Channel Estimation and Iterative Decoding for Underwater Acoustic OTFS Communication Systems
Abstract
:1. Introduction
- •
- For the OTFS system transmitter, frame structures tailored to the characteristics of UWA channels are designed by selecting a zero-padding (ZP) frame structure design method. Additionally, the size of the DD domain grid and the length of the guard interval are optimized to enhance the communication efficiency while maintaining performance. The proposed OTFS frame design can significantly reduce the bit error rate (BER) while maintaining the same data rate through careful frame optimization.
- •
- For the OTFS system receiver, we propose a Doppler compensation method and a dual-domain joint channel estimation method to tackle the issues caused by the strong Doppler effect in UWA communication. Additionally, we propose an OTFS system detection approach based on an iterative decoding feedback-message passing detector (IDF-MP). Based on careful consideration of the characteristics of UWA channels, the proposed OTFS system receiver is shown to provide improvements, when compared with the existing methods of OFDM, Initial Estimate Iterative Decoding Feedback (IE-IDF-MRC) and two-dimensional Passive Time Reversal Decision Feedback Equalization (2D-PTR-DFE), in UWA channels.
2. Related Work
3. Underwater Acoustic OTFS System Model
3.1. OTFS Modulation
3.2. UWA OTFS Channel Model
4. Underwater Acoustic OTFS System Design
4.1. Frame Design
4.1.1. Design of M and N
4.1.2. Design of
4.2. Synchronization and Doppler Compensation
4.3. Dual-Domain Joint Channel Estimation
4.3.1. Path Delay Estimation in DD Domain
4.3.2. CIR Estimation in DT Domain
4.4. Iterative Decoding Feedback-Based MP Detector
- •
- The outer-loop iterations .
- •
- The inner-loop iterations of the MP detector .
- •
- The inner-loop iterations of the LDPC decoder .
4.4.1. From the MP Detector to the LDPC Decoder
4.4.2. From the LDPC Decoder to the MP Detector
Algorithm 1 Process of IDF-MP detection algorithm based on LDPC |
Require:
|
Ensure:
|
|
5. Performance Evaluation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, H.; Ji, F.; Wang, Y.; Yao, K.; Chen, F. Space–Air–Ground–Sea Integrated Network with Federated Learning. Remote Sens. 2024, 16, 1640. [Google Scholar] [CrossRef]
- Liu, H.; Ma, L.; Wang, Z.; Qiao, G. Channel Prediction for Underwater Acoustic Communication: A Review and Performance Evaluation of Algorithms. Remote Sens. 2024, 16, 1546. [Google Scholar] [CrossRef]
- Stojanovic, M.; Preisig, J. Underwater acoustic communication channels: Propagation models and statistical characterization. IEEE Commun. Mag. 2009, 47, 84–99. [Google Scholar] [CrossRef]
- Wang, C.; Yin, J.; Du, P.; Guo, L. Application oforthogonal frequency division multiplexing incognitive underwater communication. J. Acoust. Soc. Am. 2012, 132, 2015. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C.; Yin, J.; Sheng, X. Research on multilevel differential amplitude and phase-shift key in gin convolution-coded orthogonal frequency division multiplexing underwater communication system. J. Acoust. Soc. Am. 2012, 132, 2015. [Google Scholar] [CrossRef]
- Qiao, G.; Liu, L.; Ma, L. Adaptive downlink OFDMA system with low-overhead and limited feedback in time-varying underwater acoustic channel. IEEE Access 2019, 7, 12729–12741. [Google Scholar] [CrossRef]
- Liu, L.; Cai, L.; Ma, L.; Qiao, G. Channel state information prediction for adaptive underwater acoustic downlink OFDMA system: Deep neural networks based approach. IEEE Trans. Veh. Technol. 2021, 70, 9063–9076. [Google Scholar] [CrossRef]
- Liu, L.; Ma, C.; Duan, Y. A channel temporal correlation-based optimization method for imperfect underwater acoustic channel state information. Phys. Commun. 2023, 58, 102021. [Google Scholar] [CrossRef]
- Ma, C.; Liu, L.; Wang, Q.; Zhang, W.; Liu, X. High-performance deep-sea long-range underwater acoustic communication: Deconvolved conventional beamforming based approach. Phys. Commun. 2024, 64, 102339. [Google Scholar] [CrossRef]
- Wu, F.; Tian, T.; Su, B.; Song, Y. Hadamard–Viterbi Joint Soft Decoding for MFSK Underwater Acoustic Communications. Remote Sens. 2022, 14, 6038. [Google Scholar] [CrossRef]
- Fang, T.; Wang, Q.; Zhang, L.; Liu, S. Modulation Mode Recognition Method of Non-Cooperative Underwater Acoustic Communication Signal Based on Spectral Peak Feature Extraction and Random Forest. Remote Sens. 2022, 14, 1603. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, J.; Feng, X.; Sun, H.; Qi, J.; Lin, R. Neural-Network-Based Equalization and Detection for Underwater Acoustic Orthogonal Frequency Division Multiplexing Communications: A Low-Complexity Approach. Remote Sens. 2023, 15, 3796. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, G.; He, R.; Ai, B.; Tellambura, C. Doppler Shift and Channel Estimation for Intelligent Transparent Surface Assisted Communication Systems on High-Speed Railways. IEEE Trans. Commun. 2023, 71, 4204–4215. [Google Scholar] [CrossRef]
- Wang, T.; Proakis, J.G.; Masry, E.; Zeidler, J.R. Performance degradation of OFDM systems due to Doppler spreading. IEEE Trans. Wirel. Commun. 2006, 5, 1422–1432. [Google Scholar] [CrossRef]
- Raviteja, P.; Phan, K.T.; Hong, Y.; Viterbo, E. Interference cancellation and iterative detection for orthogonal time frequency space modulation. IEEE Trans. Wirel. Commun. 2018, 17, 6501–6515. [Google Scholar] [CrossRef]
- Hadani, R.; Rakib, S.; Tsatsanis, M.; Monk, A.; Goldsmith, A.J.; Molisch, A.F.; Calderbank, R. Orthogonal time frequency space modulation. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, CA, USA, 19–22 March 2017. [Google Scholar]
- Thaj, T.; Viterbo, E. Low Complexity Iterative Rake Decision Feedback Equalizer for Zero-Padded OTFS systems. IEEE Trans. Veh. Technol. 2020, 69, 15606–15622. [Google Scholar] [CrossRef]
- Francis, J.; Chivurala, P.; Koilpillai, R.D. Performance of OTFS and OCDM schemes in underwater acoustic communication channels. In Proceedings of the OCEANS Conference, Chennai, India, 21–24 February 2022. [Google Scholar]
- Feng, X.; Esmaiel, H.; Wang, J.; Qi, J.; Zhou, M.; Qasem, Z.A.; Sun, H.; Gu, Y. Underwater acoustic communications based on OTFS. In Proceedings of the 15th IEEE International Conference on Signal Processing (ICSP), Beijing, China, 6–9 December 2020. [Google Scholar]
- Bocus, M.; Doufexi, A.; Agrafiotis, D. Performance of OFDM-based massive MIMO OTFS systems for underwater acoustic communication. IET Commun. 2020, 14, 588–593. [Google Scholar] [CrossRef]
- Jing, L.; Zhang, N.; He, C.; Shang, J.; Liu, X.; Yin, H. OTFS underwater acoustic communications based on passive time reversal. Appl. Acoust. 2022, 185, 108386. [Google Scholar] [CrossRef]
- Hang, S.; Li, W. OTFS for Underwater Acoustic Communications: Practical System Design and Channel Estimation. In Proceedings of the OCEANS 2022, Hampton Roads, VA, USA, 17–20 October 2022. [Google Scholar]
- Li, W.; Lin, B.; Guo, R.; Hao, Z. OTFS for Underwater Acoustic Communications: Frame Design and Channel Estimation. In Proceedings of the OCEANS 2023—MTS/IEEE U.S. Gulf Coast, Biloxi, MS, USA, 25–28 September 2023. [Google Scholar]
- Raviteja, P.; Hong, Y.; Viterbo, E.; Biglieri, E. Practical pulse-shaping waveforms for reduced-cyclic-prefix OTFS. IEEE Trans. Veh. Technol. 2018, 68, 957–961. [Google Scholar] [CrossRef]
- Raviteja, P.; Phan, K.; Hong, Y.; Viterbo, E. Embedded delay-Doppler channel estimation for orthogonal time frequency space modulation. In Proceedings of the 88th IEEE Vehicular Technology Conference (VTC-Fall), Chicago, IL, USA, 27–30 August 2018. [Google Scholar]
- Srivastava, S.; Singh, R.K.; Jagannatham, A.K.; Hanzo, L. Bayesian learning aided sparse channel estimation for orthogonal time frequency space modulated systems. IEEE Trans. Veh. Technol. 2021, 70, 8343–8348. [Google Scholar] [CrossRef]
- Wei, Z.; Yuan, W.; Lit, S.; Yuant, J.; Ngt, D.W. A new off-grid channel estimation method with sparse Bayesian learning for OTFS systems. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 7–11 December 2021. [Google Scholar]
- Shen, W.; Dai, L.; An, J.; Fan, P.; Heath, R.W. Channel estimationfor orthogonal time frequency space (OTFS) massive MIMO. IEEE Trans. Signal Process. 2019, 67, 4204–4217. [Google Scholar] [CrossRef]
- Berger, R.; Zhou, S.; Preisig, J.; Willett, P. Sparse channel estimation for multicarrier underwater acoustic communication: From subspace methods to compressed sensing. IEEE Trans. Signal Process. 2010, 58, 1708–1721. [Google Scholar] [CrossRef]
- Ma, L.; Qiao, G.; Liu, S. A combined Doppler scale estimation scheme for underwater acoustic OFDM system. J. Comput. Acoust. 2015, 23, 1540004. [Google Scholar] [CrossRef]
- Li, W.; Zhou, S.; Willett, P.; Zhang, Q. Preamble Detection for Underwater Acoustic Communications Based on Sparse Channel Identification. IEEE J. Ocean. Eng. 2019, 44, 256–268. [Google Scholar] [CrossRef]
- Ma, L.; Zhou, S.; Qiao, G.; Liu, S.; Zhou, F. Superposition coding for downlink underwater acoustic OFDM. IEEE J. Ocean. Eng. 2017, 42, 175–187. [Google Scholar] [CrossRef]
- Qarabaqi, P.; Stojanovic, M. Statistical Characterization and Computationally Efficient Modeling of a Class of Underwater Acoustic Communication Channels. IEEE J. Ocean. Eng. 2013, 38, 701–717. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Modulation mode | QPSK |
Channel coding | 1/2 LDPC |
Carrier frequency | 10 kHz |
Bandwidth | 4 kHz |
Max path delay | 35 ms |
Relative speed of transmitter and receiver v | 5 kn/10 kn |
Number of subcarriers M | 384/512 |
Number of OTFS symbols N | 24/16 |
Sampling frequency | 48 kHz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Ma, C.; Duan, Y.; Liu, X.; Qing, X. Channel Estimation and Iterative Decoding for Underwater Acoustic OTFS Communication Systems. J. Mar. Sci. Eng. 2024, 12, 1559. https://doi.org/10.3390/jmse12091559
Liu L, Ma C, Duan Y, Liu X, Qing X. Channel Estimation and Iterative Decoding for Underwater Acoustic OTFS Communication Systems. Journal of Marine Science and Engineering. 2024; 12(9):1559. https://doi.org/10.3390/jmse12091559
Chicago/Turabian StyleLiu, Lei, Chao Ma, Yong Duan, Xinyu Liu, and Xin Qing. 2024. "Channel Estimation and Iterative Decoding for Underwater Acoustic OTFS Communication Systems" Journal of Marine Science and Engineering 12, no. 9: 1559. https://doi.org/10.3390/jmse12091559
APA StyleLiu, L., Ma, C., Duan, Y., Liu, X., & Qing, X. (2024). Channel Estimation and Iterative Decoding for Underwater Acoustic OTFS Communication Systems. Journal of Marine Science and Engineering, 12(9), 1559. https://doi.org/10.3390/jmse12091559