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Abstract: The significant increase in international seaborne trade volumes over the last several years is
pushing port operators to improve the efficiency of terminal processes and reduce vessel turnaround
time. Toward this direction, this study investigates and solves the combined berth allocation problem
(BAP) and quay crane allocation problem (QCAP) in a multi-quay (MQ) setting using computational
intelligence (CI) approaches. First, the study develops a mathematical model representing a real port
environment and then adapts the cuckoo search algorithm (CSA) for the first time in this setup. The
CSA is inspired by nature by following the basic rules of breeding parasitism of some cuckoo species
that lay eggs in other birds’ nests. For comparison purposes, we implement two baseline approaches,
first come first serve and exact MILP, and two CI approaches, particle swarm optimization (PSO)
and genetic algorithm (GA), that are typically used to solve such complex or NP-hard problems.
Performance assessment is carried out via a comprehensive series of experiments using real-world
data. Experimental findings show that the MILP method can address the problems only when a small
dataset is employed. In contrast, the newly adapted CSA can solve larger instances of MQ BAP and
QCAP within significantly reduced computation times.

Keywords: berth allocation problem; quay crane allocation problem; multi-quay BAP and QCAP;
smart ports; computational intelligence methods; cuckoo search algorithm

1. Introduction

Seaports play an essential role in the world economy as more than 80% of world
trade is carried by sea [1]. With increased demand, congested ports are facing significant
challenges related to resource scarcity and several scheduling activities, including the berth
allocation problem (BAP) and the quay crane allocation problem (QCAP) [2]. In 2021, the
global average container schedule delays doubled, while the median turnaround time for
container ships increased by 13.7% [1]. In [3], the authors investigate several factors causing
waiting times from both quantitative and qualitative perspectives. Similar problems have
attracted considerable attention from academia and industry, highlighting the need to
optimize maritime operations in ports [4].

Berths and quay cranes (QCs) are considered two of the primary resources of marine
ports, and their efficient use can help reduce the total turnaround time of vessels [5]. The
primary operations in ports are divided into three main areas: seaside, marshaling yard,
and landside operations. The first involves loading and unloading containers onto/from
vessels using quay cranes and other terminal resources. Inbound containers are stored in
the marshaling yard. Finally, landside operations include activities related to dispatching
containers to their destinations using trucks or trains [6]. A single or multiple berth lines
are used to berth arriving vessels, and quay cranes (QCs) are used to perform loading and
unloading operations. However, berths and QCs are bottleneck resources in ports due
to the limited coastal environment and complexity of port activities [7]. Therefore, good
planning and proper coordination between them can improve terminal productivity.
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The BAP identifies berthing positions and berthing times for arriving vessels based
on various factors, such as expected time of arrival (ETA), handling time or total load,
requested time of departure (RTD), etc. In contrast, QCAP deals with the appropriate
allocation of cranes based on the BAP solution and availability of cranes, since BAP and
QCAP are interdependent problems [8]. In the current literature, there are many studies
dealing with the stand-alone BAP [9–11]. Nowadays, however, there is an increasing trend
to solve BAP and QCAP simultaneously, since the number of cranes (and which cranes
in case of different handling productivity) assigned to a ship determines the berthing
time of the vessels [12,13]. There are very few studies dealing with terminals with multi-
quays (MQs), especially terminals with multi-purpose quays, e.g., container and passenger
terminals [14–16]. MQs introduce an additional layer of complexity to BAP, involving
the allocation of ships to quays in addition to assigning berth positions and berthing
times to ships for each individual quay. In MQ terminal environments, the big challenges
include sharing resources, placing vessels at the correct position of the desired quay, and
coordinating among multiple quays. Considering MQs, especially multi-purpose quays,
while solving the combined BAP and QCAP further increases the problem’s complexity. For
example, in a study presented in [14], a solution for MQs is proposed for BAP; however, in
that study, the total length of the quay is divided equally between two quays, and random
data are used for experiments. In addition, practical constraints are not considered. A recent
study [15] also solves MQ BAP and concludes that the proposed method does not always
provide an optimal solution and is sometimes 40% away from the optimal solution. In
another work, ref. [16] proposes a fuzzy-based solution, but as the authors acknowledge, the
proposed method provides an optimal solution when only up to 10 vessels are considered.

We have found only one study that addresses combined BAP and QCAP considering
MQs, which employs fuzzy logic to solve the problem [17]. However, its authors conclude
that their approach is feasible only for small instances and suggest the use of metaheuristics
for solving larger problem instances. Furthermore, none of the existing studies consider
terminal cooperation, i.e., the same-purpose terminals/quays (e.g., container terminals)
can cooperate with each other by re-scheduling vessels from busy quays to idle quays to
avoid congestion problems.

The aforementioned limitations of previous studies and the practical importance of the
problem (i.e., multi-quay environment) motivate us to develop an efficient computational
intelligence (CI) approach for solving the combined BAP and QCAP problem for a real
port setting while considering multiple heterogeneous quays (e.g., container, general cargo,
and passenger quays). This study focuses on finding the optimal berthing quay, position,
and time along with the best assignment of cranes for each arriving vessel at the port. To
the best of our knowledge, this is the first study that deals with MQ BAP and QCAP for
multi-purpose terminals. The primary contributions are outlined below:

• Develop an MILP-based mathematical model for the MQ BAP and QCAP for mini-
mizing the total service cost while considering multiple heterogeneous quays with
real-world settings and constraints;

• Develop a cooperation model between quays, for the first time in an MQ BAP and
QCAP setting, to share berthing positions with the fundamental objective of reducing
congestion and total service costs at MCTs.

• Adapt and implement the cuckoo search algorithm, for the first time for this setup,
as well as two other state-of-the-art CI methods, i.e., genetic algorithm and particle
swarm optimization, for comparison purposes.

• Evaluate the effectiveness of the proposed approach against state-of-the-art CI meth-
ods and two baseline approaches on real data from the Port of Limassol, Cyprus.

An initial version of the mathematical model and preliminary results were presented
in [18]. Compared to our prior study, this work presents (i) the complete mathematical
model, including the quay crane encoding and spatiotemporal overlapping constraints;
(ii) the adaptation of the GA, PSO, and FCFS algorithms for the MQ BAP and QCAP; and
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(iii) new experimental analysis considering up to one month of real data as well as new
synthetic data.

The remaining of the study is organized as follows: Section 2 presents the literature
review. The problem description and mathematical formulation are discussed in Section 3.
Section 4 discloses the developed computational intelligence methods. Section 5 shows
the experimental setting and the results of the developed methods. Section 6 provides
an in-depth discussion of the results along with managerial insights. Finally, Section 7
concludes the study.

2. Literature Review

This section reviews the most relevant recent studies that use CI approaches to solve
the stand-alone BAP, the combined BAP and QCAP, as well as the MQ problems. A more
in-depth literature review can be found in [6].

Study [19] solved the BAP with the objective of reducing the number of late departures
at the port of Shahid Rajaee Shallow, Iran. To solve the problem, a GA-based solution
was developed. The authors of [20,21] also addressed BAP with the goal of optimal berth
allocation, taking into account the uncertainty of ship arrivals, and proposed heuristic-
based solutions to solve the problem. Numerous studies have focused on the stand-alone
BAP and suggested genetic algorithm (GA)-based solutions for optimizing berth allocation
decisions, such as [11,19,20]. The authors of [11] proposed an exact method to solve stand-
alone BAP with a continuous berthing layout. However, their model cannot solve the
problem with large data instances due to its large time complexity. Then, a GA-based
solution was developed to deal with large data instances. The work in [22] also solved the
BAP with the objective of reducing the late departure of vessels by employing a hybrid
of GA and the branch-and-cut (B&C) method, which assigned the best berthing location
based on vessel arrival and departure times and other constraints. The authors of [23]
developed a differential evolution (DE)-based solution to minimize the service costs of
arriving ships at the terminal. A study [24] also solved the BAP, reducing the service
time of docked ships using a greedy randomized adaptive search method (GRASP). The
authors of [25,26] addressed the BAP to avoid delays in the departure of ships. The authors
also considered tidal restrictions when assigning berths and developed datasets based on
real-time port characteristics that can be used as benchmark instances in the future. Xu et al.
developed a hybrid simulated annealing (SA)-based heuristic method while considering
traffic constraints in a navigation channel [27] for improving the performance of maritime
container terminals. The problem was solved using the hybrid SA (HSA) method, which
combined SA and reheat treatment methods. To validate the proposed method, real-time
instances of two container terminals in Tianjin, China, were used, and CPLEX and greedy
methods were employed for a comparative study. More recently, [9] proposed a solution
for the BAP using the cuckoo search algorithm (CSA) with the goal of reducing the total
service cost, which includes handling costs, waiting costs, and various penalties, such as
for late departure and non-optimal berth assignment.

For the combined (single-quay) BAP with QCAP, Li et al. proposed an exact solution
to minimize the total turnaround time [28] while considering the maintenance activities at
the quay. Another study also proposed an exact method for reducing the total turnaround
time of arriving ships at Khalifa Port, Abu Dhabi [29]. The study [30] provided a GA-based
solution for the same problem. The authors proposed three variants of GA and performed
several experiments to compare those variants. The authors in [31] considered carbon
emission policies to reduce total carbon emissions at the port along with the primary
objectives of the study, i.e., reducing penalty costs and operating costs. To address this joint
problem, a branch-and-bound algorithm was developed and tested on multiple real-time
instances taken from [32]. Zheng et al. study the same problem while considering QC
maintenance [2]. The problem was formulated as an integer linear programming model
and then solved using the exact approach; however, the developed method could solve the
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problem considering up to only 18 vessels. Next, the study developed an improved GA
and a new heuristic named left and right vessel move (LRVM) algorithm.

The aforementioned studies assume that the MCT consists of only one continuous quay,
but it is unrealistic around the globe, where berthing is distributed across multiple distinct
quays [14]. For instance, the Port of Limassol, Cyprus, features seven quays, as shown in
Figure 1. The authors of [14] proposed a solution for an MQ stand-alone BAP, consisting of
an MILP-based mathematical model and a GA-based solution. In another work, ref. [16]
proposed a fuzzy-based solution but, as the authors acknowledge, the proposed method
only provides an optimal solution when only up to 10 vessels are considered. A recent
study [15] solved MQ-BAP using heuristics based on a general variable neighborhood
search and concluded that the proposed method does not always provide an optimal
solution and is sometimes 40% away from the optimal solution. Furthermore, in [33], the
authors of the current study addressed the MQ-BAP for total cost reduction using CSA.

Figure 1. Port of Limassol structure showing its seven berthing quays. The Container and Ro-Ro
Quay have 5 and 2 installed cranes, respectively. Note: quays with ∗ indicate that these are not used
for commercial purposes.

As for the combined BAP with QCAP when considering MQs, the authors of [17]
proposed a fuzzy-based solution. Based on experiments, they concluded that the pro-
posed method can only solve small-scale problems (considering only two quays) and
suggested that the medium and large-scale problems can only be solved using metaheuris-
tic approaches. Therefore, motivated by the above discussion, we propose a solution for
combined BAP and QCAP that considers multi-purpose MQs and solves a realistic scenario
using CI-based methods.

3. Problem Description and Formulations

This section first describes the problem that is considered in this study, and then it
discloses its mathematical formulation. The mathematical notation is listed on Table 1.
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Table 1. Mathematical notations. Note that time is discretized into small intervals and categorical
variables (e.g., vessels, quays) are mapped into unique integer values.

Name Type Explanation

Parameters
ABQv Set of Integers Alternative (preferred) berthing quays of vessel v
ATv Integer Expected arrival time of vessel v
Ch

v Continuous Handling cost per time interval for vessel v
Cw

v Continuous Waiting cost per time interval for vessel v
Cld

v Continuous Late departure cost per time interval for vessel v
Cnob

v Continuous Penalty cost for non-optimal berthing position for vessel v
Cnoq

v Continuous Penalty cost for non-optimal berthing quay for vessel v
cmin Integer Minimum berthing position served by crane c
cmax Integer Maximum berthing position served by crane c
HPc

q Continuous Handling productivity of crane c located on quay q
Lq Integer Length of quay q
Lv Integer Length of vessel v
Loadv Integer Total load of vessel v
SCc

q Continuous Service cost per time interval of crane c located on quay q
SD Integer Safety berthing distance between vessels
SE Integer Safety entrance time between vessels
ST Integer Safety berthing time between vessels
PBPv Integer Preferred berthing position at the preferred berthing quay of vessel v
PBQv Integer Preferred berthing quay of vessel v
RDTv Integer Requested departure time of vessel v
Decision Variables
BPv Integer Planned berthing position at the planned berthing quay of vessel v
BQv Integer Planned berthing quay of vessel v
BTv Integer Planned berthing time of vessel v
kv Integer Set of cranes assigned to vessel v (encoded in binary form)
xvqbkt Binary 1, if the vessel v is assigned at position b of quay q at time t to be

served by cranes encoded in k, and 0 otherwise
Auxiliary Variables
Dv Integer Deviation time for vessel v if it is berthed to a position other than PBPv
FTv Integer Finishing time of loading/unloading operations of vessel v
HTv Integer Handling time of vessel v
LDTv Integer Late departure time of vessel v
WTv Integer Waiting time of vessel v
Sets and Indices
V Set of Integers Set of arriving vessels; v ∈ V a vessel
Q Set of Integers Set of berthing quays; q ∈ Q a quay
B(q) Set of Integers Set of berth positions on q ∈ Q; b ∈ B(q) a berth position
C(q) Set of Integers Set of quay cranes on quay q ∈ Q; c ∈ C(q) a crane
K(q) Set of Integers Power set of cranes set C(q); k ∈ K(q) represents a subset of cranes

from C(q) encoded as an integer in a binary form
T Set of Integers Set of time intervals (planning horizon); t ∈ T a time interval

3.1. Problem Explanation

The combined BAP and QCAP is an optimization problem in which the objective is to
allocate available quays, berths, and quay cranes (QCs) across time to incoming ships to
perform unloading/loading operations with the goal of minimizing the total service cost.
In this study, we consider a realistic setup of a port with multiple heterogeneous quays and
several cranes (with different productivity) available at each quay, which cannot move once
they are assigned to a particular vessel. Notably, cranes cannot move from one quay to
another because of different quay types and settings. However, cranes can move along the
same quay, but each crane has specific, designated positions where it operates. For example,
Crane 1 at a container quay can work within the range from 0 to 450 m. The assignment
of cranes to a vessel also depends on the vessel’s length and load. Moreover, all quays
follow a continuous berthing layout, and arriving vessels can be moored anywhere on the
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quay. Vessels are arriving in a dynamic fashion; however, their expected arrival times are
known in advance. The installed QCs perform loading and unloading operations with
some average productivity, which can be different for each QC. For the total service cost
calculation of each vessel, this study considers waiting cost, handling cost, late departure
cost, and non-optimal berthing cost.

3.2. MQ BAP and QCAP Formulation

The primary objective of the MQ BAP and QCAP is to allocate a berthing position at
the preferred quay, a berthing time, and QCs to each arriving vessel in order to minimize
the total service cost, which includes handling cost, waiting cost, and late departure penalty,
as presented in the following cost function:

Cost (v, BQv, BPv, kv, BTv) = HTv · [Ch
v + f (v, BQv, BPv)]

+ WTv · Cw
v + LDTv · Cld

v .
(1)

The first term in the above equation calculates the total handling cost, which depends
on handling time HTv, handling cost Ch

v , and a penalty f due to non-optimal quay and/or
non-optimal berth assignment. This study, unlike our previous work in [33], does not
consider handling time HTv as an input, but it is calculated based on the total load on
the vessel Loadv and the handling productivity (per time interval) of each of the cranes
(encoded in kv) that are assigned to vessel v. Furthermore, if any vessel is moored to a
location other than the preferred position or quay, a deviation time for vessel v is added to
the total handling time [34], as described below:

HTv =

⌈
Loadv

∑c ∈ kv HPc
q

⌉
+Dv, ∀ v ∈ V, q = BQv (2)

There is a set of cranes C(q) = {c1, c2, c3, . . . cnq} that are installed at each quay q.
Regarding crane allocation to arriving vessels, there are several combinations of cranes
possible, depending on the vessels’ length and total load. For instance, a large vessel with a
heavy load can use multiple cranes, whereas a small vessel may use only one crane. All
possible combinations of crane assignments to a particular vessel are present in the power
set of C(q):

K(q) =
{
{}, {c1}, {c2}, . . . , {cnq},

{c1, c2}, {c1, c3}, . . . , {cn−1, cnq},

{c1, c2, c3}, . . . , {c1, c2, . . . , cnq}
}

(3)

The set of cranes allocated to a vessel v is one element of the power set K(q). To
simplify the formulation, we encode each element of K(q) as a number by using a binary
representation. In particular, each QC corresponds to a binary digit in the number (from
right to left); if the digit is 1, the QC is allocated; if it is 0, the QC is not allocated. For
example, assuming 4 cranes, the element {c1} is encoded as 0001, {c2} as 0010, {c1, c2}
as 0011, and so on. The number of digits used in the encoding equals the number nq of
available QCs on quay q. The empty set (with encoding 0000) is also included when a vessel
is berthed to a terminal that does not have quay cranes, such as a passenger or general
cargo quay. In summary, kv is a number whose binary representation shows the set of
cranes assigned to v and can take numbers between 0 and 2nq−1.

The handling cost (per time interval) Ch
v charged to a vessel depends on the service

cost per time interval of each crane assigned to vessel v (per the set of cranes kv), and it can
be calculated as

Ch
v = ∑

c ∈ kv

SCc
q, ∀ v ∈ V, q = BQv (4)
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The last part of the first term, namely f (v, BQv, BPv) in Equation (1), calculates penalty
cost because of a possible non-optimal berthing (NOB) position and/or non-optimal quay
(NOQ) assignment:

f (v, BQv, BPv) =


|PBPv − BPv| · Cnob

v , if BQv = PBQv

Cnoq
v , if BQv ∈ ABQv

∞ , otherwise.

(5)

In particular, if a ship v is berthed to its preferred berthing quay PBQv, the penalty cost
is proportional to the distance between its preferred berthing position PBPv and its planned
berthing position BPv on the quay. Otherwise, if v is berthed to one of its alternative
berthing quays ABQv, then the penalty cost is set to equal the penalty for non-optimal
berthing quay assignment Cnoq

v . In all other cases, the penalty cost is set to infinity to
prohibit the assignment of v to any quay other than PBQv or ABQv. Moreover, this penalty
is multiplied by the handling time HTv of vessel v. Hence, if a vessel needs four hours to
perform its operations and it is moored at a non-optimal position, the penalty is charged
for all (four) hours.

The second term in Equation (1) (WTv · Cw
v ) calculates the total waiting cost and it

depends on the total waiting time WTv of vessel v and the waiting cost (per time interval)
Cw

v . The waiting time WTv of any vessel v is the difference between berthing time BTv and
arrival time ATv, as calculated below.

WTv = BTv − ATv, ∀ v ∈ V (6)

The last expression in Equation (1) (LDTv · Cld
v ) calculates the penalty cost due to late

departures, which is based on the late departure time LDTv and the penalty (per time
interval) for late departure Cld

v . The late departure time LDTv is calculated as

LDTv = max(0, FTv − RDTv), ∀ v ∈ V (7)

where RDTv is the requested departure time for vessel v and FTv is the finishing time of v’s
operations (i.e., loading and unloading), as calculated below.

FTv = BTv + HTv, ∀ v ∈ V (8)

The fundamental objective is to solve the combined BAP and QCAP in an MQ setting
while reducing the total service cost as defined above. The objective function is given by

minimize ∑
v ∈ V

∑
q ∈ Q

∑
b ∈ B(q)

∑
k ∈ K(q)

∑
t ∈ T

Cost(v, q, b, k, t) · xvqbkt

(9)

subject to the following constraints (Equations (10)–(17)).

xvqbkt ∈ {0, 1}, ∀ v ∈ V, q ∈ Q, b ∈ B(q), k ∈ K(q), t ∈ T (10)

∑
q ∈ Q

∑
b ∈ B(q)

∑
k ∈ K(q)

∑
t ∈ T

xvqbkt = 1, ∀ v ∈ V (11)

BTv ≥ ATv, ∀ v ∈ V (12)

BTv − BTu ≥ SE ∀ v ̸= u ∈ V (13)

BPv + Lv ≤ Lq, ∀ v ∈ V, q = BQv (14)
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∑
v ̸=u ∈V

BPv+Lv+SD

∑
b=BPv−Lu−SD

∑
k ∈ K(q)

BTv+HTv+ST−1

∑
t=BTv−HTu−ST+1

xuqbkt = 0,

∀ v ̸= u ∈ V, q = BQv = BQu

(15)

∑
v ̸=u ∈V

∑
b ∈B(q)

∑
k ∈ K(q)

k & kv ̸= 0

BTv+HTv+ST−1

∑
t=BTv−HTu−ST+1

xuqbkt = 0,

∀ v ̸= u ∈ V, q = BQv = BQu

(16)

cmin < BPv + Lv & BPv < cmax, ∀ v ∈ V, c ∈ kv (17)

The variable xvqbkt shown in constraint (10) is 1 when the vessel v is assigned at
position b of quay q at time t to be served by cranes encoded in k, and it is 0 otherwise.
Constraint (11) guarantees that each arriving vessel is scheduled for berthing only once
in time t at position b belonging to quay q. Constraint (12) stipulates that the planned
berthing time BTv for a particular vessel v must be later or equal to its estimated arrival
time ATv. Constraint (13) ensures a safety entrance time difference between any two vessels.
Constraint (14) ensures the length of vessel v plus its berthing position must not cross the
length of quay q, where it is moored. Constraint (15) restricts two vessels from overlapping
during mooring both in terms of berthing positions as well as berthing times. It also ensures
the safety berthing distance SD and safety berthing time ST during the berthing of any two
ships. A graphical presentation of constraint (15) is presented in Figure 2. Constraint (16)
restricts the set of cranes k that is assigned to vessel u not to contain any of the cranes kv
allocated to another vessel v during the same time period. Whether two sets of cranes
have common cranes can be easily checked using the ‘bitwise AND’ (&) operation due
to our binary representation of crane sets. A pictorial representation of constraint (16) is
illustrated in Figure 3. Finally, constraint (17) ensures that any crane c assigned to vessel
v can reach the vessel by checking that there is an overlap between the minimum and
maximum berthing positions served by c and the quay positions occupied by v.
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Figure 2. An illustration of the spatiotemporal constraint (15) featuring two arriving vessels (v and
u) with different berthing times, berthing positions, and lengths. The red dotted box indicates the
restricted area for vessel u to avoid overlap with an already scheduled vessel v.
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Figure 3. An illustration of constraint (16). The cranes c4 and c5 assigned to ship v cannot be assigned
to ship u if ship u is scheduled to be berthed in the restricted area marked with the red dotted box.

The unique aspects of our problem formulation compared to previous BAP and/or
QCAP formulations are (i) the encoding and consideration of any possible set of het-
erogeneous (in terms of productivity and service cost) quay cranes to arriving vessels;
(ii) the incorporation of multi-purpose heterogeneous quays in the model and the consid-
eration of alternative preferred quays per arriving vessel; and (iii) the incorporation of
practical time constraints (e.g., safety berthing distance and time) into the overlap con-
straints (Equations (15) and (16)) to ensure the correct assignment of berths and cranes to
arriving vessels.

4. Proposed CI Methods

This section discloses the various methods implemented for MQ BAP and QCAP.

4.1. Cuckoo Search Algorithm

The cuckoo search algorithm (CSA) is a nature-inspired optimization method proposed
by [35] that has proven efficient in solving several global optimization problems. The CSA
is based on the basic rules of breeding parasitism of some cuckoo species and then extended
by the so-called Levy flights instead of simple isotropic random walks [36]. Some cuckoo
birds follow an aggressive production strategy of laying eggs in communal nests and
possibly removing eggs from other (host) birds to maximize the hatching probability of
their own eggs. When host birds discover the cuckoo eggs, hosts either discard or abandon
the eggs and build new nests. Overall, the CSA is inspired by the reproductive behavior of
cuckoo birds and follows three idealized principles [35]:

1. Each cuckoo bird deposits a single egg in a random nest;
2. The nests with the highest-quality eggs are preserved and utilized for the next generation;
3. The quantity of host nests is constant and the cuckoo egg is detected by a host bird

with probability pα ∈ (0, 1).

CSA mapping to MQ BAP and QCAP: Each nest represents a set of possible solutions
with berthing times, quays, positions, and a possible set of assigned cranes for all arriving
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vessels. Each egg in a nest represents either a berthing time or a berthing quay or a berthing
position in that quay or a possible set of cranes (expressed as a single number as explained
in Section 3.2). A cuckoo egg represents a new (perhaps better) solution (i.e., a berthing
time or quay or position or set of cranes). Thus, each nest contains 4N eggs, where N is
the number of vessels scheduled to arrive at a given time window. The problem’s search
space at each iteration is determined by a fixed number of host nests, which in this study
is set at 100 host nests. The primary aim of the algorithm, outlined in Algorithm 1, is to
employ cuckoo eggs (superior solutions) to replace the suboptimal eggs within different
nests while ensuring that the various constraints are met. The CSA starts with an initial
population of m host nests (line #1). These initial host nests will be attracted by the cuckoos
with eggs using random Levy flights to lay the eggs, generating new solutions (lines #3–4).
The new nest quality is evaluated and will replace the old host nests if it has a lower fitness
score (lines #5–8). If the host bird discovers the egg with some probability pα ∈ (0, 1), the
host abandons the nest and builds a new one (lines #9–11). The above process repeats until
a termination criterion is met, such as reaching a maximum number of iterations.

Algorithm 1 CSA for MQ BAP and QCAP

1: P[1..m] = Initialize random population of m = 100 host nests
(each nest contains 4N eggs, where N = number of vessels)

2: for t = 1 to max. iterations do ▷ Termination criterion
3: for i = 1 to m do
4: Xnew = P[i] + α ⊕ Levy(λ) ▷ Generate new solution
5: Costprev = Calculate fitness cost of P[i] using Equation (1)
6: Costnew = Calculate fitness cost of Xnew using Equation (1)
7: if Costnew < Costprev then
8: P[i] = Xnew ▷ Found better solution
9: for i = 1 to m do

10: if (rand(0, 1) < pa) then
11: P[i] = New host nest is generated (old nest is abandoned)
12: Xbest = Find best host nest with minimum cost in P

4.2. Genetic Algorithm

The genetic algorithm (GA) is an evolution-based algorithm developed from the law
of evolution in the ecological world. It is also known as a population-based method that
explores the concept of survival of the fittest [37]. After the first population is generated,
it evolves better and better approximate solutions from generation to generation. In
each generation, the individual is selected based on the fitness of different individuals
in a particular problem domain. Then, the individuals are combined and crossed by the
genetic operators in natural genetics, and then a new population is generated, which is a
new solution set. Chromosome representation, selection, crossover, mutation, and fitness
function calculation are the key elements of GA.

GA mapping to MQ BAP and QCAP: Algorithm 2 shows the working procedure of GA
when adopted to the MQ BAP and QCAP. A random population P of m chromosomes is
generated, and each chromosome represents a possible solution set for arriving vessels
(line #1). The number of chromosomes equals the population size, which is set to 100. A
chromosome consists of genes, each representing a single solution, i.e., berthing time or
berthing quay or berthing position at the assigned quay or set of assigned cranes. Hence,
the number of chromosome genes equals 4N, where N is the number of vessels arriving in
a planning horizon. The fitness value of each chromosome is computed using the objective
function (Equation (9)), and the best chromosome with minimum objective value is selected
as the local best chromosome (line #2). A proportion of the fittest population from P is
selected to start a new generation P′ (line #4). Two chromosomes (parents), C1 and C2, are
randomly selected from the population (line #6), and a crossover with probability Pc is
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applied to C1 and C2 to generate offspring (line #7). During crossover, some of the two
parents’ single solutions (genes) are exchanged among themselves to generate the offspring.
Next, a mutation with probability Pm is performed on the offspring O to generate a new
offspring O′, where some of the single solutions (genes) of O are replaced (line #8). The
new offspring are placed into the new population to avoid local optima (line #9). The above
steps are repeated after replacing the old population with the new population until the
maximum number of iterations is reached.

Algorithm 2 GA for MQ BAP and QCAP

1: P[1..m] = Initialize random population of m = 100 chromosomes
(each chromosome contains 4N genes, where N = number of vessels)

2: Evaluate initial population P using fitness cost function (Equation (1))
3: for t = 1 to max. iterations do ▷ Termination criterion
4: P′[1..k] = Get the k fittest chromosomes from P
5: for i = k + 1 to m do
6: [C1, C2] = Select a pair of parents from P using roulette wheel selection
7: O = Perform multi-point crossover using [C1, C2] (crossover rate is 0.90)
8: O′ = Perform mutation on O (mutation rate is 0.10)
9: P′[i] = O′

10: Evaluate new population P′ using fitness cost function (Equation (1))
11: P = P′

12: Xbest = Find best chromosome with minimum cost in P

4.3. Particle Swarm Optimization

The particle swarm optimization (PSO) algorithm is a swarm-based metaheuristic
global optimization method that has attracted much attention in the last two decades. The
PSO is capable of solving large and complex problems that traditional methods cannot
address. The PSO follows the behavior and social cooperation of flocks of birds and borrows
heavily from the evolutionary behavior of these organisms. In PSO, all possible solutions
are represented by particles (birds) in a search space, and each particle has its fitness value
based on the objective function that is to be optimized. Each particle also has a velocity
that controls how the particles fly. The particles fly in the search space and follow/consider
the current optima to find a local optimum. At each iteration, the local optimum is updated
by the global optimum based on the objective function.

PSO mapping to MQ BAP and QCAP: The working procedure of PSO is described in
Algorithm 3. First, m random particles are generated in the search space (m = 100 in our
study), where each particle represents a solution set with 4N dimensions, where N is the
number of vessels (line #1). Each dimension represents either berthing time or berthing
quay or berthing position on the assigned quay or set of assigned cranes. The fitness of
all particles (solution sets) is evaluated using Equation (1) to identify the best position
(dimensions) for each particle and for the entire swarm (line #2). Next, the velocities and
positions (dimensions) of the particles are updated by taking into consideration the local
and global best positions in order to generate new positions that move toward the globally
best solution and avoid local optima (lines #5–11). The above process is repeated until the
maximum number of iterations is reached.
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Algorithm 3 PSO for MQ BAP and QCAP

1: P[1..m] = Initialize random population of m = 100 particles
(each particle position/velocity contains 4N dimensions, N = num vessels)

2: Evaluate initial population P using fitness cost function (Equation (1))
3: for t = 1 to max. iterations do ▷ Termination criterion
4: for i = 1 to m do
5: Compute new velocity of particle P[i]
6: Compute new position of particle P[i] using its new velocity
7: Costnew = calculate fitness cost of P[i] using Equation (1)
8: if Costnew < P[i]’s best local cost then
9: Update P[i]’s best local solution

10: if Costnew < swarm’s best global cost then
11: Update swarm’s best global solution
12: Xbest = swarm’s best global solution

4.4. First Come First Serve (FCFS)

This study also implements a first come first serve (FCFS) strategy to address the MQ-
BAP and QCAP, as adopted in [38] for the BAP. The FCFS method proposes the solution of
MQ BAP and QCAP solely based on the sequence of vessel arrivals. In this approach, the
first vessel to arrive is given priority for its preferred position on its preferred berthing quay,
and it is allocated the maximum available cranes that can serve the given vessel. If upon
arrival there are no berthing slots available, the vessel must wait until one becomes vacant.
It is important to note that vessels can also be moored at a non-preferred berth position or
ABQ in case of high waiting times, for example, when the waiting time is expected to be
higher than the vessel’s handling time.

5. Experimental Setting and Results

In this section, we first present a case study from the Port of Limassol, Cyprus, and
then show experimental results. A real-world case study (with real data, real port settings,
real constraints, and real arriving ships) is used to test the performance of the proposed
approach. We perform experiments with different data instances, i.e., with one, two, and
four weeks of data. All approaches (i.e., PSO, GA, MILP, FCFS, and the newly adopted CSA)
are implemented in MATLAB to conduct a comparative study. For MILP, we employed
the solver-based optimization approach and utilized the intlinprog solver provided by
MATLAB. For the CSA, host nests are 100 with a discovery rate of 0.45, and total iterations
are set to 1000. For the GA, population size is set to 100, crossover rate to 0.10%, mutation
rate to 90%, and total iterations to 1000 (similar to [22]). For PSO, the inertia weight is set to
1, local learning coefficient to 1.5, global learning coefficient to 2.0, and total iterations to
1000 (similar to [39]). All experiments are performed using a Windows 10 computer system
with 3.4 GHz Core i7 and 16 GB RAM.

5.1. A Case Study at the Port of Limassol

This study deals with the case of a real port, located in the city of Limassol, which is
the largest port of the island (Cyprus). In the Port of Limassol, there are five commercial
berthing quays, all of which are continuous (and hence, arriving ships can berth anywhere
on the quay). All quays are of different lengths: Container Quay: 800 m, Ro-Ro Quay:
450 m, West Quay: 770 m, North Quay: 430 m, and East Quay: 480 m. The Container Quay
serves only container ships, the Ro-Ro Quay serves both container and roll-on/roll-off
ships, the West and North Quays serve general cargo traffic, and the East Quay serves only
passenger vessels.

The Container Quay is divided into two parts, as shown in Figure 1. On one side, there
are two cranes, and on the other side, there are three cranes for loading and unloading.
There is also a dead space between the two parts of the quay that cannot be used for
berthing for safety reasons (see the black-colored part of the quay in Figure 1). The five
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cranes installed at the Container Quay have different productivity: two cranes have a
maximum productivity of 40 containers per hour (red-colored cranes), two cranes have a
maximum productivity of 35 containers per hour (blue-colored), and the last crane has a
productivity of 22 containers per hour (white-colored), as depicted in Figure 1. It should be
noted that the cranes rarely reach maximum productivity due to manpower issues, traffic
problems, and other technical challenges. Hence, the average productivity is utilized, which
for the first four cranes is 25 containers per hour, while the last crane achieves an average
productivity of 20 containers per hour. There are also two cranes installed at the Ro-Ro
Quay with an average productivity of 20 containers per hour. In addition, all installed
cranes at both (Container and Ro-Ro) quays are moveable but within a certain range and
cannot cross each other. Further details about all cranes, including working locations, are
presented in Table 2.

Table 2. Working locations, maximum productivity, and average productivity of cranes at Container
Quay and Ro-Ro Quay.

Quay Crane # Locations (m) Productivity max / avg (cont/hour)

Container Crane 1 (white) 1–100 22 / 20
Container Crane 2 (blue) 50–275 35 / 25
Container Crane 3 (blue) 225–450 35 / 25
Container Crane 4 (red) 470–700 40 / 25
Container Crane 5 (red) 550–800 40 / 25

Ro-Ro Crane 1 1–300 25 / 20
Ro-Ro Crane 2 200–450 25 / 20

In our experiments, we use data from one week, two weeks, and four weeks, which
contain 28, 68, and 168 ships, respectively, arriving in March 2018. Table 3 shows example
data. The real data do not include ABQs and PBPs for incoming ships. Thus, we generated
random PBPs, as listed in Table 3. We also allocate up to one ABQ (listed in Table 3) for
each vessel based on vessel type (e.g., passenger or container vessel) and/or characteristics
(e.g., presence of cranes or passenger boarding bridges).

Table 3. Example data for 10 ships that arrived during the first week of March 2018 at the Port of
Limassol, Cyprus.

Ship ETA HT ETD PBQ ABQ PBP LoS
# (d\t) (min) (d\t) (m)

1 1\04:00 919 1\22:30 Ro-Ro Container 240 194
2 1\05:30 1490 2\06:50 East – 276 139
3 1\14:00 1285 2\12:50 West North 84 84
4 1\15:00 5700 5\14:03 East – 51 89
5 1\17:00 5970 5\21:00 West North 314 190
6 2\04:30 470 2\13:50 Ro-Ro Container 138 159
7 2\05:00 168 2\09:30 Container Ro-Ro 571 196
8 2\08:00 440 2\15:55 North West 53 155
9 3\04:00 905 3\20:50 Ro-Ro Container 31 175
10 3\03:30 1331 4\06:15 Container Ro-Ro 389 277

5.2. Results and Discussion

This section shows results obtained by applying the three CI algorithms and the exact
MILP method over the real dataset obtained from the Port of Limassol, Cyprus (example
data are given in Table 3). Figure 4 shows the solutions proposed by our CSA and other
two heuristics along with MILP approaches for the allocation of berths and quay cranes to
the 28 arriving ships for the one-week planning horizon. The rectangles in this figure show
each vessel, the x-axis indicates the berthing time, and the y-axis indicates the berthing
quay and position of each vessel. The number in front of the rectangle shows the ship index
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and the text in green color shows the assigned set of cranes to each vessel. In addition, ships
with blue rectangles indicate that they are moored at their PBQ, while ships moored in
ABQ are colored red. Vessels are moored in ABQ when there is a long waiting time before
the optimal berth assignment, which may result in delayed departures. From Figure 4, it
can be seen that vessel 23 is berthed at North Quay instead of West Quay when MILP, GA,
and PSO are used. On the other hand, CSA places vessel 23 at its PBQ but at the expense of
placing it far from its preferred berthing position (PBP), increasing the total service cost
compared to the other methods; however, moving any vessel to ABQ will incur penalty
due to mooring at the non-preferred quay. Here, it is important to note that there are only
two quays where QCs are installed and assigned by all algorithms, i.e., Container and
Ro-Ro. All other quays are passenger/general cargo quays, and no cranes are installed on
these quays. In the case of the container quays, the total operating time of the vessels is
calculated based on the number of cranes used and their productivity. However, in the case
of the other three quays, the total handling time of the vessels is considered as input. In
a week, four ships arrive at the Container Quay, and all of them are assigned the optimal
number of cranes using all the implemented algorithms.

(a) Solution by CSA (b) Solution by GA

(c) Solution by PSO (d) Solution by MILP

Figure 4. Berth and quay crane scheduling solutions by our proposed CSA and compared approaches.

The results presented in Figure 5 show the mean difference and standard error between
the optimal berthing times and the times proposed by the different methods. It can be
seen that there is no mean difference and standard error when MILP is used for a planning
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horizon of one week. However, MILP was only able to solve the one-week planning horizon
and became stuck at the two-week and four-week planning horizons and ran out of memory.
On the other hand, the CSA shows superiority over the other three approaches (i.e., the
GA, PSO, and FCFS) in all three scenarios. Moreover, there is a high mean difference and
standard error using the FCFS method due to the frequent long waiting times induced by
this approach. Moreover, the GA performs well in the case of one-week and four-week
scenarios compared to PSO, while PSO shows a smaller mean difference and error in the
case of the two-week scenario.

One week Two weeks Four weeks
0

5

10

15

D
if
fe

re
n
c
e
 f
ro

m
 o

p
ti
m

a
l 
b
e
rt

h
in

g
 t
im

e
 (

3
0
-m

in
 i
n
te

rv
a
l)

CSA

GA

PSO

FCFS

MILP

Figure 5. Mean difference and standard error between berthing time by five implemented methods
and optimal berthing time for three different scenarios (1, 2, and 4 weeks).

Figure 6 shows the mean difference between optimal and non-optimal berthing posi-
tions. It can also be seen that the MILP and FCFS have the smallest difference in the case
of one week; however, MILP cannot solve the other two cases. On the contrary, the CSA
again performs well in the one-week and two-week scenarios compared to the GA and PSO.
However, FCFS has a lower mean difference in the two and four-week scenarios compared
to other methods. Furthermore, in all cases, the GA performs well and outperforms PSO.
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Figure 6. Mean difference and standard error between planned and preferred berthing position by
five implemented methods for three different scenarios (1, 2, and 4 weeks).
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The results presented in Figure 7 show the mean difference between optimal and
non-optimal berthing costs that occurred due to the allocation of vessels to locations other
than the PBPs. Again, we can clearly see that the CSA has the smallest mean difference
after MILP and FCFS in the case of one- and two-week scenarios; FCFS, on the other hand,
has the smallest difference in the case of the four-week scenario. We can conclude from the
above discussions that the CSA performs well overall compared to the GA, FCFS and PSO;
however, MILP shows better results but only in the case of a week case study.
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Figure 7. Mean difference and standard error between optimal and non-optimal berthing cost by
five implemented methods for three different scenarios (1, 2, and 4 weeks).

To show a more in-depth comparison of the compared methods, Table 4 presents the
different costs associated with the total service costs and computation times of the different
algorithms in different scenarios, i.e., one week, two weeks, and four weeks. Waiting
costs are incurred when a vessel v has to wait before the optimal berth allocation, while
non-optimal berthing (NOB) costs are included in the total service cost when a vessel v is
berthed at a position other than its PBP or at an ABQ instead of PBQ. NOB is added based
on the absolute difference between the optimal berth position and the assigned position (by
any algorithm), as described in Equation (5). However, a fixed penalty is added in case of
berth allocation at ABQ. From this table, it can be seen that MILP has a minimum total cost
(10,090) with 0 waiting cost. Nonetheless, it provides an optimal solution at the expense
of computation time, which is 912.55 s (more than 15 min) for the one-week scenario. In
the experiments for the two-week and four-week planning periods, MILP cannot solve the
problem and runs out of memory. On the other hand, the total service cost of CSA (10,320)
is close to the cost of MILP and lower compared to other CI methods (i.e., GA and PSO) in
the case of the one-week scenario. The CSA cost performance is followed by the GA and
then PSO for the same scenario.

Moreover, when we run experiments for two weeks, the CSA again shows supremacy
over the GA, PSO, and FCFS in terms of total service cost. Furthermore, FCFS shows 0 or
minimum NOB cost compared to other methods, however, at the expense of high waiting
cost. Eventually, when we run experiments for four weeks, we noticed that the NOB cost
of all algorithms is increased; in this case, the CSA again achieves minimum cost, after
FCFS, compared to PSO and the GA. The total service cost by the CSA is 63,875 and is
minimal compared to other methods in case of four weeks. However, the GA follows
the CSA and achieves a slightly higher cost of 64,975, which is much better compared
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to PSO (72,290) and FCFS (73,950). Finally, regarding computation time, FCFS has the
minimum computation time in all cases; however, the total service cost is very high and
15.77–52.27% higher than our proposed CSA method. However, after FCFS, the CSA solves
all the scenarios in minimum computation times that are 84.73, 336.16, and 388.20 s for one
week, two weeks, and four weeks, respectively. In contrast, the GA and PSO take 94.67
and 316.23 s for one week, 226.57 and 534.80 s for two weeks, and 2663.13 and 2777.40 s
for four weeks, respectively. Based on the aforementioned comparative analysis, it can
be concluded that the proposed CSA-based approach for MQ BAP and QCAP delivers a
near-optimal solution while maintaining good computational efficiency.

Table 4. Comparative analysis with data spanning a period of 1–4 weeks (March 2018) for all
methods. All costs are in Euros. % Deviation is calculated with reference to the total service cost of
the CSA approach.

Scenarios: One Week (28 Ships) Two Weeks (68 Ships) Four Weeks (168 Ships)

Algorithms: CSA GA PSO FCFS MILP CSA GA PSO FCFS MILP CSA GA PSO FCFS MILP

Waiting cost 50 45 75 1185 0 195 655 590 1615 – 430 1255 2625 6840 –
NOB cost 250 405 535 0 100 150 650 750 0 – 19,405 16,845 23,745 10,310 –
Late departure cost 140 120 120 4660 120 240 680 900 6440 – 1620 2720 3500 14,380 –
Normal handling
cost 9870 9870 9870 9870 9870 17,220 17,220 17,220 17,220 – 42,420 42,420 42,420 42,420 –

Total service cost 10,320 10,440 10,700 15,715 10,090 17,805 19,205 19,460 25,275 – 63,875 64,975 72,290 73,950 –
% Deviation from
CSA – 1.16 3.68 52.27 −2.22 – 7.86 9.29 41.95 – – 1.72 13.17 15.77 –

Computation time
(sec) 84.73 94.67 316.23 0.20 912.55 336.16 226.57 534.80 3.40 – 388.20 2663.13 2777.40 12.70 –

To further evaluate the proposed method, we conduct additional experiments using
randomly generated (uniform) data instances, following the previous literature [14,22,25,40].
The data instances are generated considering various scenarios, including 1 to 7 days for the
planning horizon, one to several quays of different lengths, and 10 to 60 arriving vessels. The
results from these random data instances, shown in Table 5, further confirm the effectiveness
of the proposed method in solving the MQ BAP and QCAP. For example, in cases with 10,
20, and 30 vessels, the CSA is only 2.68%, 0.98%, and 0.41% away from the optimal solution
provided by MILP. However, when the number of vessels exceeds 30, the exact method is
unable to solve the problem due to memory limitations, whereas the CSA continues to provide
(near) optimal solutions within a reasonable computation time. Additionally, when comparing
the proposed CSA with other heuristics, the results clearly show that the CSA consistently
outperforms PSO, while GA performs better in terms of computation time albeit at the cost
of higher total service costs—ranging from a minimum of 2.04% higher for 10 vessels to a
maximum of 27.02% higher for 15 vessels.

Table 5. Sensitivity analysis for all approaches with uniform random data (10–60 vessels, 1–7 days,
and 1–5 quays).

No. of Days No. of Service Cost (Euro) Computation Time (Sec.)

Ships Quays CSA GA PSO MILP CSA GA PSO MILP

10 1

1 4912 5412 4961 4898 38.15 30.92 30.86 65.54
2 2956 2996 3606 2850 32.47 9.01 30.86 39.44
3 9215 9191 9165 8920 44.32 6.74 27.50 26.48
4 3772 3810 3960 3764 30.15 7.27 28.23 27.11
5 8773 8825 8837 8400 23.98 5.85 24.68 23.52

Avg deviation from CSA (%) – 2.04 3.04 −2.68 – −64.63 −15.75 7.70

15 1

1 7893 10551 8067 7820 52.11 25.12 51.36 190.67
2 6086 8327 7350 5970 47.86 14.46 41.65 82.07
3 5580 6155 11,815 5540 48.08 13.79 41.84 66.02
4 4813 5547 4984 4800 42.58 11.36 37.53 76.75
5 5936 7920 6960 5880 35.57 9.45 38.42 82.74
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Table 5. Cont.

No. of Days No. of Service Cost (Euro) Computation Time (Sec.)

Ships Quays CSA GA PSO MILP CSA GA PSO MILP

Avg deviation from CSA (%) – 27.02 29.25 −0.98 – 67.17 6.73 120.44

20 2

1 8503 10,600 10,355 8200 67.05 41.20 78.48 420.86
2 8270 9643 10,020 8010 61.18 24.06 54.32 207.45
3 8353 9392 8990 8310 54.49 17.57 55.54 196.60
4 7518 9882 10296 7480 53.94 16.86 55.20 147.11
5 6600 8788 12,616 6420 44.53 12.77 48.84 148.01

Avg deviation from CSA (%) – 25.20 35.50 −0.41 – −59.94 4.14 298.95

30 2

1 17810 14540 23,832 – 112.27 78.15 135.55 –
2 19,478 24,862 28,219 – 92.93 33.27 90.50 –
3 11,922 17,000 14,838 – 81.15 28.42 85.23 –
4 9103 12,556 9278 – 74.37 25.94 75.51 –
5 9702 13,634 12,330 – 66.56 28.22 75.23 –

Avg deviation from CSA (%) – 21.43 30.11 – – −54.59 8.13 –

60 7

1 38,712 40,420 40,095 – 221.58 292.86 402.24 –
2 29,584 39,353 30,976 – 207.59 101.89 203.08 –
3 24,786 20,919 33,542 – 188.23 87.80 199.86 –
4 16,142 21,995 24,246 – 155.33 89.93 202.66 –
5 23,750 27,149 27,973 – 151.25 86.38 202.97 –

Avg deviation from CSA (%) – 12.68 17.94 – – −28.69 31.04 –

6. Managerial Insights

While this study primarily presents a solution to the operational-level challenges posed
by MQ BAP and QCAP, aiming to minimize the total service cost and reduce computation
time, it is also able to offer valuable insights to terminal managers and policymakers.
Based on the model formulation and the experimental results, the following observations
are obtained.

First, the penalties are less when all algorithms are tested for one-week and two-week
scenarios (especially for penalty due to non-optimal berthing position), as can be seen from
Table 4. The mean difference and standard error are also low when we implement for up to
the two-week case, as depicted in Figures 5–7. Therefore, to achieve better results at the
Port of Limassol, this study suggests scheduling berth and quay crane assignments one
or two weeks in advance using our proposed methodology. In case of changes in the ship
arrival schedule, the methodology is able to adjust new or missing vessels, as computation
time is low (as shown in Table 4).

Second, in case of any conflict among vessels’ arrival/ departure times and positions,
the CI-based methodology can help berth planners to assign a berth quay and position
near the assigned storage area in the marshaling yard (as determined by the vessel’s PBQ,
ABQ, and PBP). With this approach, it becomes possible to minimize both the cost and
time associated with container/cargo transfers. Ultimately, with the proposed approach,
container terminals can maximize their productivity to its fullest potential.

Third, investing in additional QCs may be worthwhile for ports, as ships will be
handled faster and at a lower cost if the proposed model is implemented. Our proposed
methodology can quantify the gains by re-executing the berth and QC assignment using
hypothetical QCs (before investment). In addition, the latest technologies can further
help in reducing waiting times, total stay time of vessels, and different penalties during
regular processes.

7. Conclusions

This study investigates the MQ BAP and QCAP in a real-world scenario with the
objective of minimizing the total service cost for arriving vessels. To solve this problem,
an MILP model is developed and solved using both exact and computational intelligence
(CI) methods. We implement the cuckoo search algorithm (CSA), genetic algorithm (GA),
particle swarm optimization (PSO), and first come first serve (FCFS) for MQ BAP and
QCAP. To validate the methods, we test them on real data collected at the port Port of
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Limassol, Cyprus. We use three different scenarios, i.e., one week, two weeks, and four
weeks, to verify the scalability of the developed approaches. Simulation results confirm the
effectiveness of our proposed CSA over the compared methods. Furthermore, the MILP can
only solve a one-week scenario and requires a lot of computation time (912 s). In contrast,
the CSA method solves the one-week scenario in only 84.73 s, and the achieved objective
value (10320 Euro) is only 1% away from the optimal solution (10090 Euro). Moreover, the
CSA-based solution also performs better than the other two methods, i.e., GA and PSO, in
terms of objective value and computation time.

Based on extensive experiments, we can conclude that the exact method for MQ BAP
and QCAP tends to require too much computational effort to be of practical use and cannot
solve the problem in large instances. On the contrary, CI-based approaches, especially
the CSA, are able to offer solutions close to the optimal ones in a short computation time.
Moreover, even for large data instances, the computation time of the CSA solution remains
below 400 s (about 6 min). This presents the opportunity to evaluate the berthing and crane
allocation plans more quickly in the dynamic environment of large container terminals,
allowing the berth planner to more efficiently handle adjustments due to sudden schedule
changes or disruptions and make management decisions.
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Abbreviations
The following abbreviations are used in this manuscript:

ABQ alternative berthing quay
BAP berth allocation problem
B&C branch and cut
CI computational intelligence
CSA cuckoo search algorithm
DE differential evolution
ETA estimated time of arrival
FCFS first come first serve
GA genetic algorithm
MCT maritime container terminal
MILP mixed integer linear programming
MQ multi-quay
NOB non-optimal berthing position
NOQ non-optimal berthing quay
QC quay crane
QCAP quay crane allocation problem
RTD requested time of departure
SA simulated annealing
PBQ preferred berthing quay
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PBP preferred berthing position
PSO particle swarm optimization
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