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Abstract: Aiming at the demand for long-range and high-resolution imaging detection of small
targets such as submerged submarine markers in shallow coastal waters, research on single-photon
lidar imaging technology is carried out. This paper reports the sequential two-mode fusion imaging
algorithm, which has a strong information extraction capability and can reconstruct scene target depth
and reflection intensity images from complex signal photon counts. The algorithm consists of four
steps: data preprocessing, extremely large group value estimation, noise sieving, and total variation
smoothing constraints to image the target with high quality. Simulation and test results show that
the imaging performance and imaging characteristics of the method are better than the current
high-performance first-photon group imaging algorithm, indicating that the method has a great
advantage in sparse photon counting imaging, and the method proposed in this paper constructs a
clear depth and reflectance intensity image of the target scene, even in the 50,828 Lux ambient strong
light and strong interference, the 0.1 Lux low-light environment, or the underwater high-attenuation
environment.

Keywords: imaging; single photon; lidar; sequential bimodal fusion; underwater

1. Introduction

In recent years, high-quality imaging technology in low-light and high-light-intensity
attenuation environments has received great attention. However, traditional optical detec-
tion, such as traditional laser radar, visible light detection, and fluorescence imaging, is
affected by the absorption and scattering of water molecules, dissolved substances, and
suspended particles, which not only reduces the intensity of light, but also expands the
pulse laser in the time domain and increases the spot radius in space, which affects the
detection accuracy [1–4]; thus, the practical application of detection is greatly restricted.
At present, single-photon lidar detection technology has aroused extensive research inter-
est [5–13], and has become an effective way to solve the problem of detection in low-light
and high-light-intensity attenuation environments.

As a key factor affecting the performance of single-photon lidar systems, the iteration
of imaging algorithms goes hand in hand with the progress of the system. At present,
in the field of single-photon lidar imaging, many researchers and scholars have made
quite good results [14–21]. Based on the imaging principle, data processing method, and
technical realization, the existing single-photon lidar imaging methods can be divided
into two major categories; one is based on the neural network [22,23], which extracts
the data information by designing various neural networks and then reconstructs the
target scene. However, the lack of large-scale pairwise single-photon lidar image training
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datasets, the long training time, the easy loss of high-frequency information at the edge,
the high cost of computational resources, and the high cost of hardware deployment in
the field deployment [24–27] make the single-photon imaging algorithms based on neural
networks suffer great limitations, and their actual deployment faces great difficulties [28,29].
In contrast, modeling-based imaging algorithms have demonstrated their efficiency and
environmental adaptability in many practical applications [30–37]. However, although 3D
point cloud imaging based on the modeling approach can enhance the perception of the
shape, size, and spatial location of objects, it has higher technical complexity, increased cost,
and higher processing power requirements [38], so 2D imaging technology is more suitable
for a wide range of practical application scenarios due to its lower technical requirements
and cost. In the existing single-photon 2D imaging algorithms, the fixed-pixel acquisition
time reconstruction method does not fully take into account the variability of the pixel echo
signals, which may lead to redundancy or insufficient acquisition time for overly bright
or dark scenes [39–42], and thus the imaging method is not optimal. Another 2D imaging
algorithm, based on the photon echo intensity, determines the pixel depth information,
among which the classic first-photon method [43] and first-photon group method [40] use
the “first” relevant photon information to reconstruct the target scene; however, according
to the description of the paper [43,44], it was found that the first-photon algorithm is not
suitable for complex environments, especially for environments with low signal-to-noise
ratios, while the first-photon group algorithm has better anti-noise performance, but the
“group” information needed for imaging needs to be manually tuned according to the
environment, which makes it difficult to adapt to the changing environment.

An efficient single-photon lidar imaging algorithm that can effectively extract the target
information is urgently needed for the high-resolution detection requirements in variable
and extreme environments, especially underwater environments. In this thesis, we report a
sequential two-mode fusion (STMF) imaging algorithm, which utilizes the fundamental
property that the scene information photons in the echo signal are differently distributed
from the noise photons in the time histogram to extract effective information. Compared
with the current high-performance first-photon group algorithm, this method can quickly
adapt to the current scene and perform high-quality depth imaging and reflection intensity
imaging without any parameter tuning. Finally, we verify the convenience and effectiveness
of the method through land and underwater experiments.

2. STMF Imaging Algorithm Modeling Approach

The signal photon counts have a small variance and show highly concentrated Gaus-
sian distribution characteristics, while the noise photon counts have a large variance and
the signal tends to cluster while the noise photons are scattered throughout the whole
period. Therefore, based on this characteristic, we propose the STMF imaging algorithm,
which is schematically shown in Figure 1.
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Figure 1. Schematic diagram of STMF imaging algorithm flow.

In Figure 1, the strategy of the STMF algorithm to reconstruct the target scene is divided
into four steps, which are (1) data preprocessing, (2) maximal group value estimation,
(3) pixel value filtering and replacement, and (4) total variation smoothing constraints.
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The data preprocessing step includes data reconstruction and data cleaning steps,
which are used to construct the returned array of the system into an array of image pixels,
remove noise initially, and locate the approximate range of the target. The principle is
shown in Figure 2.
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Figure 2. Schematic diagram of the data preprocessing steps. The information derived by the
system is a two-dimensional array, and the pixels are not arranged by the target pixel position. We
first reconstruct the order of the echo pixel data according to the system scanning law, and then
superimpose the third-dimension data of all pixels containing the echo information of the current
pixel. Since the reflection of the target is the most intense, the moment with the largest number of
echo photons is the approximate distance of the target determined by all pixels “voting”. This is
similar to the clustering rule.

To find a “specific target”, the target time range window can be set, and the window
can be used to scan near the superimposed peak point, which can not only filter out most
of the noise outside the window but also locate the target range, making the imaging more
targeted. This method is one of the advantages that other algorithms do not have.

In the subsequent information extraction process, firstly, the group interval in which
the signal echo photons are located is determined according to the aggregation characteris-
tics of the echo signal to initially filter the clutter interference and reduce the dependence on
the subsequent photons. Secondly, the sum of the number of group photons and the corre-
sponding time index are taken in the photon group interval, and the depth and reflectivity
maps are then obtained after the screening and replacement steps and the total variational
smoothing constraint steps. The algorithm interpretation is shown in Algorithm 1.

In Algorithm 1, num_of_bin is the number of bins of each pixel histogram, which
can be given instead by χ. num_of_pixesl is the number of pixels in each image datum.
time_of_per_bin is the time duration of each bin. location_of_data is the storage location after
the echo data are acquired. nindices,num

x,y indicates the num bin of the indices group of the
current pixel. Tχ

indices,max indicates the bin corresponding to the maximum photon number
of a bin in an indices group among all bin data of the current pixel. Di f f (Tχ

indices,max)

and Di f f (Nχ
sum,grouprange) are the differences between the meantime, the mean number of

photons in the scanning window of the current pixel time value, and the photon value. ψ is
the parameter used to adjust the pixel excess. χnew

x,y and nχ,new
x,y are the reflection intensity

and time matrices adjusted by the parameter ψ.
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Algorithm 1. STMF algorithm interpretation

Input: num_of_bin, num_of_pixels, time_of_per_bin, locations_of_data
Function STMF (num_of_bin, num_of_pixels, time_of_per_bin, locations_of_data):

//Maximum group search
for all indices do

Tχ
indices,max ← χnindices,num

x,y

end
//Pixel value filtering and replacement
for all indices do

Di f f (T χ
indices,max

)
← Di f f (N χ

sum,group range

)
< 2 ∗ η

End
//TV smoothing constraint
for all indices do

χ,new
x,y ← Tχ,new

x,y ψ

end
Output: Target Depth image and Intensity image

2.1. Maximum Group Estimation

Assuming that χ is the number of bin cells of each pixel histogram in the test, the pixel
time and photon number obtained by the test are as in Equation (1), the corresponding time
of the maximum group data is given by Equation (2), and the number of echo photons is
given by Equation (3).{

t1
x,y, t2

x,y, t3
x,y, . . . . . . , tχ

x,y

} {
n1

x,y, n2
x,y, n3

x,y, . . . . . . , nχ
x,y

}
(1){

tγ,1
x,y , tγ,2

x,y , tγ,3
x,y , . . . . . . , tγ,ζ

x,y

}
(2){

nγ,1
x,y , nγ,2

x,y , nγ,3
x,y , . . . . . . , nγ,ζ

x,y

}
(3)

In the above formula, γ is the ordinal number of the (x, y) position pixel group, ζ is
the ordinal number of the bin within the group, tχ

x,y is the moment of the χ-th bin of (x, y)
position pixel, tγ,ζ

x,y is the corresponding moment of the bin within the group, and nγ,χ
x,y is

the number of photons arriving at the corresponding moment of the bin within the group.
x, y in Equations (1)–(3) denotes the coordinates of the pixel at (x, y). After obtaining the
photon data from Equation (3), the index in Equation (2) corresponding to the maximum
value in Equation (3) can be obtained, and the photon number and time index are shown in
Equation (4) and Equation (5), respectively.

Nγ
x,y

indices
=

ζ=ζ

∑
1

nγ,ζ
x,y (4)

Tγ
x,y

indices
= indices[argmax(

{
nγ,1

x,y , nγ,2
x,y , nγ,3

x,y , . . . . . . , nγ,ζ
x,y

}
)] (5)

In the above equation, nγ,ζ
x,y is the number of photons arriving at the corresponding

moment in the bin cell of the group, Nγ
x,y

indices
is the total number of photons within the pixel

group at (x, y), Tγ
x,y

indices
is the moment index corresponding to the bin maximum photon value

within the position pixel group at the (x, y) location, and γ is the pixel group serial number
at (x, y) location. To reduce the problem of pixel value loss when the number of echo



J. Mar. Sci. Eng. 2024, 12, 1595 5 of 26

photons is low, we sum the photons in the group when determining the current number of
pixel photons.

The initial reflection intensity map and depth map of the target scene can be obtained
based on the sum of the maximum number of photons per pixel Nγ

x,y
indices

and the corresponding

moment index Tγ
x,y

indices
. The diagram of pixel value selection is shown in Figure 3.
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2.2. Pixel Value Filtering and Replacement

Because the depth and reflection intensity of the current pixel and the adjacent pixel
are approximately equal, this relationship can be used to replace the anomalous pixel [44].
Assuming that the root-mean-square width of the system response function (the distribution
function of the number of single pulse-echo photons on the time axis) is η, the median
replacement strategy is shown in Figure 4.
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(1) To realize the scanning replacement of the edge pixels of the image, one layer of
the 0-value pixel is added to the edge of the original image, i.e., assuming that the original
image is 64 × 64 pixels, after adding the edge pixels, it becomes an image of 66 × 66 pixels
in size; the schematic of the 0-value expansion and scanning is shown in Figure 5.
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well, a layer of 0 values is extended without introducing added value. The scanning window scans
horizontally from left to right in step 1 and pixels are replaced according to Equation (6), then scanned
for the next row until the scan is completed.

(2) Utilizing the correlation of spatial pixels, the current pixel moment value Tx,y is
compared with the average value of spatial pixels Taverage

x,y , and whether to change the
current pixel value is determined by Equation (6).

Tγ,new
x,y

indices
=


Tγ

x,y
indices

∣∣∣∣∣ Tγ
x,y

indices
− Taverage

x,y

∣∣∣∣∣ ≤ 2 · η

Taverage
x,y

∣∣∣∣∣ Tγ
x,y

indices
− Taverage

x,y

∣∣∣∣∣ > 2 · η
(6)

In Equation (6), Tγ,new
x,y

indices
is the photon arrival time after the replacement strategy, Taverage

x,y

is the time flight value averaged in the spatial pixel, Tx,y
indices

is the current pixel time-of-flight

value, and η is the root-mean-square width of the system response function. We assume
that the time flight values Taverage

x,y represented by all pixels in the entire spatial pixel are
averaged instead of excluding the current pixel value and then averaging it. This is because
it is not possible to determine which of the current pixel and the domain pixel are noisy.
When the absolute value of the difference between the current pixel time-of-flight value
Tγ,new

x,y
indices

and the mean value Taverage
x,y of the 3 × 3 spatial pixels is not greater than 2η, then the

current pixel time Tγ,new
x,y

indices
remains unchanged. When the absolute value of the difference

between the current pixel time-of-flight value Tx,y
indices

and the mean value Taverage
x,y of the

3 × 3 spatial pixels is greater than 2η, then the current pixel value Tγ,new
x,y

indices
needs to be

replaced with the mean value Taverage
x,y .

After replacement, the difference between the abnormal value (time value/distance
value) and the surrounding pixels can be observed. If the abnormal value is too much, the
spatial pixel group range needs to be reset or the secondary replacement can be considered.

Compared with the first-photon group imaging algorithm, a post-feedback step is
introduced for pixel value screening and replacement in the STMF imaging algorithm.
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When the evaluation index after replacement is below the threshold, resetting the spatial
pixel group range or secondary replacement can be considered.

2.3. Total Variation Smoothing Constraints

After obtaining the replaced pixels data, the image is smoothed using the optimal
image total variation smoothing constraint method [44–46]. The smoothing rule is defined
by Equation (7), and its flow diagram is shown in Figure 6.

T̃γ,new
x,y

indices
= argmin

T̃γ,new
x,y

indices

[
(T̃γ,new

x,y
indices

− Tγ,new
x,y

indices
) + ψ · f (T̃γ,new

x,y
indices

)

]
(7)
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will be smoother. In the experiment,

to ensure that the flight time is as accurate as possible and the image is smoothed, we take

ψ = 0.1. In Equation (7), f (T̃γ,new
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) can be defined by Equation (8).
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In Equation (8), f (T̃γ,new
x,y

indices
) is the defining function of the difference size between

the current pixel and the neighboring pixels, T̃γ,new
x,y

indices
is the time matrix after smoothing

constraints of x ∗ y pixel sizes, T̃γ,new
x+1,y

indices

is the neighboring pixel value of the current pixel

horizontally, and T̃γ,new
x,y+1

indices

is the neighboring pixel value of the current pixel vertically.

After the maximum group estimation, pixel value filtering and replacement, and the
total variation smoothing constraint step, the final depth image can be obtained.
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3. Terrestrial Imaging Test Analysis

To verify the superiority of the STMF imaging algorithm in performance compared
to the current high-performance first-photon group imaging algorithm, multiple sets of
land experiments were performed. Secondly, since underwater experiments are more
complicated and costly than land experiments, the effects of external light intensity, the
number of laser pulses, and the distance from the target scene on the imaging results were
analyzed in land experiments to provide experimental references for further underwater
experiments.

3.1. Comparative Analysis of Imaging Effect

The first-photon group imaging algorithm shows great superiority relative to previous
imaging algorithms. To verify that the STMF imaging algorithm reported in this paper is
more convenient and has a better imaging effect relative to the first-photon group algorithm,
we first launched single-photon imaging tests on land. We built a single-photon lidar; its
working principle is in Figure 7.
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Figure 7. Single-photon lidar working schematic. 1: Upper computer, 2: Heat exchanger, 3: Beam
expander, 4: Open-aperture reflector, 5: Galvanometer, 6: Beam and target, 7: Radar window glass,
8: Lens, 9: Filter.

The MCC-532-5 laser (wavelength 532 nm, repetition frequency 5 kHz, single pulse
energy 30 µJ) is used to emit pulsed laser light, while the photodetector (SPAD) outputs
an electrical pulse synchronization signal after the pulsed laser light is detected, which is
captured by the time-dependent photon counting module (TCSPC), and starts timing. The
pulsed laser is injected through the shaping optical path to increase the beam diameter and
reduce the divergence angle, and it scans the target after changing the direction by the two-
axis galvanometer. When the photons return to the system in the form of diffuse reflection
from the target point of the target, they are coupled into the echo receiving module after
changing the propagation direction by the two-axis galvanometer again. The SPAD detector
generates an electric pulse signal immediately after receiving the echo photons, and the
time-correlation photon counting (TCSPC) module subtracts the time of the electrical signal
and the time of the synchronization signal when the pulse laser is emitted, obtains the
total flight time of the outgoing photons, and finally calculates the numerical distance of
the target in the computer. The input and output signals relied on by each module in the
system are managed by the signal control module, and the data flow of the time-correlation
photon counting (TCSPC) module is read directly by the host computer and then processed
by the software algorithm for imaging. In this system, FPGA is responsible for the key



J. Mar. Sci. Eng. 2024, 12, 1595 9 of 26

tasks of data synchronization and system control, to ensure the accurate synchronization of
the laser emission and detector through timing control, and to control the working mode of
the galvanometer and other modules. The function of the heat exchanger is mainly to carry
out thermal management and thermal control of the laser, galvanometer, TCSPC, and other
modules to maintain the stable operation of the system.

In the experiment, the imaging scene is about 40 m, the number of scanned pixels
is 64 × 64, and the imaging targets are three sets of targets, which are the regular target
plate (Figure 8), complex geometry target (Figure 9), and multi-depth parameters targets
(Figure 10). We use the first-photon group algorithm and STMF imaging algorithm to
image the three sets of scenes, respectively, and the imaging effects are comprehensively
analyzed using Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and the
Structural Similarity Index (SSIM) to comprehensively analyze the imaging effect. MSE
is a measure of the difference between the predicted value of the model and the actual
observed value, calculated by summing the square of the difference between the predicted
value and the actual value and averaging it. RMSE is the square root of MSE and provides
a standardized measure of prediction error that is more intuitive. The SSIM is a measure of
the similarity of two images, which takes into account brightness, contrast, and structural
information. The selection of MSE, RMSE, and SSIM parameters can improve the evaluation
of single-photon lidar imaging results because they provide evaluation information from
different perspectives. MSE and RMSE are directly concerned with the difference between
the predicted value and the actual value, and are suitable for quantifying the prediction
accuracy of the model. The SSIM focuses on the visual quality of the image and can reflect
the human eye’s perception of the change in the image structure, which is suitable for
evaluating the visual similarity of the imaging results. These three parameters can be used
to evaluate the accuracy and image quality of single-photon lidar.
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The thing to note here is that the first-photon group algorithm currently shows great
advantages in single-photon imaging algorithms (Maximum likelihood estimation, Peak
method, Cross-correlation method, Shin algorithm, Unmixing algorithm, first-photon
imaging algorithm, etc.), and the simple logic also makes it easier to deploy [46–49]. So,
our proposed algorithm will be directly compared with the first-photon group algorithm.

In Figure 8, the part of the imaging target facing the single-photon lidar system is a
regular 10 cm × 10 cm square, the rest of the part is a base; the base is not the main imaging
scene, it mainly plays a role in supporting and adjusting the height. In Figure 9, the part of
the imaging target facing the single-photon lidar system has a circle, rectangles of different
sizes, and so on. Similarly, the remaining part is a base, which is not the main imaging
scene and mainly supports and adjusts the height of the imaging target. In Figure 10, the
part of the imaging target facing the single-photon lidar system has six square squares
with different depths (the middle square is the 0-depth datum to view the entire target,
and the rest of the numbers are the depth from the datum), with a length and width of
10 cm, and a minimum depth resolution of up to 5 cm. In addition, as in Figure 10, three
squares in the right column have three kinds of reflectivity, and the experiment will also
test if the STMF algorithm can distinguish between targets with the same scene depth and
different reflectivity.

It is worth mentioning that, to ensure the randomness and fairness of the test, the data
of the three targets are randomly selected from the results of multiple data acquisition,
which are tested and evaluated using the first-photon group and the STMF imaging algo-
rithm, respectively. In addition, the key to whether effective information can be collected
from the echo signal is the second step of the algorithm, and the subsequent step is the
noise reduction step after the information extraction, so the imaging effect is compared
between the first-photon group and the STMF imaging algorithm through the information
extraction step.

Figures 11–13 are the echo depth maps and reflectivity maps formed at low pulse
numbers, so the number of photons reflected (noise photons + signal photons) is relatively
small, and the 5000-pulse maps imaged with high fractional detailed display as the reference
maps are shown in Figure 14.

Analyze the first-photon group and STMF, and evaluate the imaging algorithms in
terms of MSE, RMSE, and SSIM as shown in Tables 1 and 2 (I represents the regular target
plate, II represents the complex geometry target, III represents multi-depth parameters target).
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Figure 14. High-resolution detailed display of the imaged 5000-pulse map as a reference map. The 
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the reflection intensity maps.

By comprehensive comparison of the data in Tables 1 and 2, the performance of the two
algorithms is different in different scenarios with low pulse numbers, and the integrated
MSE, RMSE, and SSIM evaluation values, although the first-photon composition imaging
algorithm shows a slight advantage in some scenarios. For example, in the second type
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of target imaging experiment, the RMSE index of the STMF algorithm is reduced by 8.7%
compared with the first-photon group algorithm, which reflects less degree error reduction.
However, the SSIM is increased by 12.3%, which reflects better similarity with the original
scene. In other targets, STMF shows better restoration of the original scene compared with
the first-photon group algorithm. The algorithm displays the image when the display
range of the impact will greatly affect the evaluation value, and through locating the range,
the first step of the STMF algorithm is preprocessed. This is another advantage that the
first-photon set algorithm does not have. The STMF imaging results can be seen in Figure 15.
Therefore, on the whole, the STMF imaging algorithm performs better.

Table 1. Comparison of MSE, RMSE, and SSIM evaluation values of depth maps of first-photon group
and STMF imaging algorithms.

Methods
Index

MSE RMSE SSIM

First-photon
group

I 1944.474829 44.096200 0.719074
II 2597.687134 50.967511 0.677240
III 4475.418699 66.898570 0.672388

STMF
I 1877.190681 43.326559 0.799389
II 3072.724840 55.432164 0.760533
III 1508.434584 38.838571 0.786565

Table 2. Comparison of MSE, RMSE, and SSIM evaluation values of reflected intensity maps for
first-photon group and STMF imaging algorithms.

Methods
Index

MSE RMSE SSIM

First-photon
group

I 4291.454902 65.509197 0.550790
II 3478.640814 58.980004 0.677963
III 4152.372382 64.438904 0.627105

STMF
I 3064.493265 55.357865 0.577002
II 2620.730375 51.193070 0.625744
III 4482.540446 66.951777 0.567506
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Figure 15. Depth maps of the three targets after adjusting the pixel display range at a single pixel
pulse count of 5 through the STMF imaging algorithm.

From the multi-depth parametric target analysis, it can be seen that the depth resolu-
tion of the system equipped with STMF can be up to 2.5 cm (middle column) in the case
of very low echo photons. To further demonstrate the practical applicability of the STMF
algorithm relative to the first-photon group algorithm, the following is a continuation of
the comparison of the two algorithms from the perspective of real-world applications.

The µ value is an important parameter of the first-photon group single-photon imaging
technique. According to the discussion in reference [45] and the parameter simulation and
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test of the first-photon group algorithm above, a small µ value indicates that the definition
of the first signal photon group is very tight, and a large number of very concentrated
photon counts must occur to obtain the first signal photon group. The result is high
robustness to noise, because the noise just accumulates, but the probability of satisfying
the condition is smaller, and the efficiency of the whole method will be reduced, that is,
more accumulation time will be needed to obtain the first signal photon group aggregation
condition. On the contrary, if the µ value is large, the conditions of the first signal photon
group are easily satisfied, and the imaging efficiency of the whole system will increase,
but the probability that the noise just meets the aggregation conditions will increase, and
the robustness to the noise will decrease. Therefore, the determination of the µ value is
very important. However, because of the above characteristics, specific parameters need to
be adjusted in different scenarios and targets with different reflectance, and the practical
application is more complicated. This is exactly what the STMF imaging algorithm avoids.

From Figures 16–19, it can be seen that the choice of the threshold value has a direct
impact on the imaging results, and the results of parameters µ = 1, µ = 2, µ = 3, µ = 4, µ = 5
need to be viewed in combination with the MSE, RMSE, and SSIM values rather than a
single value because the context also affects the metric values. In practical application
scenarios, since the µ values cannot be tuned autonomously, the actual imaging results
will be greatly reduced, and even there will be no target, as shown in Figures 16 and 17.
Therefore, the determination of the µ value based on prior experience is obviously not
conducive to the actual situation in the changeable environment, so the application of the
first-photon group algorithm in the actual environment has certain limitations. The STMF
imaging algorithm reported in this paper employs a maximum group selection strategy,
which maintains the ability of the first-photon group algorithm to select signal clusters and
avoids the shortcomings of parameter settings.
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Figure 17. Reference reflection intensity image (pulse number 5000, top left). First-photon group imag-
ing algorithm with parameters µ = 1 (top center), µ = 2 (top right), µ = 3 (bottom left), µ = 4 (bottom
center), µ = 5 (bottom right) for reflected intensity imaging results; the tests (MSE, RMSE, SSIM)
are (2940.371267, 54.225190, 0.636347) (4291.454902, 65.509197, 0.550790) (5879.315111, 76.676692,
0.568072) (6842.660833, 82.720377, 0.577880) (7041.941686, 83.916278, 0.578380).
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3.2. STMF Imaging Algorithm Noise Reduction Results

The advantages of the STMF imaging algorithm can be seen through the above analysis,
and the next test was conducted to further observe the imaging results using the STMF
imaging algorithm. At 0.1 Lux light intensity, 64 × 64 scanning pixel number, 5 pulses at
5 kHz repetition frequency, 30 µJ single-pulse power, and 532 nm laser wavelength at 40 m,
the three sets of target imaging results and the imaging reference map (maximum group
estimation + pixel value filtering and substitution + total variance smoothing constraints)
are shown in Figure 20, Figure 21, and Figure 22, respectively.
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Figure 20. Regular target maximum group estimation depth imaging map (left), depth optimization
map after pixel value screening replacement + total variance smoothing constraints (middle), depth
map of 5000-pulse STMF algorithm (right).

In Table 3, I represents the regular target plate, II represents the complex geometry
target, III represents the multi-depth parameters target. Through observing Figures 20–22,
the three types of targets, MSE decreased (24.3%, 13.0%), (31.5%, 17.3%), and (72.2%,
47.3%), respectively, while RMSE increased by 15.6%, 19.7%, and 22.4%, respectively. It was
found that the STMF imaging algorithm effectively extracts the target information after
the maximum group estimation in the case of very few echo photons (the number of echo
photons per pixel of the scene is less than 5) (Figure 22 left column), but the echo signal also
contains more pixel-missing values and noise signals (Figure 22 left column). After the pixel
value screening replacement + total variance smoothing constraint, and benchmarking
against Table 3, it was found that the pixel anomalies obviously disappear after the noise
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reduction step of the algorithm, which shows that the subsequent two steps of the STMF
imaging algorithm have very good noise reduction and compensation characteristics.
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Table 3. Evaluation index values of three types of targets before and after the STMF noise reduc-
tion step.

Methods
Index

MSE RMSE SSIM

STMF

I (before noise reduction) 1236.794840 35.168094 0.789318
I (after noise reduction) 937.125737 30.612509 0.912257

II (before noise reduction) 878.321448 29.636488 0.749681
II (after noise reduction) 601.322533 24.521879 0.897178

III (before noise reduction) 1448.678334 38.061507 0.743624
III (after noise reduction) 402.982322 20.074420 0.910434

In addition, from Figure 22, we can observe that the algorithm can clearly distinguish
the three targets with the same depth and different reflectivity of 10 cm side length on the
rightmost side of the target and 2.5 cm depth difference (middle column) with very low
echo photon count, which shows the excellent performance of the algorithm.

3.3. Analysis of Imaging Influences

In the process of applying single-photon lidar imaging in the actual environment,
the external lighting conditions, the scene distance, and the number of pulses may have
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an impact on the imaging effect. The increase in the number of pulses can significantly
improve the temporal resolution and enhance the signal-to-noise ratio through signal
accumulation, thus improving the clarity and accuracy of the imaging. The distance of
the scene is directly related to the intensity and depth resolution of the signal. The farther
the distance, the greater the signal attenuation, which puts forward higher requirements
for the design of the imaging system. The level of background noise is determined by the
light intensity, and too much light will increase the noise and reduce the image quality.
Taking these key factors into consideration, the imaging performance of single-photon
lidar can be effectively improved through fine adjustment and algorithm optimization
to ensure that high detection accuracy can be maintained under different environmental
conditions. Thus, the influencing factors are analyzed, which can be used as a reference for
the practical application.

3.3.1. Light Intensity Impact Analysis

The MSE, RMSE, and SSIM values of the STMF imaging algorithm to analyze the
direct imaging effect of the multi-depth parametric target scene are shown in Table 4 (some
example points are shown). To visualize the imaging effect, the analysis data are shown in
Figure 23.

Table 4. Depth imaging MSE, RMSE, and SSIM values with external light intensity (some example
points are shown).

Intensity/Lux
Index

MSE RMSE SSIM

0.1 1805.239107 42.488105 0.862387
16146 2094.045478 45.760742 0.865294
50828 3542.234712 59.516676 0.747120
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Figure 23. Curves of MSE, RMSE, and SSIM values of the imaging results varying with external
light intensity.

It can be seen that with the enhancement of the external light intensity, the MSE and
RMSE are enhanced and the SSIM is reduced, which shows that the light intensity reduces
the imaging effect. The external light intensity mainly manifests itself as noise photons that
enhance the received photons. As far as this is concerned, the single-photon lidar is more
applicable in the dark ocean when performing practical detection.
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3.3.2. Line Art Figures

The MSE, RMSE, and SSIM values of the STMF imaging algorithm to analyze the
direct imaging effect of the multi-depth parameters target scene are shown in Table 5 (some
example points are shown). To visualize the imaging effect, the analyzed data are shown in
Figure 24.

Table 5. Depth imaging MSE, RMSE, and SSIM values a with scene distance (some example points
are shown).

Distance/m
Index

MSE RMSE SSIM

25 1895.817939 43.540991 0.869116
40 2094.045478 45.760742 0.865294
55 2873.154976 53.601819 0.837796
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In Figure 24, the anomalous value of the 10 m scene is mainly due to the strong noise
inside the system, and after ignoring these data, it can be seen that with the increase in
the scene distance, the MSE and RMSE are enhanced, and the SSIM is reduced, which
explains that the increase in the scene distance reduces the imaging effect. Concerning
this, the optimum detection distance exists for single-photon lidar when performing actual
detection, and future tests can be performed to determine the optimum detection distance
for this system to guide system optimization.

3.3.3. Pulse Number Impact Analysis

The MSE, RMSE, and SSIM values of the STMF imaging algorithm to analyze the
direct imaging effect of the multi-depth parameter target scene are shown in Table 6 (some
example points are shown). To visualize the imaging effect, the analyzed data are shown in
Figure 25.

Table 6. Depth imaging MSE, RMSE, and SSIM values with number of pulses (some example points
are shown).

Pulse Number
Index

MSE RMSE SSIM

5 1888.402562 43.455754 0.874237
20 1350.848840 36.753896 0.903139
50 1059.433603 32.548942 0.926321
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Figure 25. Curves of MSE, RMSE, and SSIM values of the imaging results varying with the number
of pulses.

In Figure 25, it can be seen that with the enhancement of the number of pulses, the MSE
and RMSE decreased and the SSIM was enhanced, which indicates that the increase in the
number of pulses enhances the imaging effect. For that matter, there is a cumulative time
advantage of the single-photon lidar when performing actual detection, and the number of
detection pulses can be appropriately increased in subsequent tests to guide the system
optimization. To further remove the noise and enhance the imaging effect, we employed
contrast enhancement. High-frequency information enhancement was completed with a
PnP-ADMM algorithm iteration. We could have employed wavelet transform and ESRGAN
enhancement, but the index evaluation is better than this method. In future research, we
will try non-local spatial pixel replacement, superpixel, and other methods.

Overall, the single-photon lidar we built and equipped with the STMF imaging algo-
rithm reported in this paper demonstrated good imaging performance as well as practicality,
and its key imaging factors were analyzed in detail, which will be taken into account ap-
propriately to optimize the system in future experiments.

4. Analysis of Underwater Imaging Tests

In the underwater environment, due to the strong absorption and scattering of light,
traditional imaging technology faces many challenges, and it is difficult to obtain high-
contrast and high-resolution images; so, the practical application of single-photon lidar
underwater will be of great significance. Subject to the test conditions, the test was carried
out in a pool constructed with a length of 12 m, a water depth of 1 m, and a water attenuation
coefficient of 0.457 m−1. The test environment is photographed in Figure 26.
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The lateral resolution, distance resolution, and color resolution were tested with a
multi-depth parameters target. To further test the resolution ability of the algorithm, the top
square in the middle column of the target was decomposed into four small square blocks
with side lengths of 2.5 cm and depth difference of 2.5 cm, as shown in Figure 26c. The
middle square is the 0-depth datum to view the entire target, and the rest of the numbers
are the depth from the datum. The test results are shown in Figures 27–30. It should be
noted that the pool is not wrapped with light-absorbing material to simulate the actual
environment.
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Figure 34. Reflection intensity imaging map of underwater multi-depth parameters target with pulse
number 500 (Left picture is before noise reduction, right picture is after noise reduction, µ = 29).

The test scene was at a distance of about 12 m, and the imaging under 5000 pulses
obtained by the independent night test was also used as a reference (Figure 22 right column)
to evaluate the detail retention effect by MSE, RMSE, and the SSIM; the index of underwater
test depth map is shown in Tables 7 and 8.

Table 7. MSE, RMSE, and SSIM evaluation metrics of underwater depth map (STMF).

Pulse Number
Index

MSE RMSE SSIM

50
before noise reduction 4967.051578 70.477313 0.656152
after noise reduction 5162.811476 71.852707 0.689871

500
before noise reduction 3974.910685 63.046893 0.685066
after noise reduction 3978.879936 63.078363 0.716883

Table 8. MSE, RMSE, and SSIM evaluation metrics of underwater depth map (first-photon group).

Pulse Number
Index

MSE RMSE SSIM

50
before noise reduction 9343.743232 96.663040 0.611259
after noise reduction 10,459.830375 102.273312 0.615554

500
before noise reduction 10,699.728375 103.439491 0.631418
after noise reduction 10,820.452469 104.021404 0.617580
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According to the results, the imaging map retains more detailed information, and the
increase in the number of pulses enhances the effectiveness. For the STMF algorithm, for
both 50 pulses or 500 pulses, SME and RMSE have a relatively obvious reduction, and the
SSIM has a relatively obvious improvement. However, in the imaging of the first-photon
group algorithm, only the rough outline of the target can be obtained; even if the display
range is adjusted, the details cannot be obtained.

In addition, in Figures 27 and 29, the imaging results in the right column show that
the STMF algorithm can distinguish targets with different resolutions of 10 cm in the
above environment, and the lateral resolution is up to 2.5 cm. From the first square in
the middle column, it can be seen that the distance resolution is also up to 2.5 cm, which
shows the algorithm’s excellent underwater detection performance. In contrast, although
the first-photon group algorithm has also achieved good imaging effects on land, it is a
great challenge to image complex targets under a loaded underwater environment. Both
depth maps and reflection intensity maps can only see the approximate shape of the target,
but the resolution is far from the effect of the STMF algorithm.

5. Conclusions

In this paper, we report a sequential two-mode fusion imaging algorithm, which
achieves excellent performance of 2.5 cm horizontal and 2.5 cm vertical resolution on an
autonomous single-photon lidar with a water attenuation coefficient of 0.457 m−1 at a
scene depth of 12 m through three steps. After the description of the method and all the
experimental analysis, it was found that the STMF algorithm not only solves the problem of
manual frequent parameter adjustment for the first-photon set algorithm with an excellent
imaging effect at present, but also has the ability to effectively extract information from
small echo photon numbers and in challenging underwater environments. The excellent
performance is a firm step forward for underwater high-resolution optical imaging. This
algorithm and the matching single-photon lidar achieve fine imaging of complex targets
underwater, and with the upgrading of test conditions, the underwater detection range is
expected to be further improved.

In future research, we will further optimize the algorithm performance and reduce the
algorithm imaging time in the expectation of real-time underwater high-resolution imaging.
In addition, we will also focus on studying the transmission characteristics of a pulsed laser
underwater, including its attenuation law in different water environments, broadening
effect, and how to reduce the impact of scattering and absorption through technical means,
to optimize the design of an underwater lidar system.
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