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Abstract: In addressing the high costs, inefficiencies, and limitations of purely digital simulations
in maritime trials for unmanned vessel path planning, this paper introduces a ship virtual path
planning simulation test system. This system, unbound by temporal and spatial constraints, vividly
showcases the navigational performance of vessels. After analyzing the virtual testing requirements
for the autonomous navigation performance of unmanned surface vehicles (USVs), we established
the overall framework of this system. Data-driven by a numerical simulation platform, the system
achieves synchronized operation between physical and virtual platforms and supports interactive
path planning simulations between USVs and the virtual testing system. Furthermore, to address
the limitations of traditional ship trajectory planning evaluation, this paper develops a global path
planning fitness evaluation function that comprehensively considers trajectory safety, navigation
distance, and vessel stability, achieving optimal comprehensive routes through the particle swarm
optimization algorithm. Test results indicate an average roll reduction of 14.31% in the planned routes,
with a slight increase in navigation distance. By integrating two-dimensional curve simulation with
three-dimensional visualization, this paper not only overcomes the limitations of purely physical and
purely virtual simulations but also enhances the overall credibility and intuitiveness of the simulation.
Experimental results validate the system’s effectiveness, providing a novel method for autonomous
navigation testing and evaluation of USVs.

Keywords: USV; path planning; virtual simulation; ship roll

1. Introduction

In the realm of maritime transportation, ship path planning is a crucial area of re-
search, directly impacting navigation efficiency, safety, and environmental protection. In
recent years, the research and development of unmanned vessels have advanced rapidly,
positioning them as a burgeoning force in future maritime operations [1]. The demand for
automation and intelligent path planning for unmanned vessels is increasingly imperative.
Path planning for unmanned vessels must not only respond in real time to the complex
and ever-changing marine environment but also ensure the efficiency of task execution and
the safety and stability of the vessel [2].

However, the research into the autonomous navigation performance of USVs still
faces significant challenges. Firstly, traditional ship path planning methods predominantly
rely on historical data and simplistic mathematical models to estimate the optimal route
in various marine environments. These conventional approaches often fail to adequately
consider the complex environmental factors such as ocean currents, wind speeds, and
waves, which are crucial for determining the vessel’s course and safety [3]. Secondly, the
high costs and inherent complexities and dangers of maritime trials limit the frequency and
scale of such tests. Traditional sea trials are not only time-consuming and expensive but also
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difficult to replicate under identical environmental conditions, posing a major constraint
on the stability and reliability of algorithm testing. Although numerical simulation-based
path planning methods can reduce costs and risks to some extent, they often lack the
ability to interact with the real physical environment, failing to provide intuitive feedback
on navigational performance, thus casting doubt on the credibility of their simulation
results [4]. Consequently, developing an efficient system capable of real-time simulation
and optimization of ship routes has become an urgent technical challenge.

In traditional path planning simulations, system diversity results in data format dis-
crepancies and unnecessary accumulation of redundant information [5]. As large vessels
and complex navigation environments proliferate, data volumes increase exponentially,
posing significant challenges to data processing and exchange. Simultaneously, the exist-
ing simulation software interfaces lack intuitiveness, making them difficult for users to
master, especially when dealing with complex 2D and 3D navigation environments. The
interactivity and display effects are suboptimal. Traditional 2D views fail to adequately
represent the dynamic changes in path planning, and the animation effects are rather crude.
During the path planning process, the visualization of refined models is often insufficiently
smooth, internal states and results are hard to obtain, and the interaction between users and
models is weak and inefficient [6]. These limitations result in inefficient simulation testing
and insufficient interactivity, frequently leading to additional and unexpected redesign
iterations, thereby extending the development cycle [7].

Significant progress has been made in recent years in the fields of maritime simulation
and unmanned vessel path planning. The primary validation and testing methods currently
employed include sea trials, digital simulations, and virtual simulations [8].

Numerical simulation technology is a vital tool widely used in ship simulation. By
constructing mathematical models and computational methods, it simulates the behavior
and performance of ships in various marine environments. Common numerical simulation
platforms include Ansys, Abaqus, Matlab, and COMSOL, all of which offer robust compu-
tational capabilities and flexible modeling functions, making them suitable for simulating a
wide range of complex conditions [9]. However, these platforms differ in terms of accuracy,
computational speed, and ease of use. For instance, Ansys is renowned for its high precision
and extensive library of physical models, while Abaqus excels in solving complex nonlinear
problems. Zhu et al. employed the Dijkstra algorithm for numerical simulation of ship
route planning, demonstrating the method’s efficacy in real route selection [10]. Numerical
simulation allows the modeling of ship behavior under different marine conditions in a vir-
tual environment, significantly reducing the high costs and risks associated with actual sea
trials. Li et al. proposed an optimization algorithm under multiple constraints, combining
physical model testing with numerical simulation to enhance the credibility and reliability
of simulation results [11]. Despite the significant role of numerical simulation technology
in ship simulation, its purely digital nature weakens its interaction with the actual physical
environment [12], making it challenging to fully capture the dynamic behavior of ships and
the influence of environmental factors [13].

In maritime validation, virtual technology is employed to create immersive ship path
planning environments, offering powerful graphics processing capabilities and highly
flexible development tools to generate realistic virtual ocean environments. Within these
environments, users can intuitively observe and adjust ship path planning, receiving real-
time simulation feedback. Kim et al. provide a detailed analysis of the needs for USV
autonomous local obstacle avoidance and propose a USV software and hardware frame-
work system, establishing a V-REP semi-physical simulation platform and an actual ship
experimental platform, both of which were validated through simulations and real-world
tests [14]. Wang et al. utilized the Unity engine for simulating ship maneuvering, proposing
an efficient and easily implementable simulation method. This method integrates three-
dimensional modeling, a physics engine, and scripting, enabling the creation of complex
simulation environments and the realization of ship motion control without the need for
actual code [15]. Shin et al. used the Unity3D engine to construct virtual ocean scenes to
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address the issue of insufficient marine image data, subsequently training USV intelligent
control within this framework [16]. Zhang et al. combined the high-precision formation
maintenance capability of virtual structures with the low computational complexity of the
artificial potential field, effectively achieving formation control and obstacle avoidance in
multi-USV systems [17]. Xue et al. developed a high-fidelity simulation environment to val-
idate a fully autonomous USV framework based on Gaussian process motion planning [18].
Xiao et al. proposed a virtual system-based method for testing the autonomous naviga-
tion performance of USVs [19]. This system comprises multiple modules, including an
environment module, motion module, sensor module, and three-dimensional visualization
module, achieving comprehensive testing of USV autonomous navigation performance.
Subsequent researchers have continued to explore this direction, making contributions to
the system’s interactivity, visualization, credibility, and user experience.

USVs must consider multiple factors such as distance, safety, and stability in their
path planning processes to ensure efficient operation. However, if these tests are conducted
in isolated modules, they may overlook the system’s overall integrity and the interaction
effects between different modules [20]. Such fragmented testing methods fail to compre-
hensively reflect the complexity and integrated performance required in actual operations.
Unlike land-based unmanned systems, USVs operating in marine environments face greater
uncertainties and challenges. Current route optimization objectives primarily focus on
the shortest navigation distance and the safest distance from obstacles. However, these
objectives often neglect environmental interference factors such as wind, waves, and cur-
rents, which significantly impact USV navigation and path planning. These environmental
disturbances not only affect the stability and safety of USV navigation but can also lead to
path deviations and navigation errors [21]. Zhou et al. indicate that although optimized
routes may theoretically be the shortest, neglecting environmental disturbances in practical
applications adversely affects the vessel’s navigation stability and safety [22]. Peng et al.
further emphasize that incorporating environmental interference factors significantly en-
hances the practical utility of route optimization and the safety of vessel navigation [23].
Ignoring these factors during simulations renders the results meaningless and ineffective
in predicting USV performance in real-world conditions. Therefore, to enhance the realism
and reliability of USV virtual simulation systems, it is imperative to comprehensively
consider and simulate these environmental disturbances. By introducing dynamic envi-
ronmental parameters such as wind, waves, and currents into the simulation system, it is
possible to more accurately recreate the various conditions USVs may encounter during
actual operations [24]. This approach not only improves the accuracy and credibility of
simulation results but also provides more reliable data support for the design optimization
and performance enhancement of USVs.

This paper proposes a ship path planning system that integrates virtual simulation
with numerical modeling, offering an interactive three-dimensional visualization that
is unrestricted by time and location. By utilizing data-driven approaches, the system
synchronizes physical and virtual platforms, providing a novel framework for autonomous
navigation testing of unmanned surface vessels. Additionally, the study develops a fitness
evaluation function that comprehensively considers path safety, navigation distance, and
vessel stability, employing Particle Swarm Optimization (PSO) to derive optimal routes.
This innovative method bridges the gap between theoretical simulation and real-world
maritime trials, significantly enhancing the reliability of autonomous navigation testing for
unmanned surface vessels. The primary contributions of this study are as follows:

(1) A path planning system combining virtual reality and numerical simulation: This research
introduces an innovative system that merges virtual reality with numerical simulation,
overcoming the high costs and limitations of traditional sea trials. The proposed system
offers a highly interactive and immersive environment for assessing and optimizing ship
path planning, marking a significant advancement over conventional methods.

(2) Development of a comprehensive route optimization model: The study proposes an
innovative route optimization constraint model that takes into account multiple factors
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such as route safety, navigation distance, and vessel stability. By incorporating environ-
mental disturbances like wind and waves into the model, the research addresses real-world
challenges in maritime navigation, providing a more holistic and practical approach to ship
path planning.

(3) A rapid roll prediction model based on RBF neural networks: This paper introduces a
rapid prediction model for ship roll using Radial Basis Function neural networks, which
offers higher accuracy under complex sea conditions compared to traditional Random
Forest and Support Vector Machine models, thereby providing reliable data support for
path optimization.

The remainder of this paper is organized as follows: In the Section 2, we introduce
the fundamental architecture of the ship virtual path planning simulation test system. The
Section 3 details the construction of both the numerical simulation platform and the virtual
simulation platform, wherein a novel route constraint model incorporating environmental
disturbances is proposed. In the Section 4, we validate the ship virtual path planning
simulation test system to evaluate its performance.

2. Framework of the Ship Virtual Path Planning Simulation Test System
2.1. Requirements Analysis and System Functionality Specifications

To address the issues of lacking real-ship trials, the inability to intuitively perceive
ship navigation attitudes, and the difficulty in observing the effectiveness of path planning,
we designed a virtual simulation system driven by ship path planning simulation data.
This system enables an immersive interaction experience of the ship’s navigation state and
path planning effectiveness based on virtual reality. Functionally, the system is divided
into a numerical simulation module, virtual simulation module, data management module,
and joint simulation experiment module, as illustrated in Figure 1.
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(1) The numerical simulation module primarily generates the data that drive the
operation of the virtual system, encompassing mathematical models, constraint models,
and path planning. The mathematical model involves constructing the ship’s rolling
motion model and the environmental loads it encounters. The constraint model defines the
conditional constraints for path planning. Path planning entails determining the navigable
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routes for the ship, ensuring that the optimized path considers the constraints and reaches
the target point under optimal conditions.

(2) The virtual simulation module is designed to construct a virtual ocean environ-
ment and observe the operational processes of the virtual ship. It mainly includes envi-
ronment construction, three-dimensional visualization, and human–computer interaction.
Environment construction involves creating the ocean, terrain islands, and floating ob-
stacles to simulate the conditions a real ship might encounter while operating at sea.
Three-dimensional visualization allows users to observe the virtual ship from multiple
perspectives and visually assess the ship’s operational posture and the distance between the
platform and obstacles during its operation to evaluate the effectiveness of path planning.
Human–computer interaction enables users to interact with the UI interface and scenes
using devices such as a mouse, allowing for the selection of validation types, parameters,
and other operations.

(3) The data management module is designed to handle the drive data generated by
the numerical simulation module. It primarily includes data processing, data communi-
cation, and offline management. Data processing involves saving the simulated data and
performing linear interpolation mapping to convert it into coordinates within the virtual
scene, thereby driving the operation of the virtual platform. Data communication ensures
the exchange of data between the numerical simulation module and the virtual simulation
module. Offline management involves saving the most recent simulation data, ensuring
that the platform can continue to operate even after the user exits the system.

(4) The joint simulation experiment module primarily comprises three components:
path planning simulation, ship motion state simulation, and path optimization simulation.
The path planning and path optimization simulations are employed to validate the ratio-
nality of the designed algorithms, allowing for visual observation of trajectory issues and
optimization verification within the path optimization simulation. The ship motion state
simulation enables operators to directly experience the impact of ship movements during
navigation through the device.

Based on the requirements analysis and the aforementioned functionalities of the ship
virtual path planning simulation test system, specific operational procedures for virtual
scenes and data connections within the virtual simulation system are proposed. The specific
technical specifications of the system’s functionalities are as follows:

• During the operation of the virtual system, the scene rendering should remain smooth
and clear. Under high-load conditions, such as full-screen water rendering, advanced
reflections, and ambient occlusion effects, the GPU utilization is expected to stabilize
around 70–90%; average CPU utilization should remain below 15%, with single-core
CPU usage for AI logic computations maintained at 60%. The average frame rate
should exceed 60 fps. Even during extensive ocean rendering and island interac-
tions, the system should maintain a fluid experience, with no lag observed during
interactions;

• The virtual simulation system is equipped with data communication capabilities,
allowing for the mapping of simulation data. The data latency is less than one second,
ensuring smooth and stable data flow with no significant fluctuations;

• Ensure that the numerical simulation module possesses the capability to save simula-
tion data in real time.

• The path planning simulation within the system can evaluate the optimization effects
of the algorithm by comparing path length, computation time, and ship navigation
posture data.

2.2. Design Framework of the Ship Virtual Path Planning Simulation Test System

Based on the critical requirements for virtual testing of autonomous navigation per-
formance of unmanned vessels, a virtual simulation system driven by ship path planning
simulation data was designed to achieve immersive interaction with the vessel’s navigation
status and path planning effects through virtual reality. The system is functionally divided
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into the Numerical Simulation Module, Virtual Simulation Module, Data Management
System, and Joint Simulation Experiment Module, as shown in Figure 2.
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The Joint Simulation Experiment Module simulates the impact of real marine environ-
ment disturbances on vessel movement for the operator. The Virtual Simulation Module,
utilizing a virtual dynamic positioning model and a virtual ocean environment, achieves
real-time simulation and navigation of USVs through dynamic light tracing and environ-
ment rendering optimization technologies. The Data Management System is responsible for
reading, storing, updating, and processing data, ensuring real-time accuracy through data
filtering, fusion, and calculation, while providing efficient data communication interfaces.
The Numerical Simulation Module handles USV ship modeling, sea-state modeling, and
planning algorithm design, enabling simulation process control and system status assess-
ment through model construction and path planning validation. Interactions between these
components, driven by data and statistical information, ensure synchronous operation
between the physical and virtual platforms, guaranteeing the realism and reliability of
simulation tests, and thereby comprehensively evaluating the autonomous navigation
performance of USVs.

3. Construction of the Virtual Simulation System
3.1. Design of the Numerical Simulation Module

The primary objective of the numerical simulation module is to generate data for
driving the virtual platform. Its core components include the route optimization constraint
model, rapid ship roll calculation, and path planning algorithms. Through the synergy
of these three elements, the numerical simulation module can produce high-precision
simulation data, enabling the virtual platform to conduct realistic simulation tests, thereby
enhancing the overall efficiency and reliability of the virtual simulation system.

3.1.1. Route Optimization Constraint Model

The route optimization constraint model entails the development of a mathematical
framework that, within the context of a defined navigational mission, comprehensively
considers the marine environment, vessel performance, and safety requirements. This
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model must meticulously detail various constraints such as minimal travel time, lowest
energy consumption, and obstacle avoidance criteria. Such precision ensures that the
USV can perform its tasks safely and efficiently in the dynamic and complex marine
environment. Consequently, this paper constructs the route optimization constraint model
from the following three perspectives.

(1) Route Safety. Route safety is the foremost objective in route optimization, focusing
primarily on ensuring that the vessel does not collide with obstacles or other ships during
navigation. The safety cost function Fsa f e is defined as:

Fsa f e =

0 d ≥ A

∑ A − A
1 + e−d d < A

(1)

where d represents the minimum distance between the transport vessel and obstacles. The
cost function begins to increase when the distance between the vessel and the obstacle is
less than or equal to the predetermined safety distance A. This cost function follows an ex-
ponential form, with a gradual increase initially, which intensifies as the distance decreases.
When the distance reaches zero, the safety cost function attains its maximum value.

(2) Vessel Navigation Distance. The optimization of navigation distance aims to
minimize the vessel’s travel time and fuel consumption by selecting the shortest or near-
shortest path. The cost function for navigation distance is denoted as Flength, is defined as:

Flength =
N

∑
i=1

√
(xi − xi+1)

2 + (yi − yi+1)
2 (2)

where x represents the horizontal coordinate of the route, y represents the vertical coordi-
nate of the route, and i denotes the index of the planned route points.

(3) Vessel Stability. Stability refers to minimizing the rolling motion of the vessel
caused by waves and currents during navigation. The cost function for vessel stability,
denoted as Fstability, is defined as:

Fstability = k1θmean + k2θmax (3)

where θmean and θmax represent the average roll angle and the maximum roll angle induced
by the trajectory, respectively, k1 and k2 are the weight coefficients.

In summary, by considering these three aspects, the route optimization constraint
model is constructed as follows:

Fconstraint = aFlength + bFstability + cFsa f e (4)

where a, b, and c are the weight coefficients for the distance cost function, safety cost
function, and stability cost function, respectively. To enhance the model’s versatility and
adaptability, the settings of these weight factors will be customized based on the type of
target vessel and finely tuned through empirical analysis and expert judgment.

Different types of vessels exhibit distinct requirements for distance, safety, and stability
during operation. Therefore, this study first designs specific weight parameter ranges
tailored to the vessel type, such as cargo ships, passenger ships, or unmanned vessels. For
instance, cargo ships may prioritize stability to ensure the safety of transported goods,
while passenger ships may emphasize safety and comfort. Consequently, different vessel
types correspond to varying ranges of weight factors, reflecting their unique operational
demands. After establishing initial weight parameter ranges, these parameters are further
refined and adjusted through empirical data analysis and expert judgment. This process
ensures the accuracy and efficacy of the weight factors in achieving the desired path
optimization outcomes in practical applications.
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3.1.2. Rapid Ship Roll Calculation Model

In the previous Section, we discussed the need to calculate the roll angle of the
route when studying the route optimization constraint model. Traditional methods for
predicting ship roll are primarily based on model calculations, which involve creating a
mathematical model of the ship’s roll motion based on its dynamic equations and wave
energy spectrum. However, these methods are limited in practical applications due to their
slow computation speed and weak generalization ability. Therefore, this paper employs a
data-driven approach to establish a rapid calculation model for the ship’s roll response.

The Radial Basis Function (RBF) neural network is a powerful tool capable of achieving
complex nonlinear mappings [25]. It can approximate intricate mathematical relationships
with high precision and good generalization ability, utilizing only a small number of
hidden layer neurons. Additionally, it possesses a certain degree of fault tolerance. The
basic structure of the RBF neural network comprises three parts: the input layer, the hidden
layer, and the output layer, as illustrated in Figure 3.
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In this paper, we selected wave direction angle, wave height, wind direction angle,
and wind speed as the input layer parameters for the RBF neural network. The input layer
is responsible for receiving these external environmental parameters, which directly affect
the vessel’s motion state and stability. The hidden layer employs radial basis functions as
activation functions, which effectively capture the nonlinear characteristics of the input
parameters. By computing the Euclidean distance from each input parameter to the center,
the model generates a high-dimensional feature space, enhancing its ability to express and
approximate complex functions. The expression for the radial basis function is:

ϕ(xi) = exp

(
−∥xi − ci ∥2

2σ2

)
(5)

where ϕ(xi) represents the output of the radial basis function, xi denotes the input vector,
ci is the center vector of the radial basis function, and σ is the width parameter that controls
the function’s range of influence.

The output layer employs a linear activation function, achieving the final predicted
value through a linear combination of the outputs from the hidden layer. In this paper, our
objective is to predict the maximum roll angle of the ship under specific sea conditions.
Leveraging the nonlinear mapping capabilities of the RBF neural network, we can accu-
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rately forecast the maximum roll angle based on the inputs of wave direction, wave height,
wind direction, and wind speed.

y =
N

∑
i=1

wiϕi + b (6)

where y represents the final predicted value from the output layer, wi is the weight of the
i-th hidden layer neuron, ϕi denotes the output of the i-th hidden layer neuron, b is the bias
term, and N is the number of hidden layer neurons.

3.1.3. Global Path Planning Based on the PSO Algorithm

To address the conditions of the route optimization constraint model, this paper
proposes a global path planning method based on the PSO algorithm. As an intelligent
optimization algorithm, PSO boasts strong global search capabilities and rapid convergence
performance [26]. It can devise an optimal path while considering track safety, naviga-
tion distance, and stability. Compared to genetic algorithms, simulated annealing, and
ant colony algorithms, the PSO algorithm is simpler to implement, has lower computa-
tional complexity, and features intuitive and easily adjustable parameters. Furthermore, it
demonstrates strong adaptability in handling dynamic and complex environments. These
characteristics make PSO perform excellently in solving multimodal optimization prob-
lems, enabling effective ship path planning in the complex and ever-changing marine
environment.

The PSO algorithm simulates the foraging behavior of bird flocks, leveraging the
information sharing among particles to find the optimal solution [27]. In this paper, the
PSO algorithm is employed to chart an optimal path in a complex and dynamic marine
environment, ensuring track safety, navigation distance, and stability. The route optimiza-
tion constraint model constructs a fitness function to evaluate the quality of each particle’s
position, which directly influences the performance and effectiveness of the PSO algorithm.
In the path planning problem, this paper uses the route optimization constraint model as
the fitness function—the smaller the fitness value, the better the particle’s position. The
algorithmic process is illustrated in Figure 4.
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In each iteration, the fitness value of each particle is computed based on its current
position using the fitness function. A smaller fitness value indicates a better position for the
particle. For each particle, if the current fitness value is less than its historical best fitness
value, the particle’s individual best position is updated. Among all particles, the one with
the smallest fitness value is identified, and its position is designated as the global best
position. Subsequently, the velocity and position of each particle are updated according to
the following equations:

vi(t + 1) = w · vi(t) + c1 · r1 · (pbesti − xi(t)) + c2 · r2 · (gbest − xi(t))
xi(t + 1) = xi(t) + vi(t + 1)

(7)

where vi(t) and xi(t) represents the velocity and position of particle i at time t, pbesti is the
individual best position of particle i, gbest signifies the global best position, r1 and r2 are
random numbers between [0, 1], and c1 and c2 are the learning factors.

Through the aforementioned equations, particles continuously adjust their positions
within the search space, gravitating towards both their individual best positions and the
global best position, thereby progressively approaching the optimal solution. After each
iteration, the fitness values of all particles are recalculated, updating the individual best
positions and the global best position until the maximum number of iterations is reached
or the fitness value of the global best position ceases to decrease significantly.

Upon reaching the stopping criteria, the final global best position is used to construct
the optimal path. Through this process, the PSO algorithm evaluates the quality of particles
using the fitness function and guides the particle swarm toward the optimal solution,
thereby achieving global path optimization and planning. This method combines the global
search capabilities of intelligent optimization algorithms with the practical requirements
of the route optimization objective constraint model, providing robust support for ship
navigation and path planning.

3.2. Design of the Physical Simulation Module

The physical simulation platform utilizes a multi-degree-of-freedom motion seat
to enable users to deeply experience the real-time motion posture of a vessel, thereby
enhancing an immersive sensory experience. It primarily relies on PLC control and servo
motor drive control, with simulated data sent from the virtual simulation platform to
control the motion. The motion simulation platform framework is illustrated in Figure 5.
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The simulation platform consists of a PLC controller, servo motors, servo-electric
cylinders, servo drivers, and measuring instruments. The PLC, serving as the primary
information processing unit, decodes the drive data and transmits them to the servo drivers.
The servo drivers, equipped with three control modes—position control, speed control, and
torque control—send high-speed differential pulse signals (4 Mpps) to drive the motors
and electric cylinders, achieving precise position settings and facilitating the four-degrees-
of-freedom motion of the seat module. The minimal coupling between different degrees of
freedom makes the system easy to control. The mechanical structure of the seat is illustrated
in Figure 6.

J. Mar. Sci. Eng. 2024, 12, 1587 11 of 28 
 

 

Data-driven

Multi-degree of freedom calculation unit

Motion controller

Roll actuator  Pitch actuator Yaw actuator

Servo motor Servo motor Servo motor

Heave actuator

Servo motor

Signal acquisition 

unit

Motion platform

 

Figure 5. Motion simulation platform framework. 

The simulation platform consists of a PLC controller, servo motors, servo-electric 

cylinders, servo drivers, and measuring instruments. The PLC, serving as the primary 

information processing unit, decodes the drive data and transmits them to the servo 

drivers. The servo drivers, equipped with three control modes—position control, speed 

control, and torque control—send high-speed differential pulse signals (4 Mpps) to drive 

the motors and electric cylinders, achieving precise position settings and facilitating the 

four-degrees-of-freedom motion of the seat module. The minimal coupling between 

different degrees of freedom makes the system easy to control. The mechanical structure 

of the seat is illustrated in Figure 6. 

   

Figure 6. Four-degree-of-freedom motion simulation platform. 

The motion simulation platform designed in this paper simulates the four degrees of 

freedom of a vessel, which can operate individually or in combination. To achieve a more 

pronounced longitudinal motion simulation experience for hydrofoil vessels, the design 

of the motion simulation platform requires each degree of freedom to have a travel limit 

that exceeds the normal motion amplitude of the vessel. The specific design parameters 

are detailed in Table 1. 

  

Figure 6. Four-degree-of-freedom motion simulation platform.

The motion simulation platform designed in this paper simulates the four degrees of
freedom of a vessel, which can operate individually or in combination. To achieve a more
pronounced longitudinal motion simulation experience for hydrofoil vessels, the design
of the motion simulation platform requires each degree of freedom to have a travel limit
that exceeds the normal motion amplitude of the vessel. The specific design parameters are
detailed in Table 1.

Table 1. Design parameters of the motion simulation platform.

Motion Direction Motion Range Static Precision

Pitch Motion −40◦ to 40◦ ≤1◦

Pitch Angular Speed 0.5◦/s~2◦/s ±5% to ±10%
Heave Motion −20 cm to 20 cm ≤0.4 cm

Heave Motion Speed 0.8 cm/s~2.0 cm/s ±5% to ±10%

One of the crucial steps when utilizing such high-degree-of-freedom platforms is
virtual space calibration. This ensures that the actual physical position aligns accurately
with the scene positioning in the virtual environment, thereby maintaining synchronized
interaction between the user’s line of sight and the virtual perspective. In this platform
design, the coupling effects between different degrees of freedom are minimal, facilitating
independent precise control. This allows the motion platform to flexibly simulate move-
ments in the longitudinal direction, enhancing the controllability of the entire system and
the authenticity of the user experience.

3.3. Design of the Virtual Simulation Platform

The development of the virtual simulation platform involves constructing 3D models
for both the ship and the marine environment. This process begins with gathering and
organizing relevant information about the research subjects, including the dimensions
and appearance of the ship as well as the ocean environment. Subsequently, dynamic
positioning models are created using software such as SolidWorks 2023 and Blender 3.6
based on real-world data. To achieve highly realistic representations, Unreal Engine 5 (UE5)
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is employed to render and create three-dimensional scenes that closely resemble actual
environments [28]. Various interactive visualizations are designed to enhance the user’s
operational experience.

3.3.1. Construction of the Three-Dimensional Virtual Ship Model

Based on the analysis and relevant information of the ship’s system structure, the
key components including the ship’s main body, propulsion propellers, and rudder are
identified. To enhance realism, the model may also include the superstructure. Using
Blender software, each part of the model is drawn according to the actual parameters of
the ship. Subsequently, a UV mapping operation is conducted, which involves unfolding
the surface of the model into a two-dimensional map to facilitate texture mapping design
and application. After completing the UV unwrapping, the data are exported and further
refined in Adobe Illustrator 2023 (AI) and Substance 3D Painter 8.3 to meticulously detail
the material and texture effects, aiming to accurately reflect the appearance and texture
characteristics of each part. Finally, the individual models are assembled and rendered.
The models are combined according to the ship’s actual assembly relationships to form a
complete ship model, presented with realistic visual effects using high-quality rendering
techniques [29]. The process of building the three-dimensional model is illustrated in
Figure 7.
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3.3.2. Construction of the Virtual Ocean Environment

The construction of a virtual ocean environment is a crucial step in simulating and
testing the navigational performance of vessels. This process encompasses two main
aspects: the creation of the virtual ocean terrain and the virtual ocean water body.

(1) Virtual ocean terrain construction
The construction of the virtual ocean terrain aims to accurately reflect the complexities

of the seabed, including features such as islands, reefs, and slopes. To address the chal-
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lenges of complex real-world ocean terrain modeling and low model accuracy reliability,
we designed an online rapid construction method for ocean terrain based on electronic
nautical charts.

This method stores elevation data in height maps using grayscale images from elec-
tronic nautical charts, with black and white values representing terrain elevations. These
height data are applied in the terrain system of Unreal Engine, enabling the creation of
large worlds through world partitioning and allowing for free scale adjustments [30]. This
approach facilitates the rapid creation of a virtual ocean environment that accurately maps
real-world ocean terrain, significantly enhancing the system’s practicality.

During the terrain construction process, custom height maps are initially imported.
These height maps can be created using terrain generation applications such as Gaea, World
Machine, Terragen, or Houdini, or they can be drawn in an image editing application and
saved as 16-bit grayscale PNGs. Unreal Engine also supports RAW format height maps
with a JSON sidecar file. The import process involves entering the terrain mode, selecting
the option to import from a file, and setting the appropriate world partition grid and region
size, followed by adjusting the height map file and calculating the Z-axis scale.

Additionally, a real-time terrain update mechanism was introduced, allowing dynamic
adjustments to the virtual terrain model based on the latest survey data and marine obser-
vation information, reflecting changes in the actual marine environment. The resolution
and realism of the terrain model are enhanced through refined mesh and multi-level detail
rendering techniques, ensuring rapid and reliable modeling results. The ocean environment
modeling process is illustrated in Figure 8.
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(2) Construction of virtual ocean water body
Since the dynamics of ocean waves directly impact the vessel’s navigation posture,

the virtual environment needs to simulate various wave conditions in real time. This paper
employs shading and rendering techniques to achieve realistic water visuals, supporting
physical interactions and real-time fluid simulations, significantly enhancing the scene’s
realism and immersion. The core of water body construction involves editable water
surfaces and materials that affect water appearance and interaction, such as the waves
generated by the vessel’s movement and buoyancy. The water surface grid is built based
on spline curves, and the Water Zone manages water characteristics (rivers, lakes, oceans,
etc.) uniformly, determining rendering quality and detail levels. The Water Zone not
only controls surface mesh quality but also sets size limitations for the water body, with
special options for the ocean, utilizing splines to define water areas for efficiently rendering
visible parts.

Real-time wave dynamics are achieved by traversing the quadtree grid for each frame,
rendering only the tiles within the field of view, and applying the LOD strategy based on
distance: detailed close-ups and simplified geometry for distant views to enhance efficiency.
As shown in Figure 9, the mesh deformation method offers smoother edge transitions and
superior visual effects compared to terrain deformation.
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Figure 9. Waterbody mesh transformation.

An example of the water mesh after LOD processing clearly demonstrates how mesh
density adjusts with changes in distance. As the position and viewpoint continuously shift,
the mesh graphics follow specific transformation rules, resulting in a refined and seamless
dynamic display, as illustrated in Figure 10.
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water LOD optimization model.

The water system leverages GPU processing to handle wave data, achieving realistic
water surface effects through built-in wave simulation modules and preset parameters. The
standard configuration employs the Gerstner wave model [31], allowing for adjustments
in wave count and randomness, wind direction and angular spread, wave simulation
wavelength, steepness, and amplitude. This flexibility accommodates a variety of wave
scenarios. The Gerstner wave equation is as follows:

P(x, y, t) =


x + ∑ (Qi AiDix cos(ωiDi · (x, y) + φit))
y + ∑ (Qi AiDix cos(ωiDi · (x, y) + φit))
∑ (Ai sin(ωiDi · (x, y) + φit)))

(8)

where Qi is the wave steepness control parameter, Di represents the wave direction control
parameter, and Ai denotes the wave amplitude.

In this paper, wave normal mapping is achieved through TBN basis vectors, converting
the normals from the tangent space to the object space or world space. This transformation
allows for the utilization of high-detail normal information from the normal map during
lighting calculations. By computing these vectors, the tangent, bitangent, and normal
directions at each point can be determined, resulting in more detailed and realistic surface
effects of the water waves. The TBN basis vectors are:

B =

 1 − ∑
(
Qi × Dix2 × WA × S()

)
,

−∑(Qi × Dix × Diy × WA × S()),
∑(Dix × WA × C())

 (9)

T =

−∑(Qi × Dix × Diy × WA × S()),
1 − ∑

(
Qi × Diy2 × WA × S()

)
,

∑(Diy × WA × C())

 (10)
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N =

−∑(Dix × WA × C()),
−∑(Diy × WA × C()),
1 − ∑(Di × WA × S())

 (11)

where B represents the bitangent, T denotes the tangent, and N stands for the normal,
C() = cos(wi × Di + φit), S() = sin(wi × Di + φit), WA = wi × Ai.

The motion of ocean waves exhibits inherent randomness. Therefore, in simulating
wave dynamics, multiple Gerstner waves with varying directions and parameters can be
superimposed to achieve a more realistic representation. Notably, in practical scenarios
where Gerstner wave simulations are employed, both the CPU and GPU can share the
same wave data resources. This eliminates the need to prepare separate wave resources
and perform complex data synchronization for each, thereby enhancing overall operational
efficiency and performance.

4. Results and Analysis

To comprehensively validate the effectiveness of the proposed virtual simulation
system and path planning method, a series of systematic experiments and demonstrations
were designed. The validation analysis is divided into two main components: numerical
simulation and virtual system testing. Through numerical simulation, we assessed the
accuracy of the roll motion solution and verified the superiority of the route optimization
objective constraint model in terms of safety and traditional constraints. Virtual system
testing allowed us to evaluate the realism and performance of the virtual ocean terrain
construction and water body simulation.

4.1. Numerical Computation Platform Testing and Validation
4.1.1. Preparation of Roll Data

To validate the performance of the RBF neural network proposed in this paper for
roll motion computation, roll data of the target vessel are essential for system training and
validation. However, due to limitations in acquiring substantial real-world roll data, we
established a ship roll dynamics model in MATLAB. This model simulates the roll motion
under various sea conditions, including different wave directions, wave heights, wind
directions, and wind speeds. The roll results obtained through numerical simulation serve
as the training and testing sets for the RBF neural network model, facilitating the rapid
computation of ship roll motion.

The roll motion of the ship can be described using a linear dynamic equation, which is
given by:

Iϕ

..
ϕ + B

.
ϕ + Cϕ = ∑ Fexternal (12)

where Iϕ is the moment of inertia of the ship’s roll motion, B is the damping coefficient, C
is the restoring coefficient, ϕ is the roll angle, and ∑ Fexternal is the external moment, which
includes moments caused by waves, wind, and other forces. This equation describes the roll
motion of the ship under external disturbances such as waves and wind. By numerically
solving this equation, we can simulate the roll behavior of the ship under various sea
conditions.

To simulate various sea conditions, it is essential to define relevant environmental
parameters, including wave direction, wave height, wind direction, and wind speed. These
parameters are utilized to generate wave moments and wind moments. The wave moments
and wind moments can be expressed as follows:

Fwave(t) = Awave sin(ωwavet + θwave)
Fwind(t) = Awind sin(ωwindt + θwind)

(13)

where Awave and Awind represent the amplitudes of the wave and wind forces, respectively,
ωwave and ωwind denote the frequencies of the wave and wind forces, respectively, and θwave
and θwind are the phase angles of the wave and wind forces, respectively.
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In this paper, to comprehensively evaluate the performance of the RBF neural network
in roll motion calculation, we designed and prepared a comprehensive dataset encompass-
ing various sea state parameters. Specifically, the parameters for wave direction, wave
height, wind direction, and wind speed were ranged and distributed as follows:

• The range of wave direction is from 0◦ to 360◦, with values taken at every 30◦, resulting
in 12 sampling points.;

• The wave height ranges from 0.5 m to 5 m, with values taken at every 0.5 m, resulting
in 10 sampling points;

• The wind direction ranges from 0◦ to 360◦, with values taken at every 45◦, resulting in
8 sampling points;

• The wind speed ranges from 2 m/s to 12 m/s, with values taken at every 1 m/s,
resulting in 10 sampling points.

The above parameter combinations generate a total of 9600 distinct simulation sce-
narios. Each scenario undergoes numerical simulation using the ship dynamics model
in MATLAB, simulating the maximum roll angle of the vessel under different sea condi-
tions. These simulation results are used to construct both the training and testing datasets.
Specifically, 70% (approximately 6720 scenarios) are used as the training set to train the RBF
neural network, while the remaining 30% (approximately 2880 scenarios) are designated as
the testing set to validate the model’s performance. Through this systematic experimental
design and dataset preparation, we are able to comprehensively assess and verify the
RBF neural network’s capability to predict ship roll motion under complex sea conditions,
ensuring the model’s reliability and generalization capability.

4.1.2. Testing and Analysis of Rapid Roll Motion Calculation for Ships

In this Section, we evaluate the effectiveness of the RBF neural network model pro-
posed in this paper using the dataset prepared in the previous Section. All simulations
were conducted on a system with a 2.26 GHz CPU, 16 GB RAM, and a 64-bit Windows 10
operating system. During the entire simulation process, the K-means clustering algorithm
was used to determine the center vectors of the hidden layer nodes, the weights connecting
the input data to the hidden layer nodes were randomly selected between −1 and 1, and
the Gaussian function was chosen as the radial basis function. Data were provided to the
model at 1 s intervals. The model consumed the first 6720 samples’ data to complete the
initialization training phase, with the remaining samples provided to the network for one-
step-ahead prediction testing. For comparison purposes, this paper also employed Random
Forest and Support Vector Machine methods to predict the same test set, evaluating model
performance using Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), with
the expressions as follows:

MAE =
1
N

N
∑

i=1
|yi − ŷi| × 100%

RMSE =

√√√√√ N
∑

i=1
(yi − ŷi)

2

N

(14)

where N represents the number of test samples, yi denotes the true value of the test samples,
and ŷi signifies the algorithm’s test results.

To evaluate the performance of the model, we conducted a statistical analysis of the
results obtained from the test set using different methods. A box plot was employed to
display the MAE of roll angle predictions, as illustrated in Figure 11. Table 2 summarizes
the comparative results of different models, including the performance of the RBF neural
network, random forest, and support vector machine, in terms of MAE and RMSE.
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Table 2. Comparison of different algorithms.

Algorithm Motion Range Static Precision

Our model 0.56 0.412
Random forest 1.52 0.790

SVM 1.08 0.531

As indicated in Table 2, the RBF neural network model demonstrates exceptional
performance in predicting the roll angle of ships, with an MAE of 0.56 and an RMSE of
0.412, both being the lowest among all tested models. In comparison, the random forest
algorithm has an MAE of 1.52 and an RMSE of 0.790, while the support vector machine’s
MAE and RMSE are 1.08 and 0.531, respectively. These figures clearly illustrate that the
RBF neural network significantly outperforms both the random forest and support vector
machine models in terms of prediction accuracy and stability. Firstly, the low MAE value
of the RBF neural network indicates that the model can provide predictions that are closer
to the actual values in most cases, showcasing its higher accuracy. An MAE of 0.56 implies
that the average absolute error between the predicted and actual values is only 0.56 degrees,
which is a very small margin in practical applications, demonstrating the high precision
of the RBF neural network in addressing the roll angle prediction problem. Secondly, the
analysis of RMSE values further supports this conclusion. The RBF neural network’s RMSE
of 0.412 suggests a lower variance in prediction errors, indicating higher stability in its
predictions. In contrast, the RMSE values for the random forest and support vector machine
models are 0.790 and 0.531, respectively. These higher values suggest that their prediction
results may exhibit larger deviations in certain cases, thereby affecting the stability and
reliability of their predictions.

The experimental results further demonstrate that the RBF neural network model
can accurately predict ship roll angles in complex sea conditions. Its nonlinear mapping
capability and excellent generalization performance enable it to maintain high prediction ac-
curacy and stability in variable marine environments, thus providing robust support for the
subsequent ship route optimization objective constraint model that considers ship stability.

4.1.3. Verification of Ship Route Optimization Planning

In this paper, we optimized traditional route constraints by considering the impact
of environmental disturbances on vessel stability and adhering to the requirements and
regulations of ship route planning. Consequently, we established an objective constraint
model for route optimization under maritime environmental disturbances and utilized the
particle swarm algorithm in conjunction with this model to achieve global path planning.
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To further verify the stability, effectiveness, and reliability of the ship route optimization
method, we conducted simulation experiments on the ship’s obstacle avoidance decision-
making and path planning algorithm.

To validate the effectiveness of the proposed route optimization objective constraint
model, key maritime meteorological conditions were first identified for the experimental
setup. The meteorological data utilized in this paper were sourced from the European
Centre for Medium-Range Weather Forecasts (ECMWF), specifically the ERA5 reanalysis
dataset, which encompasses meteorological variables from 1979 to the present, including
temperature, humidity, wind speed, precipitation, and cloud cover. Based on the obtained
sea-state information, these data were matched with electronic nautical charts. The map
rendering was accomplished using the Cartopy package, an open-source Python library
developed by the UK Met Office for geospatial data processing, map generation, and other
geospatial data analyses. Subsequently, the images were binarized, with black indicating
navigable areas and white indicating non-navigable areas. The edges of the obstacles were
then detected for subsequent calculations, as illustrated in Figure 12b.
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Figure 12. Validation test sea area image preprocessing: (a) Electronic nautical chart image; (b) Bina-
rized image; (c) Regional wind direction distribution map; (d) Route planning area.

Based on the actual selected spatial range under the Mercator projection, which
spans 1036 km by 505 km, corresponding to a map image of 2387 by 1135 pixels, each
horizontal pixel represents 0.434 km and each vertical pixel represents 0.445 km. The
starting coordinates are set at (200, 450) and the ending coordinates at (850, 50). The blue
dot indicates the starting point, and the red dot indicates the ending point, as shown in
Figure 12d.

The experimental procedure involves initializing the experimental scenario and con-
ditions, setting the starting and target points, testing both the traditional path planning
constraint model and the model proposed in this paper, calculating the optimal path, and
recording and comparing the performance of the two methods in terms of path length,
obstacle avoidance effectiveness, and navigation stability. Statistical analysis is then con-
ducted on the experimental results.
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In configuring the parameters for the particle swarm optimization algorithm, we set
the number of particles to 50, the maximum number of iterations to 1000, the inertia weight
to 0.5, and both the cognitive and social coefficients to 1.5. The search space encompasses
the two-dimensional plane area of the experimental scenario. For the traditional path
planning algorithm, constraints include minimizing path length and maintaining a safe
distance between the vessel and obstacles. The objective function is:

Ftraditional(X) = αL + βd (15)

where L represents the path length, d denotes the safety distance from obstacles, and α and
β are the weight coefficients.

The path points planned by the Particle Swarm Optimization algorithm need to be
interpolated to generate a smooth and continuous curve. Unlike the method of connecting
path points with straight lines, interpolation produces a curve that better aligns with the
changes in speed and acceleration during the ship’s navigation. In this paper, we choose
Bezier curves for interpolation smoothing. A Bezier curve is a parametric curve based
on control points, defined in either two-dimensional or three-dimensional space, which
generates a smooth curve. It possesses favorable mathematical properties, being continuous
and differentiable at the control points. By adjusting these control points, one can precisely
control the shape and trajectory of the curve, thereby creating various smooth curve effects.
Based on this, we conducted tests, and Figure 13 illustrates the planning results using
both the traditional path planning constraint model and the proposed model. Table 3
summarizes the comparative results of different models.
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Table 3. Comparison of ship route planning results.

Model Sailing Distance
(nm)

Maximum Roll
Angle (deg)

Average Roll Angle
(deg)

Traditional Constraint Model 434.15 4.62 3.50
Optimized Constraint Model 449.06 3.85 3.13

The experimental results reveal that the optimized constraint model demonstrates
advantages in overall smoothness and path length. The sailing distance generated by
the traditional constraint model is 434.15 nautical miles, while the optimized constraint
model produces a path length of 449.06 nautical miles, slightly increasing the distance.
This increase is due to the optimized constraint model’s consideration of more complex
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factors encountered during actual navigation, such as the impact of sea conditions on ship
rolling. Consequently, this model avoids potentially hazardous areas during path planning,
enhancing both the safety and stability of the voyage.

Table 3 summarizes the comparative results of different models, including sailing
distance, maximum roll angle, and average roll angle. The average testing times for the
improved model and the traditional model are 14.6 s and 13.2 s, respectively. The increased
computational complexity of the stability cost function accounts for the slightly slower
performance of the improved model compared to the traditional model. The maximum
roll angle for the traditional constraint model is 4.62 degrees, with an average roll angle of
3.50 degrees. In contrast, the optimized constraint model shows a maximum roll angle of
3.85 degrees and an average roll angle of 3.13 degrees. Furthermore, comparative validation
tests conducted on 14 sets of sea conditions and marine maps reveal that the proposed
method results in a 4.60% increase in sailing distance but achieves a 14.31% reduction
in average roll angle. This indicates that under complex sea conditions, the optimized
constraint model significantly outperforms the traditional constraint model in terms of roll
angle, effectively reducing ship roll and thereby enhancing the stability and comfort of
the voyage.

In summary, the optimized constraint model proposed in this paper demonstrates
superior performance in terms of safety and vessel stability in ship route planning compared
to the traditional constraint model, though it shows a slightly poorer performance in terms
of sailing distance. The optimized constraint model is more adept at handling complex sea
conditions, reducing ship roll, and enhancing sailing comfort and safety. This provides a
more reliable route-planning solution for the autonomous navigation of specialized ships
or missions.

4.2. Validation of the Virtual Simulation Platform

This Section aims to validate the performance and effectiveness of the proposed virtual
simulation platform in ship route planning and navigation through a series of detailed
tests. These tests will encompass the construction of virtual terrain and environments as
well as the specific validation of virtual path planning to ensure the system’s reliability and
accuracy in various application scenarios.

4.2.1. Testing of Virtual Terrain and Environment Construction

To validate the accuracy and reliability of virtual terrain and environment construction,
this Section focuses on creating a virtual terrain based on satellite images of a portion of
the Bohai Sea and Yellow River regions in China, followed by comprehensive testing and
evaluation. High-resolution satellite images of the Bohai Sea and Yellow River regions
were selected as the data source for this test. These images were used to extract terrain and
topographic features, including islands, reefs, and slopes, as shown in Figure 14.

J. Mar. Sci. Eng. 2024, 12, 1587 21 of 28 
 

 

Consequently, this model avoids potentially hazardous areas during path planning, 

enhancing both the safety and stability of the voyage. 

Table 3 summarizes the comparative results of different models, including sailing 

distance, maximum roll angle, and average roll angle. The average testing times for the 

improved model and the traditional model are 14.6 s and 13.2 s, respectively. The 

increased computational complexity of the stability cost function accounts for the slightly 

slower performance of the improved model compared to the traditional model. The 

maximum roll angle for the traditional constraint model is 4.62 degrees, with an average 

roll angle of 3.50 degrees. In contrast, the optimized constraint model shows a maximum 

roll angle of 3.85 degrees and an average roll angle of 3.13 degrees. Furthermore, 

comparative validation tests conducted on 14 sets of sea conditions and marine maps 

reveal that the proposed method results in a 4.60% increase in sailing distance but achieves 

a 14.31% reduction in average roll angle. This indicates that under complex sea conditions, 

the optimized constraint model significantly outperforms the traditional constraint model 

in terms of roll angle, effectively reducing ship roll and thereby enhancing the stability 

and comfort of the voyage. 

In summary, the optimized constraint model proposed in this paper demonstrates 

superior performance in terms of safety and vessel stability in ship route planning 

compared to the traditional constraint model, though it shows a slightly poorer 

performance in terms of sailing distance. The optimized constraint model is more adept 

at handling complex sea conditions, reducing ship roll, and enhancing sailing comfort and 

safety. This provides a more reliable route-planning solution for the autonomous 

navigation of specialized ships or missions. 

4.2. Validation of the Virtual Simulation Platform 

This Section aims to validate the performance and effectiveness of the proposed 

virtual simulation platform in ship route planning and navigation through a series of 

detailed tests. These tests will encompass the construction of virtual terrain and 

environments as well as the specific validation of virtual path planning to ensure the 

system’s reliability and accuracy in various application scenarios. 

4.2.1. Testing of Virtual Terrain and Environment Construction 

To validate the accuracy and reliability of virtual terrain and environment 

construction, this Section focuses on creating a virtual terrain based on satellite images of 

a portion of the Bohai Sea and Yellow River regions in China, followed by comprehensive 

testing and evaluation. High-resolution satellite images of the Bohai Sea and Yellow River 

regions were selected as the data source for this test. These images were used to extract 

terrain and topographic features, including islands, reefs, and slopes, as shown in Figure 

14. 

 

Figure 14. Selection of satellite images for the test area. Figure 14. Selection of satellite images for the test area.



J. Mar. Sci. Eng. 2024, 12, 1587 21 of 27

The hardware configuration of the experimental platform includes an Intel Core i7-
9700K @ 3.60 GHz CPU, an NVIDIA GeForce RTX 2080 GPU, 32 GB DDR4 RAM, and
1 TB NVMe SSD storage, operating on Windows 10 Pro 64-bit. In terms of software
tools, Unreal Engine 5.4 was utilized for the construction and rendering of virtual terrain
and environments, QGIS 3.16 for processing satellite images and generating height maps,
Photoshop 2021 for editing and optimizing height maps, and Gaea 1.3 for terrain generation
and detail optimization.

The test results are shown in Figure 15. Utilizing an online marine terrain rapid
construction method based on electronic nautical charts, the grayscale images from these
charts store altitude data in height maps, with black and white values representing terrain
elevation. These height data are applied in the terrain system of Unreal Engine, supporting
the creation of large-scale worlds through world partitioning and allowing for free scale
adjustment. The test results demonstrate that the constructed virtual terrain achieved
the expected accuracy in height data and richness in terrain details. Terrain features in
the virtual environment are clearly visible. To enhance the resolution and realism of the
terrain model, mesh refinement and multi-level detail rendering techniques were employed,
ensuring the speed and reliability of the modeling results. The terrain variations accurately
reflect actual conditions, laying a solid foundation for the further application of the virtual
simulation platform.
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Figure 15. The process of constructing the marine terrain: (a) Target sea area height grayscale map;
(b) Generated basic terrain model; (c) Terrain model after detailed optimization.

Moreover, the water system effects are illustrated in Figures 16–18. The motion of
waves exhibits inherent randomness; thus, when simulating waves, multiple Gerstner
waves with varying directions and parameters are superimposed. In this test, by configur-
ing different wavelength, wave height, and wave direction parameters, we validated the
simulation effects of the water system.
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Figure 18. Waves with different directions: (a) 0◦; (b) 120◦; (c) 180◦.

Notably, this paper achieved efficient data processing and transmission through
Gerstner wave simulation, enabling the CPU and GPU to share the same wave data
resources. This approach eliminates the need for separate wave data preparation and
complex synchronization processes, significantly enhancing overall operational efficiency
and performance. The experimental results confirmed that the water system effectively
simulates different wavelengths, wave heights, and wave directions, accurately replicating
wave characteristics in real ocean environments. This provides a reliable foundation
for subsequent path planning and motion simulation. In summary, the water system
demonstrated highly realistic ocean wave simulation effects by adjusting various wave
parameters, highlighting its application value in marine simulation.

4.2.2. Validation of Virtual Path Planning

To comprehensively demonstrate and validate the functionality and effectiveness
of the virtual path planning system, this Section will introduce the overall presentation
process of the system. It will integrate the previously simulated planning data, utilizing
both visual simulation and VR for operation and evaluation. The virtual path planning
system offers an intuitive and efficient path planning experience, allowing users to observe
and adjust the planning results in real time within a virtual environment.

To validate the effectiveness of the virtual path planning system, we designed a series
of test scenarios, encompassing various sea conditions and obstacle distributions. By
conducting path planning within these scenarios, we evaluated the system’s performance
and behavior under different conditions, as illustrated in Figures 19–21.

Showcasing the path planning process through visual simulation leverages the robust
graphical processing capabilities of the virtual simulation platform, rendering a detailed
three-dimensional maritime environment and path planning outcomes on a computer
screen. Users can operate the system via keyboard and mouse, enabling real-time monitor-
ing of the vessel’s navigation route, obstacle avoidance, and navigation parameter changes.
The system supports multi-perspective switching of the path planning results, including
bird’s-eye view, ship’s perspective, and cabin view, aiding users in comprehending and
assessing the effectiveness of the path planning. Test results indicate that the virtual path
planning system can rapidly and accurately generate optimal routes and effectively avoid
obstacles under various complex sea conditions. Compared to traditional path planning
methods, the virtual path planning system offers greater interactivity and intuitiveness,
significantly enhancing the efficiency and accuracy of path planning.
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Figure 19. Ship route planning simulation in the waters near Zhoushan, China (Zhoushan is a coastal
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of path planning results in the virtual system; (c) virtual model of a small ship; (d) cabin interior view
during simulation.

J. Mar. Sci. Eng. 2024, 12, 1587 24 of 28 
 

 

Figure 19. Ship route planning simulation in the waters near Zhoushan, China (Zhoushan is a 

coastal city in Zhejiang province of China): (a) satellite map of the waters near Zhoushan; (b) 

overhead view of path planning results in the virtual system; (c) virtual model of a small ship; (d) 

cabin interior view during simulation. 

    
(a) (b) (c) (d) 

Figure 20. Ship route planning simulation in the waters near Weihai, China (Weihai is a coastal city 

in Shandong province of China): (a) satellite map of the waters near Weihai; (b) overhead view of 

path planning results in the virtual system; (c) virtual model of a container ship; (d) on-board view 

during simulation. 

Showcasing the path planning process through visual simulation leverages the robust 

graphical processing capabilities of the virtual simulation platform, rendering a detailed three-

dimensional maritime environment and path planning outcomes on a computer screen. Users 

can operate the system via keyboard and mouse, enabling real-time monitoring of the vessel’s 

navigation route, obstacle avoidance, and navigation parameter changes. The system supports 

multi-perspective switching of the path planning results, including bird’s-eye view, ship’s 

perspective, and cabin view, aiding users in comprehending and assessing the effectiveness 

of the path planning. Test results indicate that the virtual path planning system can rapidly 

and accurately generate optimal routes and effectively avoid obstacles under various complex 

sea conditions. Compared to traditional path planning methods, the virtual path planning 

system offers greater interactivity and intuitiveness, significantly enhancing the efficiency and 

accuracy of path planning. 

    
(a) (b) (c) (d) 

Figure 21. Ship route planning simulation in the waters near Wenzhou, China (Wenzhou is a coastal 

city in Zhejiang province of China): (a) satellite map of the waters near Wenzhou; (b) overhead view 

of path planning results in the virtual system; (c) virtual model of a passenger ship; (d) on-board 

cabin view during simulation. 

Secondly, VR offers an immersive path planning experience. In constructing the VR 

interactive system, the HTC Vive Pro 2.0 set was selected as the hardware solution, which 

includes essential components such as trackers, VR controllers, and a VR headset [32]. 
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Figure 20. Ship route planning simulation in the waters near Weihai, China (Weihai is a coastal city
in Shandong province of China): (a) satellite map of the waters near Weihai; (b) overhead view of
path planning results in the virtual system; (c) virtual model of a container ship; (d) on-board view
during simulation.
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Figure 21. Ship route planning simulation in the waters near Wenzhou, China (Wenzhou is a coastal
city in Zhejiang province of China): (a) satellite map of the waters near Wenzhou; (b) overhead view
of path planning results in the virtual system; (c) virtual model of a passenger ship; (d) on-board
cabin view during simulation.

Secondly, VR offers an immersive path planning experience. In constructing the VR
interactive system, the HTC Vive Pro 2.0 set was selected as the hardware solution, which
includes essential components such as trackers, VR controllers, and a VR headset [32].

The system’s performance is illustrated in Figure 22, where the user is seated on a four-
degree-of-freedom motion simulation platform, operating the system with VR glasses and
controllers. The VR glasses immerse the user in a completely virtual ocean environment,
while the controllers are used to manage and adjust the ship’s path planning. The motion
simulation platform dynamically adjusts the seat’s posture and movements in real-time
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based on the ship’s state within the virtual environment, enhancing the user’s sense of
immersion and realism. This setup not only allows users to observe and modify the
path planning more intuitively but also provides an experience of the actual navigational
movements.
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The system also features an operational user interface, allowing users to configure
task operations. During system execution, it can display real-time attitude data curves, as
illustrated in Figure 23.
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The UI of the virtual path planning system encompasses various modules designed to
display and control the ship’s position and orientation in the virtual world, GPS coordinates,
ocean conditions, and real-world Inertial Measurement Unit (IMU) data. Specifically, the
UI presents the ship’s coordinates in the virtual environment, along with the roll, pitch, and
yaw angles. Additionally, the interface shows the current GPS latitude and longitude, wind
direction, and wind speed, as well as real-time IMU data on orientation, angular velocity,
and linear acceleration. These features provide users with a comprehensive operational
platform to monitor and adjust various parameters throughout the virtual path planning
process. Furthermore, the system continuously displays the ship’s motion-state curve data,
helping users visually understand the ship’s behavior under different sea conditions. These
data enable users to analyze and validate the effectiveness and stability of the path planning
algorithm. Moreover, the system supports real-time saving of attitude data, facilitating
subsequent data analysis and research.

Overall, the virtual path planning system, by integrating visual simulation and VR
technology, offers users a highly immersive and interactive operational environment. Users
can utilize VR headsets and controllers on a four-degree-of-freedom motion simulation
platform to adjust the ship’s path planning in real time. The system not only supports path
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planning and adjustments within the virtual environment but also simulates the motion
effects of actual navigation, enhancing the realism and user experience. The entire system is
designed to provide an efficient, intuitive, and accurate path planning test solution, offering
a novel and practical path planning testing platform for the autonomous navigation of
unmanned vessels.

5. Conclusions

This paper proposes a virtual path planning simulation testing system for ships, aim-
ing to address the high costs, low efficiency, and limitations of purely digital simulations in
maritime trials for unmanned vessels. By integrating virtual and numerical simulation tech-
nologies, this research systematically establishes a virtual testing environment unrestricted
by time and location, enabling intuitive demonstrations and comprehensive evaluations of
ship navigation performance. The paper develops a rapid roll angle calculation model for
ships based on a radial basis function neural network, with experiments demonstrating its
high accuracy in complex sea conditions, significantly outperforming random forest and
support vector machine models. Furthermore, it introduces a path optimization constraint
model that comprehensively considers path safety, navigation distance, and ship stability,
achieving optimal path planning through the PSO algorithm. Experimental results show
that this model excels in safety and navigation stability compared to traditional methods,
reducing the average roll angle of the planned route by 14.31%, albeit with an increase
in route length. The virtual simulation platform’s tests validated the efficiency and prac-
ticality of the path planning system. Users operate on a four-degree-of-freedom motion
simulation platform through visual simulation and VR equipment, observing and adjusting
path planning results in real-time, enhancing the operational experience and simulation
credibility. In conclusion, the virtual path planning simulation testing system proposed
in this paper effectively overcomes the limitations of purely physical and purely virtual
simulations, improving the efficiency and intuitiveness of autonomous navigation testing
for unmanned vessels, and providing a novel approach to ship path planning testing.

In future research, to address potential system failures or interference during ship
navigation, we plan to explore a broader range of planning scenarios and develop response
strategies for situations such as total power loss, propulsion failure, collisions with other
vessels, and collisions with floating obstacles (e.g., wreckage, debris, or floating containers).
We intend to integrate various path planning methods into the system for comparative
validation and analysis, aiming to further verify and enhance the system’s applicability
and robustness, ensuring its effective operation in diverse and challenging real-world
environments.
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