthing and departure times and increasing the waiting
and delayed departure costs. When determining the situation of uncertain arriving vessels,
it is necessary to reschedule the uncertain vessels based on the original scheduling plan.
After rescheduling, the scheduling cost will inevitably increase. The higher the stability
of the original schedule, the smaller the increase in cost compared to the original plan
after rescheduling. The increase in rescheduling cost is denoted as Rc, where Rc = OBJ* −
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OBJ, with OBJ* being the total cost after rescheduling and OBJ being the total cost of the
original schedule. To verify the stability of the model under different GAP values, this study
introduced various scenarios of uncertain vessel arrivals. The key metrics for measuring
these uncertain scenarios were the number of delayed arriving vessels, denoted as θ, and
the vessel arrival delay time, denoted as β. Figure 7 shows the Rc values obtained by the
ALNS algorithm under different θ, β, and GAP conditions for a scenario with a fleet of
20 vessels. The analysis of Figure 7 revealed that the larger the GAP value, the smaller the
RC value of the obtained plan, indicating higher model stability. Therefore, an appropriate
GAP value should be selected based on the uncertainty fluctuation of vessel arrival times
at the port, rather than arbitrarily choosing a large buffer time interval to cope with the
uncertainty of vessel arrival times.
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6. Conclusions

To address the increasing challenges of maritime demand at container ports and con-
sidering the limited scheduling resources, this study investigated the integrated scheduling
of port resources such as tugboats, berths, and quay cranes to provide efficient scheduling
solutions for ports. The research focused on integrated scheduling under conditions of
uncertain vessel arrival times, vessel berthing preferences, and the constraint that quay
cranes cannot cross each other. A mixed-integer linear programming (MILP) model was de-
veloped with the objective of minimizing the total costs including vessel fuel consumption,
vessel waiting and departure delay costs, berthing deviation costs, quay crane handling
costs, and tugboat fuel costs. An adaptive large neighborhood search (ALNS) algorithm
was designed with destruction and repair operators specific to the characteristics of the
integrated scheduling problem, enhancing the search efficiency and solution quality of the
algorithm. The conclusions drawn from the data experiments are as follows:

(1) The constructed MILP model is effective, providing optimal integrated scheduling
solutions for tugboats, berths, and quay cranes in a short time for small-scale instances.
Considering certain time-varying strategies can yield better scheduling solutions.

(2) Compared to CPLEX, the ALNS algorithm can find optimal or near-optimal solutions
in a shorter time for small-scale instances. For larger-scale instances where CPLEX
could not find the optimal solution, ALNS still provided high-quality scheduling
solutions efficiently. Compared to other algorithms such as LNS, VNS, and GA, ALNS
delivers higher-quality solutions.

(3) The scheduling cost increases as the buffer time interval (GAP) between vessels
increases. The GAP value should be set based on the uncertainty level of vessel arrival
times.

(4) A larger C3 value reduces the degree of berthing deviation, ensuring that all vessels
are serviced near their preferred berths, but it also increases the scheduling cost.

Future research on port landside scheduling can extend from the integration of tug-
boats, berths, and quay cranes to include other components such as yard cranes, achieving
integrated port scheduling decisions. In terms of algorithm research, more efficient algo-
rithms or machine learning methods can be used for scheduling studies.
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Appendix A

Method Explanation

VNS

The variable neighborhood search (VNS) is a metaheuristic algorithm based on local search, designed to solve
combinatorial optimization problems. It systematically changes the neighborhood structure of solutions to escape
local optima, thereby exploring a broader solution space. The core idea of VNS is to dynamically adjust and switch

between different neighborhood structures during the search process, gradually finding better so-lutions.

LNS

The large neighborhood search (LNS) is a metaheuristic algorithm used to solve complex optimization problems. It
explores a broader solution space by perturbing a larger portion of the solution in each iteration to find better

solutions. The core idea of LNS is to selectively destroy and reconstruct the current solution to escape local optima
and search for the global optimum.

GA

The genetic algorithm (GA) is an optimization algorithm based on the principles of natural selection and ge-netics.
It simulates the process of biological evolution, iteratively optimizing candidate solutions through op-erations such

as selection, crossover, and mutation. Genetic algorithms are particularly well-suited for prob-lems with large
search spaces, complex objective functions, or those that are difficult to differentiate. By con-tinuously iterating, they

can find approximate optimal solutions to the problem.

Appendix B

(1) Solution encoding: As shown in Figure A1, the solution encoding adopts a four-
layer encoding structure.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 26 of 29 
 

 

Appendix A 

Method Explanation 

VNS 

The variable neighborhood search (VNS) is a metaheuristic algorithm based on local search, designed to 
solve combinatorial optimization problems. It systematically changes the neighborhood structure of solu-

tions to escape local optima, thereby exploring a broader solution space. The core idea of VNS is to dynami-
cally adjust and switch between different neighborhood structures during the search process, gradually 

finding better solutions. 

LNS 

The large neighborhood search (LNS) is a metaheuristic algorithm used to solve complex optimization prob-
lems. It explores a broader solution space by perturbing a larger portion of the solution in each iteration to 
find better solutions. The core idea of LNS is to selectively destroy and reconstruct the current solution to 

escape local optima and search for the global optimum. 

GA 

The genetic algorithm (GA) is an optimization algorithm based on the principles of natural selection and ge-
netics. It simulates the process of biological evolution, iteratively optimizing candidate solutions through 
operations such as selection, crossover, and mutation. Genetic algorithms are particularly well-suited for 

problems with large search spaces, complex objective functions, or those that are difficult to differentiate. By 
continuously iterating, they can find approximate optimal solutions to the problem. 

Appendix B 
(1) Solution encoding: As shown in Figure A1, the solution encoding adopts a four-

layer encoding structure. 

 
Figure A1. Solution Encoding Method. 

(2) Crossover operation: Figure A2 illustrates the method of solution crossover. 

 
Figure A2. Solution crossover. 

(3) Mutation operation: Figure A3 illustrates the mutation operation of the solution. 

Figure A1. Solution Encoding Method.

(2) Crossover operation: Figure A2 illustrates the method of solution crossover.
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(3) Mutation operation: Figure A3 illustrates the mutation operation of the solution.
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(4) Solution repair operation: Figure A4 illustrates the solution repair operation. When
calculating the objective function value, the solution must first undergo repair. The repair
process involves using a heuristic designed based on the FCFS (first-come, first-served)
principle to repair the solution. Once the repair is completed, the objective function value
can be calculated.
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