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Abstract: Affected by the complex underwater environment and the limitations of low-resolution
sonar image data and small sample sizes, traditional image recognition algorithms have difficul-
ties achieving accurate sonar image recognition. The research builds on YOLOv7 and devises an
innovative fast recognition model designed explicitly for sonar images, namely the Dual Attention
Mechanism YOLOv7 model (DA-YOLOv7), to tackle such challenges. New modules such as the
Omni-Directional Convolution Channel Prior Convolutional Attention Efficient Layer Aggrega-
tion Network (OA-ELAN), Spatial Pyramid Pooling Channel Shuffling and Pixel-level Convolution
Bilat-eral-branch Transformer (SPPCSPCBiFormer), and Ghost-Shuffle Convolution Enhanced Layer
Aggregation Network-High performance (G-ELAN-H) are central to its design, which reduce the
computational burden and enhance the accuracy in detecting small targets and capturing local fea-
tures and crucial information. The study adopts transfer learning to deal with the lack of sonar
image samples. By pre-training the large-scale Underwater Acoustic Target Detection Dataset (UATD
dataset), DA-YOLOV7 obtains initial weights, fine-tuned on the smaller Smaller Common Sonar
Target Detection Dataset (SCTD dataset), thereby reducing the risk of overfitting which is commonly
encountered in small datasets. The experimental results on the UATD, the Underwater Optical Target
Detection Intelligent Algorithm Competition 2021 Dataset (URPC), and SCTD datasets show that
DA-YOLOV7 exhibits outstanding performance, with mAP@0.5 scores reaching 89.4%, 89.9%, and
99.15%, respectively. In addition, the model maintains real-time speed while having superior accuracy
and recall rates compared to existing mainstream target recognition models. These findings establish
the superiority of DA-YOLOV7 in sonar image analysis tasks.

Keywords: deep learning; underwater images; underwater target recognition; sonar images; im-
proved YOLO

1. Introduction

In underwater target detection, there is an increasing demand for high-precision
recognition in marine resource development, underwater construction, and marine eco-
logical monitoring. Sonar image target identification plays a crucial role [1–4]. However,
traditional image recognition algorithms face challenges due to the complex underwater
environment, low-resolution sonar image data, and small sample sizes, which result in
difficulties in achieving accurate recognition. Therefore, there is a need to develop more
effective methods to improve the performance of sonar image target recognition.

This research aims to tackle these challenges by leveraging deep learning techniques.
Specifically, we strive to build a high-performance underwater sonar image target recog-
nition model. This model should be able to handle the complexities of the underwater
environment, enhance the accuracy of target recognition, and solve the problem of limited
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sample sizes. The novelty of this research lies in leveraging deep learning techniques to
build a high-performance underwater sonar image target recognition model, namely the
Dual Attention Mechanism YOLOv7 model (DA-YOLOv7). This model incorporates new
modules such as the Omni-Directional Convolution Channel Prior Convolutional Atten-
tion Efficient Layer Aggregation Network (OA-ELAN), Spatial Pyramid Pooling Channel
Shuffling and Pixel-level Convolution Bilateral-branch Transformer (SPPCSPCBiFormer),
and Ghost-Shuffle Convolution Enhanced Layer Aggregation Network-High performance
(G-ELAN-H) to enhance the model’s ability to handle the complexities of the underwater
environment, improve the accuracy of target recognition, and address the issue of lim-
ited sample sizes. By doing so, we hope to significantly contribute to underwater target
detection and provide more reliable and efficient solutions for various applications.

Inherent in sonar imagery lies its origin in imaging sonars. When operating as an
active sonar system, the process unfolds through the following steps: (I) The sonar system
initiates the emission of sound waves; (II) these waves traverse through water, bouncing
off underwater targets and returning; (III) the reflected echoes retrace their path back to the
sonar system; and (IV) image formation ensues from the sophisticated processing of these
echoes. The imaging procedure is susceptible to medium effects. Due to the complexity
and inherent uncertainty of the underwater environment, echo signals often encounter
challenges such as attenuation and distortion, resulting in lower contrast, reduced resolu-
tion, blurred target boundaries, and scarcity of discernible features in the generated sonar
images [5–7].

Traditional sonar image target identification methodologies predominantly employ
pixel-based features, grayscale values, or prior assumptions about the targets [8–12], of-
ten resulting in limited accuracy. Recently, inspired by the exceptional performance of
deep convolutional neural networks (DCNNs) in optical image object detection [13–16],
researchers have extensively investigated the application of deep learning in enhancing
sonar image recognition. For instance, Fan and colleagues [17] designed a 32-layer deep
residual network, substituting the Residual Network (Resnet50/101) in the Mask Regions
with Convolutional Neural Network features (R-CNN) to enhance detection efficiency
while minimizing trainable parameters, with implications for real-time operations and
embedded systems. Zhu and co-authors [18] advanced this by integrating the Swin Trans-
former and Deformable Convolutional Networks (DCN) to create a Swin Transformer Based
Anchor-Free Network (STAFNet). This no-anchor detection model surpasses conventional
CNN-based solutions like Faster R-CNN and Fully Convolutional One-Stage Object De-
tection (FCOS) in detecting victims, vessels, and aircraft within their forward-facing sonar
dataset. Zhou et al. [19] enhanced the detection and recognition of underwater biological
targets in the Underwater Optical Target Detection Intelligent Algorithm Competition 2021
Dataset (URPC) through the fusion of image enhancement techniques, expanded Visual
Geometry Group 16-layer network (VGG16) feature extraction, and a Faster R-CNN incor-
porating feature maps. Chen and collaborators [20] introduced IMA (Invert Multi-Class
AdaBoost), a weighting scheme based on sample distribution, to mitigate noise-induced
degradation in detection accuracy. Qiao and his team [21] developed a real-time and
precise classifier for underwater targets, utilizing a combination of Local Wavelet Acoustic
Pattern (LWAP) and Multilayer Perceptron (MLP) networks to tackle the complexities of
underwater target classification. While these methods leverage CNNs to extract features,
cascade convolutional layers, pool dimensions, and classify them through fully connected
layers, they still exhibit room for improvement in accuracy when confronted with intricate
sonar imagery.

Additionally, some scholars have adopted the YOLO (You Only Look Once) frame-
work, reframing the sonar image target recognition problem as a regression task that directly
predicts target locations and categories, optimizing recognition speed and precision. No-
table examples include the work of [22,23], which integrated YOLOv3’s principles by
incorporating feature pyramids for multi-scale feature aggregation. Fan and his team [24]
built upon the Adaptive Spatial Feature Fusion (ASFF) concept [25] to refine the YOLOv4
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backbone, enhancing the feature fusion capabilities. Zhang et al. [26] further enhanced the
YOLOv5 backbone, enhancing detection speed. Cheng et al. [27] studied underwater target
recognition in the context of small datasets, proposing a new approach that combines diffu-
sion models with YOLOv7. Zheng [28] improved YOLOv8 by introducing the Scale and
Channel Efficient Module Attention (ScEMA) module, enhancing the model’s sensitivity
to small targets and objects across various scales. Despite the algorithm’s advantages in
speed, YOLO has been found to occasionally miss detections or produce false positives,
particularly in complex environments and with limited datasets, raising concerns about
its stability.

Traditional image recognition algorithms have a relatively complex process to achieve
accurate recognition when dealing with low-resolution sonar image data and small samples.
In addition, the existing deep learning-based models still have room for improvement
in accuracy when handling complex sonar images. For example, the YOLO framework
has problems with omissions and false detections in complex environments and limited
datasets and lacks stability. Meanwhile, with the continuous advancement in technology,
although YOLOv10 shows an excellent performance in the field of optical images, in the
field of sonar images, because underwater sonar targets are usually small in scale, YOLOv7
has more advantages due to its excellent recognition ability for small targets. However,
the insufficiency of available public sonar image datasets severely limits the application of
deep learning models in this field. To address these challenges, the researchers of this study
have decided to make improvements based on YOLOv7 and propose to use DA-YOLOv7
to solve these problems.

Our approach addresses the drawbacks of low-resolution sonar imagery, unclear target
features, and limited sample availability by introducing the Dual Attention Mechanism
YOLOv7 model, abbreviated as DA-YOLOv7. To address the drop in accuracy in complex
environments, we develop the OA-ELAN module, integrating Omni-Directional Convolu-
tion (ODConv) and Channel Prior Convolutional Attention (CPCA) attention mechanisms,
thereby enhancing the model’s capacity for capturing crucial local features and improving
the recognition of object shapes and edges. Focusing on the intricacy of sonar image targets,
we devise the SPPCSPCBiFormer and G-ELAN-H modules, leveraging the ability of the
Transformer to handle long-range dependencies. These innovations enhance the model’s
adaptability to multi-scale targets and reduce computational demands while improving the
detection accuracy for small and dense targets. Transfer learning is employed to counteract
the scarcity of sonar image samples. We put the data from the diverse Underwater Acoustic
Target Detection Dataset (UATD) [29] into the DA-YOLOv7 model for pre-training. During
this process, the model learns to extract features and make predictions based on these data.
After the training, the pre-trained weights optimized for the UATD dataset are obtained.
The pre-trained model can be used for transfer learning. In this case, fine-tuning the
pre-trained weights on the smaller Common Sonar Target Detection Dataset (SCTD) [30]
can alleviate the overfitting issues typically associated with small datasets. To verify the
effectiveness of our proposed method, we conducted rigorous comparative evaluations on
various real-world sonar image datasets, including UATD, SCTD, and URPC [31].

To conclude, the core innovations of this paper are embodied in the following key
contributions:

• The development of the DA-YOLOv7 model represents a significant advancement,
striking a balance between computational efficiency and enhanced feature extraction
capabilities. By systematically refining YOLOv7’s modules and incorporating inno-
vative elements such as the OA-ELAN, SPPCSPCBIFormer, and G-ELAN-H units,
the model not only fortifies its ability to discern crucial information but also stream-
lines multi-scale target processing and integrates long-range dependencies seamlessly.
These enhancements collectively foster enhanced generalization, diversification, and
robustness within the overall architecture of the model.

• In response to the lack of datasets encountered in sonar image target recognition
tasks, this investigation employs a transfer learning training approach. DA-YOLOv7
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initiates by acquiring pre-trained weights through an extensive pretraining phase on
the UATD dataset. These pre-trained weights are then strategically employed to refine
the model’s training on the smaller SCTD dataset, thereby effectively addressing the
common issue of diminished recognition accuracy due to the scarcity of data in the
small datasets.

• Our analysis meticulously investigates its performance across various scenarios to
strengthen the credibility of YOLOv7’s enhanced capabilities for underwater sonar image
target recognition. Our proposed method includes rigorous testing on low-resolution
images sourced from the UATD dataset and color images from the URPC dataset, show-
casing its dependable and versatile nature in different imaging circumstances.

The structure of the remainder of this paper is as follows: Section 2 mainly introduces
YOLOv7 and the various modules for its improvement, including OA-ELAN, SPPCSPCBi-
Former, G-ELAN-H, etc. The improvements in these modules aim to enhance the model’s
performance when handling the underwater sonar image target recognition task. Section 3
elaborates on the structure and improvements in the DA-YOLOv7 network. Through
the upgrades of multiple modules, DA-YOLOv7 is committed to addressing the existing
problems in YOLOv7 in underwater sonar image target recognition and enhancing the
performance and adaptability of the model. Section 4 is dedicated to the comparative
analysis of DA-YOLOv7 with leading sonar image recognition technologies, presenting the
results on multiple real datasets. The summary and conclusion of our investigation results
are presented in Section 5.

2. Related Works

We selected YOLOv7 for our research because it has shown promising performances
in various object detection tasks. However, we modified this model to better suit the
underwater sonar image target recognition requirements. The newer versions of YOLO
may have their advantages, but YOLOv7 provides a solid foundation that allows us to make
targeted improvements to address the unique challenges in this domain. Our modifications
include adding the OA-ELAN, SPPCSPCBiFormer, and G-ELAN-H modules to enhance
the model’s feature extraction, target recognition, and generalization capabilities in the
underwater context.

2.1. YOLOv7

Figure 1 depicts the network structure diagram of YOLOv7, encompassing the input
layer, backbone, head, and prediction layer. The adaptive bounding box calculation ap-
proach is employed in the input layer to ensure that the input color image is uniformly
scaled to the 640 × 640 size specification. The backbone comprises the Convolutional
Block with Convolution-Batch Normalization-SiLU activation function module (CBS), the
Efficient Layer Aggregation Network module (ELAN), and the Multi-scale Layer (MP).
The input image undergoes 3 × 3 convolutions with strides of 1 and then with strides of 2
successively to compress the spatial dimension and increase the number of channels. The
ELAN module consists of multiple CBSs, which enhances feature extraction by enlarging
the receptive field. The MP layer is accountable for adjusting the channel ratio, among
which MP1 utilizes max pooling to reduce the number of channels, and MP2 compresses
the space and increases the number of channels via convolution and downsampling. This
design enables the ELAN and MP layers to be alternately reused multiple times, progres-
sively expanding the receptive field and enriching the feature expression. Eventually, the
backbone constructs a multi-scale feature pyramid, and these feature maps are passed to
different prediction heads, each focusing on detecting a specific target size and generat-
ing the corresponding bounding box, category probability, and confidence through the
convolutional layer.
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Figure 1. Structure of the YOLOv7.

2.2. OA-ELAN

The effect of YOLOv7 in processing optical images with high contrast and apparent
target features is exceptionally excellent. However, problems of false recognition and
missed recognition are prone to occur when processing sonar images with low contrast and
blurred target features. For this reason, we designed a new OA-ELAN module. Specifically,
we replaced the ordinary convolution in the CBS module after the cat operation in the
original ELAN module with the ODConv module and incorporated the innovative CPCA
attention mechanism.

This change is mainly reflected in the following two aspects: First, in the CBS module
after the cat operation in the ELAN module, we utilized the advanced ODConv module to
replace the traditional convolution operation. The ODConv module, through its parallel
strategy and the combination of a multi-attention mechanism, can learn a more abundant
and flexible four-dimensional convolution kernel space, significantly enhancing the model’s
feature extraction ability, especially in dealing with small targets. Secondly, we introduced a
brand-new CPCA attention mechanism. Through its unique design, the CPCA mechanism
can flexibly project attention among different channels and regions, enabling the model
to precisely focus on crucial single-channel information and deeply understand and inge-
niously utilize the inherent interaction relationships between the different channels, further
optimizing the feature representation. Our approach has greatly enhanced the accuracy of
target recognition and the stability of the model. Especially when facing the complex and
changeable background of sonar images, it plays a significant role in effectively reducing
false recognitions and missed recognitions.

2.2.1. ODConv

To solve the problems of false recognition, missed recognition, and low recognition
accuracy, the limitations of dealing with multi-scale targets, being interfered with by
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background noise, inaccurate target positioning, and poor performance in the complex and
changeable underwater environment existing in the object recognition of underwater sonar
images by YOLOv7, we newly added the convolutional operation method of ODConv
(Figure 2). ODConv can divide the input signal into high-frequency and low-frequency
parts and, through processing with different convolutional kernels, it can better capture
the local details and global information of the image, enhance the model’s understanding
and processing ability for complex images, and improve the recognition accuracy of the
targets; it can enable the model to learn different features, especially for small target
recognition, and the accurate detection of underwater sonar targets of different scales; its
anti-noise ability can filter out background noise by separating high- and low-frequency
information, allowing the model to focus on the target itself and reducing the occurrence
of false recognition and missed recognition; the depth understanding ability of ODConv
helps the model understand the depth differences of the objects and improves the accuracy
of target positioning, further improving the recognition performance; in addition, ODConv
has solid environmental adaptability and flexibility, can maintain a good performance
in different underwater environments, enhance the robustness of object recognition, and
ensure the stable operation of the model.
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2.2.2. CPCA Attention Mechanism

The Channel Prior Convolutional Attention Module is depicted in Figure 3, which
sequentially undertakes channel and spatial attention. With an intermediate feature map,
F ∈ RC×H×W , provided as the input, the channel attention module (CA) initially infers
a 1D channel attention map, Mc ∈ RC×1×1. Following the procedure, the operation of
element-wise multiplication between Mc and input feature, F yields channel attention
values broadcast along the spatial dimensions to generate a refined feature, Fc ∈ RC×H×W ,
enriched with channel-specific focus. Subsequently, the spatial attention module (SA) ap-
plies its processing on Fc to yield a three-dimensional spatial attention map, Ms ∈ RC×H×W .
The final output feature, F̂ ∈ RC×H×W , is computed by the element-wise multiplication
of Ms with Fc, where C signifies the number of channels, H represents the height, and W
denotes the width. In summary, the entire attention mechanism is encapsulated within the
following formulaic description:

Fc = CA(F)⊗ F (1)

F̂ = SA(Fc)⊗ Fc (2)

where ⊗ means the element-by-element multiplication.
The channel attention module is central in generating a channel-wise attention map

to decipher the complex interdependencies within feature channels. Employing average
and max pooling operations effectively consolidates the feature maps’ spatial context,
thereby generating two unique spatial context descriptors. These descriptors are then
processed through a shared MLP, characterized by a single hidden layer of fixed dimension,
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Rc/r×1×1, with r denoting the reduction ratio to ensure efficient parameter utilization.
The computation of the channel attention map is completed through the integration of
MLP outputs using element-wise summation, its systematic process being mathematically
formalized as follows:

CA(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))) (3)

where σ represents the sigmoid function.
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Spatial attention maps are generated by a process that involves extracting the spatial
relationships facilitated by the deep convolution layers that simultaneously preserve inter-
channel correlations and capture intricate spatial dependencies. A multi-scale architecture
is adopted to optimize this, allowing for convolution operations to effectively discern spatial
relationships without compromising computational efficiency. The spatial attention module
concludes with a 1 × 1 convolutional layer, which mixes channels and produces a more
refined attention map. The mathematical description of the spatial attention calculation
proceeds as follows:

SA(F) = Conv1×1(
3

∑
i=0

Branchi(DwConv(F))) (4)

The model architecture incorporates Depthwise Convolution (DwConv), a deep convolu-
tional component, alongside branches designated as Branchi and i ∈ {0, 1, 2, 3}, collectively
forming branch i-th. Notably, Branch0 constitutes a direct connection path, functioning as a
shortcut that omits any intermediate transformations or processing, allowing the input to flow
uninterrupted to the output. Conv1×1 is a 1× 1 convolution. This design choice contributes to
the overall architectural integrity while maintaining computational efficiency.

In response to the challenges faced by YOLOv7 during underwater sonar image object
recognition, such as limited feature extraction, vulnerability to noise and interference, and
inadequate adaptation to diverse target dimensions, we employed a series of strategic
improvements. Primarily, we replaced the ELAN module in the backbone with the ad-
vanced OA-ELAN, enhancing its structural robustness. The introduction of the ODConv
module within the Contextual CBS bolstered the model’s capacity to detect objects across
multiple scales and locations, reducing false positives and missing recognitions in com-
plex scenarios with multi-scale objects. It facilitated the dynamic capture of spatial and
channel-specific details thus optimizing feature representation, particularly for precise
small target identification.

The OA-ELAN module is a novel design that replaces the ordinary convolution in the
original ELAN module with the ODConv module and incorporates the CPCA attention
mechanism. This innovation enhances the model’s feature extraction ability, especially for
small targets. It reduces false and missed recognitions, a significant improvement over
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the traditional methods that struggle with the low contrast and blurred target features of
sonar images.

The CPCA attention mechanism further improves the feature expression ability of
the model, facilitating the extraction of critical features, emphasizing target significance,
and enhancing the model’s understanding of underwater sonar imagery. Our method
improved recognition and recognition accuracy, reduced noise and interference resilience,
and enhanced robustness in complex underwater environments. Additionally, the mech-
anism adaptively adjusted attention weights based on target size and shape, enabling
more effective recognition across a spectrum of target dimensions. The model’s transfer
learning and generalization capabilities were significantly enhanced by fostering general
feature representations.

Notably, these enhancements were achieved without compromising computational
efficiency, as both the ODConv and CPCA mechanisms maintained high computational
effectiveness, ensuring the model’s runtime speed. Consequently, these modifications
substantially improved YOLOv7’s underwater sonar image object recognition performance,
particularly in tackling complex backgrounds, noise, and small target recognition tasks.

2.3. SPPCSPCBiFormer Module

To better recognize and understand the target in complex scenes, we have incorporated
the SPPCSPCBiFormer module (Figure 4). This module is integrated with the Spatial
Pyramid Pooling Channel Shuffling and Pixel-level Convolution (SPPCSPC) module and
the Bilateral-branch Transformer (BiFormer) module.
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Among them, the Spatial Pyramid Pooling (SPP) in the SPPCSPC module generates
multi-scale feature maps by conducting pooling operations of different scales on the input
image, thereby effectively handling the variations in the input size and enhancing the
invariance in the model to image scaling, rotation, and other transformations; Channel
Shuffling and Pixel-level Convolution (CSPC) incorporates channel shuffling to promote
the interaction between channels and pixel-level convolution to extract local features, which
contributes to improving the model’s ability to represent features of high-dimensional data.

SPPCSPCBiFormer not only inherits the advantage of the SPPCSPC module in its
ability to better understand the diversity and complexity of the target in complex scenes
but also integrates the strength of the self-attention mechanism of the BiFormer module
in understanding the complex relationships between targets, further enriching the fea-
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ture representation and enabling the model to understand the input data from multiple
perspectives and levels.

This combination of multiple modules boosts the model’s generalization ability, en-
abling it to adapt to targets of various scales and handle complex dependency relationships.
It integrates multi-scale feature extraction, long-distance dependency capture, and efficient
feature fusion, significantly enhancing the model’s ability to recognize and understand
the target.

As illustrated in Figure 4, the BiFormer architecture commences with a Depthwise
Convolution, which inherently encodes spatial relationships. Following this, the model
employs the Bi-directional Relationship Aggregation (BRA) module, followed by a two-
layer MLP with an expansion rate of e, the latter of which is dedicated to modeling
cross-position relationships and generating per-position embeddings, thereby enriching
the feature representation.

A feedforward neural network layer is deployed after the multi-head attention layer
to enhance the expressive power of the extracted features. Residual connections are strate-
gically employed to mitigate the issue of vanishing gradients and optimize the model’s
training efficiency.

The BRA module is the core part of the BiFormer module. It processes the input
features through multiple parallel attention heads and each attention head can learn
different feature representations, thereby improving the flexibility and expression ability of
the model. The steps are as follows:

Region partitioning and input projection: Given an input feature map X ∈ RH×W×C,
we first partition it into S × S non-overlapping regions, such that each region contains HW

S2

feature vectors. This step is accomplished by reshaping X into XR ∈ RS2× HW
S2 ×C. Then, we

use a linear projection to derive the query, key, and value tensors Q, K, V∈ RS2× HW
S2 ×C:

Q = WrWq, K = XrWk, V = XrWv (5)

where Wq, Wq, Wv ∈ RC×C are the projection weights of query, keys, and values.

• First, the regional-level queries and keys Qr, Kr ∈ RS2×C are derived by applying
the average value of each region to Q and K, respectively. Then, we derived the
adjacency matrix Ar ∈ RS2×S2

of the region-to-region affinity graph through the
matrix multiplication between Qr and the transpose of Kr as follows:

Ar = Qr(kr)T (6)

Among them, the semantic relevance of two regions is measured in the adjacency
matrix Ar.

The core step that we undertake next is to prune the affinity graph by merely retaining
the top-k connections of each region. Specifically, we employ the row-wise topk operator to
obtain the routing index matrix Ir ∈ NS2×K as follows:

Ir = topkIndex(Ar) (7)

• Token-level Attention: Our approach harnesses the region-to-region routing index
matrix Ir to implement a meticulous token-to-token attention mechanism. Each query
token within region i extends its attention to all the key–value pairs that are found
within the aggregated routing regions indexed by Ir

(i,1), Ir
(i,2), . . ., Ir

(i,k), representing
the union of k regions. The process of attention computation begins with the collection
of the key and value tensors, which are fundamental components in this procedure,
as follows:

Kg = gather(K, Ir), Vg = gather(V, Ir) (8)
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where Kg, Vg ∈ RS2× kHW
S2 ×C is the clustered key–value tensor.

We can then focus our attention on the collected key–value pairs:

O = Attention(Q, Kg, Vg) + LCE(V) (9)

Here, we introduce the local context enhancement terms LCE(V), as shown in [32]. The
function LCE(·) is parameterized using a deep convolution, and we set the kernel size to 5.

The SPPCSPCBIFormer module enhances the ability to handle targets of different
scales, enabling a more comprehensive understanding of the features of targets in com-
plex scenes, thereby improving recognition accuracy. Regarding long-range dependency
capture, the Transformer structure helps handle dense or overlapping targets. In terms
of enhancement of the generalization ability, introducing multiple attention mechanisms
and Transformer structures enables the model to adapt to the variability of the underwater
environment and consistently maintain good performance.

2.4. G-ELAN-H

To overcome the issues of inadequate target recognition accuracy, weak generalization
ability, and high computational cost existing in the YOLOv7 model, we substituted some
of the Convs in all the ELAN-H modules of YOLOv7 with Ghost-Shuffle Convolution
(GSConv), thereby constituting the G-ELAN-H module. As shown in Figure 5, the structure
of the G-ELAN-H module reveals its design. In this manner, GSConv can assist the model
in learning features more effectively, significantly enhancing the target recognition accuracy,
and the recognition effect is particularly notable for small targets or densely arranged
targets; it can strengthen the model’s processing capability for targets of diverse shapes
and sizes and enhance its generalization ability; and it can decrease the computational cost,
accelerate the running speed of the model, and achieve faster image processing.
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3. Proposed Method
3.1. DA-YOLOv7 Network

The DA-YOLOv7 model, as shown in Figure 6, aims to address the problems in
underwater sonar image target recognition of YOLOv7 and enhance the performance and
adaptability of the model. Through improvements in the multiple modules, it strives to
overcome the limitations of YOLOv7 in handling sonar images with low contrast and
blurred target features, as well as the issues of insufficient target recognition accuracy, poor
generalization ability, and high computational cost.
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Figure 6. The DA-YOLOv7 network.

In the OA-ELAN module, we made significant modifications. We replaced the ordinary
convolution in the CBS module after the cat operation in the original ELAN module with
the ODConv module and incorporated the CPCA attention mechanism. This change aims
to enhance the model’s feature extraction ability, especially for small targets. The ODConv
module can better capture the image’s local details and global information, reducing the
problems of false recognition and missed recognition in sonar images with low contrast
and blurred target features. The CPCA attention mechanism helps the model to precisely
focus on crucial information, improving the accuracy of target recognition and the stability
of the model.

The SPPCSPCBiFormer module integrates the SPPCSPC and the BiFormer modules
to improve the model’s ability to identify and understand targets in complex scenes. The
SPPCSPC module generates multi-scale feature maps and enhances the model’s invariance
to image transformations. In contrast, the BiFormer module leverages the self-attention
mechanism to handle the complex relationships between targets. This integration enables
the model to understand the input data from multiple perspectives and levels, enhancing
its processing and generalization ability for targets of different scales.

In the G-ELAN-H module, we substituted some of the Convs in all the ELAN-H
modules of YOLOv7 with Ghost-Shuffle Convolution (GSConv). This modification helps
the model learn features more effectively, significantly enhancing the target recognition
accuracy, especially for small or densely arranged targets. It also strengthens the model’s
processing capability for targets of diverse shapes and sizes, enhances its generalization
ability, reduces the computational cost, and speeds up the running speed of the model.

These comprehensive improvements enable DA-YOLOv7 to exhibit extremely high
accuracy, robustness, and computing speed when detecting small targets, analyzing dense
scenes, and coping with changeable environments, significantly enhancing the performance
of underwater sonar image target recognition.
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3.2. Comparison of Related Work

To present the characteristics and differences of the related works more clearly, Table 1
summarizes and compares the associated works of YOLOv7 and its improved models.

Table 1. Comparison Table of YOLOv7 and its Improved Models.

Related Work Description

YOLOv7

The network features an input layer for uniform image scaling to 640 × 640, a
backbone with CBS, ELAN, and an MP, constructing a multi-scale feature pyramid.
The output from the previous stage feeds into various prediction heads for precise
object detection.

OA-ELAN

YOLOv7’s modifications target low-contrast and blurred sonar images to reduce false
and missed detections. The CBS module integrates ODConv, enhancing local and
global feature capture, while the CPCA attention mechanism refines feature
representation, boosts recognition accuracy, and stabilizes the model.

SPPCSPCBiFormer Module

The system integrates the SPPCSPC and BiFormer modules for enhanced target
recognition in complex scenes. The SPPCSPC module boosts feature representation
and model invariance to image transformations through multi-scale pooling and
channel shuffling. The BiFormer module leverages bidirectional feature aggregation
and multi-layer perceptrons to improve multi-scale target handling and
scene nderstanding.

G-ELAN-H

To address YOLOv7’s accuracy, generalization, and computational efficiency issues,
GSConv replaces some convolutions in ELAN-H modules. Our approach enhances
feature learning, particularly for small or clustered targets, and improves the model’s
handling of diverse target shapes and sizes. It also reduces computational demands
and accelerates processing speed.

DA-YOLOv7 Network

Enhancements across several modules aim to tackle YOLOv7’s underwater sonar
image recognition challenges, enhancing model performance and adaptability. The
OA-ELAN module strengthens feature extraction for small targets, minimizing false
and missed detections. The SPPCSPCBiFormer module boosts multi-scale target
recognition in complex scenes. The G-ELAN-H module refines accuracy, improves
generalization, reduces computational costs, and speeds up image processing.

It can be seen from the table that YOLOv7 is the basic model, and the subsequent
improvement works mainly focus on improving the performance of the model when
processing sonar images. The OA-ELAN module enhances the model’s ability to capture
local features and critical information by introducing the ODConv and CPCA attention
mechanisms, reducing misidentification and missed identification. The SPPCSPCBiFormer
module integrates the advantages of the SPPCSPC module and the BiFormer module,
improving the model’s ability to handle multi-scale targets and understand complex scenes.
The G-ELAN-H module improves the target recognition accuracy and generalization ability
and reduces the computational cost by replacing the convolution operation. The DA-
YOLOv7 network integrates these improvements, enhancing the underwater sonar image
target recognition task.

4. Results and Discussion

To evaluate the effectiveness of DA-YOLOv7 in natural underwater environments, we
used multiple underwater sonar image datasets, such as the lake bottom and shallow water
areas of UATD, the diverse biomes of URPC, and the marine test scenarios of SCTD, to
achieve comprehensive qualitative and quantitative analysis. We compared DA-YOLOv7
with the current underwater sonar image recognition models through these datasets.

4.1. Experimental Environment

We conducted rigorous experimental evaluations on the UATD, URPC, and SCTD
datasets to substantiate the model’s effectiveness to verify its recognition capabilities. The
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experimental setup included a Windows 11 operating environment, with the deep learning
computations handled by PyTorch version 1.4.0. The hardware specifications comprised an
Intel Core i7 12,700 H processor, 32 gigabytes of Random Access Memory (RAM), and a
powerful NVIDIA GeForce GTX 3070Ti graphics processing unit (GPU).

4.2. Experimental Indicators

The assessment criteria were Precision, Recall, mAP, and FPS using the following formulas:

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

Here, TP represents predicting the correct answer, FP stands for mistakenly predicting
from other classes to this class, and FN indicates that this category of labels is predicted to
be of the other category of labels.

mAP is an abbreviation of average accuracy and an indicator of recognition accuracy
in target recognition as follows:

AP =
∫ 1

0
P(r)dr (12)

mAP =
∑N

n=1 APn

N
(13)

The following metrics are employed for evaluating the neural network’s performance:
precision (p), recall rate (r), a function characterized by parameter r (p), and the total
number of object categories (n). The average accuracy in target identification, denoted
as APn, is another critical aspect. The Mean Average Precision (MAP) is assessed using
the following two distinct measures: mAP@0.5, which imposes a moderate recognition
requirement, and mAP@0.5 : 0.95, which imposes a more stringent standard. These four
evaluative parameters collectively determine the network’s efficacy, and recognition speed
is quantified through the measurement of frames per second (FPS).

4.3. UATD Dataset

The study employs the Open-Source Underwater Acoustic Target Recognition (UATD)
dataset, featuring over nine thousand images captured utilizing a Tritech Gemini 1200 ik
sonar, a recognized standard for MFLS data acquisition. The dataset is characterized by its
extensive nature, encompassing raw sonar imagery sourced from various lake and shallow
water settings. It serves as a valuable resource, featuring a diverse range of ten target
objects, including cubes, spheres, cylinders, mannequins, tires, circular and square cages,
metal buckets, aircraft models, and remotely operated vehicles (ROVs), thereby providing
a robust empirical basis for research purposes.

4.3.1. Ablation Experiments on the UATD Dataset

We carried out comprehensive tests and ablation studies on each component of DA-
YOLOv7 using the UATD dataset to delve into the impact of the modules detailed in
Section 2 on the model’s performance. As shown in Table 2, the notation “

√
” indicates the

experimental outcomes when the respective module is engaged.

Table 2. Ablation comparison of model performance improvements in the UAATD dataset.

Model OA-ELAN SPPCSPCBiFormer G-ELAN-H Precision (%) Recall(%) mAP@0.5 (%) mAP@0.5:0.95(%)

YOLOv7

85.7 83.0 81.2 34.4√
87.1 84.6 83.6 35.5√ √
91.2 88.9 87.2 37.2√ √ √
92.8 89.7 89.4 37.8
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The original YOLOv7 model was taken as the baseline, with a precision of 85.7%,
a recall rate of 83.0%, a mAP@0.5 of 81.2%, and a mAP@0.5:0.95 of 34.4%. When the
OA-ELAN module was introduced alone, the precision increased to 87.1%, the recall rate
increased to 84.6%, the mAP@0.5 increased to 83.6%, and the mAP@0.5:0.95 increased to
35.5%. This finding indicates that the OA-ELAN module is highly effective in optimizing
feature extraction and classification capabilities and improving target detection accuracy
under different confidence thresholds.

When both the OA-ELAN and SPPCSPCBiFormer modules were introduced simulta-
neously, the precision significantly increased to 91.2%, the recall rate increased to 88.9%,
the mAP@0.5 increased dramatically to 87.2%, and the mAP@0.5:0.95 increased to 37.2%.
This result shows the synergy of the two modules, enhancing the processing of complex
features, reducing missed and false detections, and improving the detection performance
in a broader range of confidence levels.

When integrating the three modules of OA-ELAN, SPPCSPCBiFormer, and G-ELAN-
H, the precision reached as high as 92.8%, the recall rate reached 89.7%, the accuracy of
mAP@0.5 significantly increased to 89.4%, and the mAP@0.5:0.95 increased to 37.8%. This
finding proves that adding the G-ELAN-H module further improves the model architecture,
enabling the model to achieve comprehensive and significant performance improvements
across the entire confidence range, with more vital generalization ability and robustness.
In conclusion, each module’s individual and combined effects significantly improve the
model performance.

To comprehensively compare YOLOv7 and our approach, we inspected the confusion
matrices and precision-recall (PR) curves of the four models in question. As depicted in
Figures 7 and 8, our methodology exhibits superior performance, demonstrating enhanced
accuracy and a more balanced recognition capability for target and background classes.
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It can be observed from Figure 8 that in Figure 8a, namely YOLOv7, the precision
and recall rates of various targets are at the baseline level, indicating that the original
YOLOv7 model has a specific performance in handling these targets, but there is still room
for improvement. In Figure 8b, namely YOLOv7 + OA-ELAN, there are some significant
improvements compared to Figure 8a. For example, the precision of the circle cage has
increased from 0.456 to 0.464, and the precision of the cylinder has significantly increased
from 0.948 to 0.987, which shows that the OA-ELAN module plays a vital role in enhancing
the recognition accuracy of specific targets.

The improvements are more prominent in Figure 8c, namely YOLOv7 + OA-ELAN
+ SPPCSPCBiFormer. For example, the cube has increased from 0.633 to 0.656, and the
precision for the human body has also increased from 0.963 to 0.978. These results indicate
that the combined effect of the SPPCSPCBiFormer and OA-ELAN modules has brought
significant performance improvements and effectively optimized the recognition ability of
complex targets.

Figure 8d, DA-YOLOv7, integrates all the improvement modules and performs ex-
cellently in almost all target categories. For instance, the precision of a square cage has
increased from 0.617 to 0.686, and the precision of the tire has increased from 0.897 to 0.938.
This finding fully demonstrates the synergy of the three modules, OA-ELAN, SPPCSPCBi-
Former, and G-ELAN-H, enabling the model to recognize various targets more accurately
and comprehensively.

4.3.2. Analysis of UATD Dataset Results

This experiment evaluates the DA-YOLOv7 model’s accuracy and recall performance
for detecting ten distinct target categories. Figure 8d illustrates the trend of changes in these
metrics when employing a forward-looking sonar for recognition, with a mean average
precision (mAP) at 0.5, reaching 89.4% for all categories. Moreover, Figure 7d presents a
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confusion matrix showcasing the DA-YOLOv7’s recognition outcomes for various target
classes, reinforcing the model’s recognition capabilities.

While the model demonstrates strong performance in detecting various targets, it
occasionally encounters background noise in forward-looking sonar images, causing the
misidentification of certain background regions as targets. Therefore, further investigations
into sonar image denoising is deemed essential.

Finally, we trained and tested multiple popular target recognition models along with
the original YOLOv7, and the comparative performance of these models is presented
in Table 3.

Table 3. Target recognition results of each model in the previsual sonar images.

Model Backbone mAP@0.5 (%) FPS

FasterR-CNN Resnet 83.9 44.1
FasterR-CNN Resnet-50 82.9 32.9
FasterR-CNN Resnet-101 81.8 26.6

YOLOv3 Darknnet-53 80.1 49.8
YOLOv3 MobilenetV2 78.7 93.4
YOLOv5 CSPDarknet-53 81.5 83
YOLOv7 ELAN-Net 85.3 62.11
YOLOv8 CSPDarknet-c2f 85.6 49

CCW-YOLOv5 CSPDarknet-53 85.3 54
DA-YOLOv7 OA-ELAN-Net 89.4 97.09

It can be learned from Table 3 that, in the target recognition results of forward-looking
sonar images, different models have their characteristics. In the FasterR-CNN series, the
mAP@0.5 value gradually decreases as the backbone network changes, and the frame rate
also gradually drops. In YOLOv3, the model with the Darknet-53 backbone network has a
higher accuracy than the MobilenetV2 backbone network, but the latter has a better frame
rate. For YOLOv5, YOLOv7, and YOLOv8, which adopt different backbone networks,
respectively, the mAP@0.5 values vary.

However, our DA-YOLOv7 model has significant advantages. When using OA-ELAN-
Net as the backbone network, the model achieves a mAP@0.5 as high as 89.4%, and its
accuracy rate is significantly ahead of the other models. At the same time, the frame rate
reaches 97.09, and the processing speed is breakneck. Combining the roles of different
modules as described before, the OA-ELAN module can capture the critical features of the
target more accurately by optimizing feature extraction and classification to improve the
accuracy rate. The SPPCSPCBiFormer module enhances the processing of complex features
and the utilization of global information, helping the model better understand the target
context and overall features and improving accuracy. The G-ELAN-H module improves
the model architecture, optimizes the depth and width of the network, and promotes
feature fusion. While improving the accuracy rate, it ensures the efficient operation of the
model and significantly improves the processing speed. These modules work together
to make DA-YOLOv7 have both high accuracy and processing speed, showing excellent
comprehensive performance.

As depicted in Figure 9, the value steadily decreases as the number of iterations rises,
ultimately attaining convergence after 200 iterations. This stability reflects the optimization
process of the model.
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To visually illustrate the target recognition performance of the DA-YOLOv7 model
developed in this chapter under real-world circumstances, Figure 10 presents the prediction
results of various targets in multi-beam forward-looking sonar images extracted from the
UATD validation set.
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Figure 10 shows many multi-beam forward-looking sonar images and their corre-
sponding target annotations. From the figure, the advantages of our model can be observed.
The model can not only accurately identify various targets, such as “ball”, “cube”, “cylin-
der”, etc., but also performs well in complex target combination situations and can still
make accurate judgments when multiple targets of the same or different types exist si-
multaneously. Moreover, it performs stably and consistently in various images. Whether
a single target or a complex multi-target scene, it can maintain a high accuracy rate and
effectively distinguish easily confused targets. Its strong generalization ability enables it to
complete the target recognition task excellently in different multi-beam forward-looking
sonar image scenarios.

4.4. SCTD Dataset

We collected an SCTD dataset showing the sonar imaging results of different targets in
different underwater maritime trials to conduct image processing and recognition research.
These sonar images were filtered and classified, resulting in sonar images of the following
three fundamental target categories: human, ship, and airplane. We selected three images
of each type for display, as shown in Figure 11.
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The SCTD dataset is categorized into three classes—ships, airplanes, and humans.
Numerous uncertainties, such as complex backgrounds, object fragmentation, breakage,
and deformation, augment the difficulty of recognition. Each represents one of the three
underwater targets. These images shall be utilized as the input of the deep learning



J. Mar. Sci. Eng. 2024, 12, 1606 19 of 27

model. Through manual annotation, the target images are classified into three categories,
respectively. The training set and the validation set are partitioned in a 9:1 ratio.

4.4.1. Training Strategy for the SCTD Dataset

The SCTD dataset presently encompasses a total of 357 images. Owing to the limited
number of samples, we adopted a pre-trained model to tackle the problem of small sample
datasets, and the flowchart is presented in Figure 12. This experiment aims to demonstrate
that, by utilizing a pre-trained model, we can effectively tackle the issue of the limited
number of samples in the SCTD dataset and enhance the performance and generalization
capability of the model on small sample datasets.
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When dealing with a small sample dataset like SCTD, we adopted an innovative
approach of pre-training the DA-YOLOv7 model on the UATD large dataset to obtain
pre-trained weights. This approach has many advantages. Firstly, the UATD large dataset
is rich and diverse, enabling DA-YOLOv7 to learn extensive and general features and
patterns. When these pre-trained weights are used for training on the SCTD small dataset,
the model can quickly adapt to the new data, significantly reducing the training time and
computational cost. Secondly, the knowledge acquired by DA-YOLOv7 from the UATD
dataset can provide valuable prior information for its learning on the SCTD small dataset,
helping the model to extract more representative features from the limited data, enhancing
its understanding and learning ability of the small dataset, and thereby improving the
generalization performance.

Regarding the issue of low accuracy on small datasets, the pre-trained weights play a
crucial role. By relying on the general feature representation learned on the UATD dataset,
DA-YOLOv7 can more accurately capture the critical information when confronted with
the SCTD small dataset, effectively reducing the possibility of overfitting and thereby sig-
nificantly improving the accuracy. In conclusion, by leveraging the UATD large dataset to
pre-train DA-YOLOv7 and then applying it to the training of the SCTD small dataset, an ef-
ficient and feasible approach is provided to address the challenges of small sample datasets.

4.4.2. Model Performance Comparison

Table 4 presents the performance comparison results between the proposed model
and other outstanding recognition models on the dataset SCTD. The evaluation metrics of
this model encompass AP for each category, mAP@0.5, and FPS.



J. Mar. Sci. Eng. 2024, 12, 1606 20 of 27

Table 4. Model performance comparison on SCTD.

Model Aircraft-AP (%) Human-AP (%) Ship-AP (%) mAP@0.5 (%) FPS

YOLOv4-tiny 88.16 79.35 59.44 75.65 199
YOLOv5I 88.37 85.95 70.64 81.66 51

EfficientDetD0 93.83 84.37 89.62 89.27 28
YOLOX-s 98.86 92.96 86.41 92.72 90
YOLOX-m 99.89 93.53 91.50 94.98 63

SDNET 99.39 93.53 90.74 95.20 138
DA-YOLOv7 (pre training) 100 100 97.00 99.15 125

As indicated in Table 4, compared to other recognition models, this model exhibits
higher performance on the sonar dataset SCTD.

The DA-YOLOv7 model has significant advantages when transferred to the SCTD
small dataset after pre-training with the UATD large dataset. In terms of performance
improvements, after pre-training with the UATD large-scale dataset, the average precision
(AP) of the DA-YOLOv7 model for the three categories of aircraft, human, and ship
dramatically improves. For example, compared to the model trained only on the SCTD
small dataset, aircraft-AP increased from 88.16% to 100%, human-AP increased from
79.35% to 100%, and ship-AP increased from 59.44% to 97.00%, indicating a significant
enhancement in the model’s ability to recognize various types of targets. At the same time,
using a large-capacity UATD dataset for pretraining helps the model learn more extensive
visual patterns and features, improving its generalization ability, maintaining extremely
high accuracy on the SCTD small dataset, and demonstrating good adaptability to new
scenes and targets.

In addition, pretraining also brings a faster convergence speed. Because the model has
already learned the basic features of a large amount of data, it can achieve the desired per-
formance faster on the SCTD small dataset, saving training time and computing resources.
Moreover, due to the rich diversity of the UATD dataset, the model undergoes a large
amount of noise and complex situations in the pretraining stage, making it more resistant
to overfitting and able to maintain stable performance on the small-scale SCTD dataset.
Although the running speed (FPS) of DA-YOLOv7 is not the fastest (125 FPS), its significant
advantage in accuracy achieves a good balance between accuracy and speed. The experi-
mental results demonstrate the novelty and superiority of DA-YOLOv7. Compared to other
models, DA-YOLOv7 achieves higher accuracy and faster speed, especially on the SCTD
dataset with small sample sizes. The pretraining strategy on the UATD dataset and the
transfer learning to the SCTD dataset effectively address the challenge of limited samples,
a novel approach in this field. Additionally, the model’s performance improvements in
mAP@0.5 and recall rate on the SCTD dataset showcase its excellent ability to recognize
targets in complex underwater environments.

For applications with extremely high accuracy requirements, the high AP value of
DA-YOLOv7 far outweighs its minor disadvantage in speed. In conclusion, through pre-
training with the UATD large dataset, DA-YOLOv7 performs exceptionally well on the
SCTD small dataset and is an excellent choice for object recognition tasks. Figure 13 shows
the improved model’s enhanced recognition effect on the SCTD dataset.
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4.5. Experimental Results and Analysis of the Underwater Optical Target Detection Intelligent
Algorithm Competition 2021 Dataset (URPC)

To reinforce the model’s superiority and generalizability across diverse scenarios, we
utilize the URPC dataset for training and evaluation. The dataset, comprising 5543 images
distributed across four classes, urchins, sea cucumbers, scallops, and starfish, providing a
comprehensive benchmark. The dataset is divided into a training set (80%) and a testing set
(20%), totaling 4434 images for training and 1109 for testing. It captures intricate challenges,
including visual occlusions due to underwater organism aggregations, variations in light-
ing, and motion-induced blurring, accurately reflecting the underwater environment and
enhancing the model’s adaptability. However, the dataset presents imbalanced category
distributions and variable resolutions, posing considerable challenges during training.
Figure 14a, a category statistics chart, reveals that sea urchins predominate, followed by
scallops and starfish, with sea cucumbers being the least represented. The box plot indi-
cates that the target sizes are relatively consistent, and the regularized target position map
highlights the horizontal densification, contrasted with vertical dispersion. The normalized
target size map further illustrates a concentration of the target sizes, mainly consisting
of smaller objects. A selection of sample images from the URPC dataset is showcased in
Figure 14b.
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Figure 14. The sample information of URPC is as follows: (a) Labels: The upper left corner shows the
distribution of categories; the upper right corner presents the visualization of all box sizes; the lower
left corner indicates the distribution of the box centroid position; the lower right corner depicts the
distribution of the box aspect ratio. (b) Example images.

Comparative Experiments on the URPC Dataset

To further substantiate the superiority of our proposed DA-YOLOv7 model, we con-
ducted comparative analyses with renowned object recognition models, including SSD,
RetinaNet, Faster-RCNN, YOLOX, YOLOv5s, YOLOv6, YOLOv7, YOLOv8n, and YOLOv8s.
Both training and testing were conducted using the URPC dataset, with performance met-
rics such as accuracy, recall rate, and mAP@0.5 being evaluated. The comparison outcomes
are presented in the table below.

It can be seen from Table 5 that on the URPC dataset, the performance of each target
recognition model varies. The indicators of traditional models such as SSD, RetinaNet, and
Faster-RCNN are relatively low. Among the YOLO series, YOLOX performs poorly and,
although YOLOv5s, YOLOv6, YOLOv7, YOLOv8n, and YOLOv8s gradually improve in
performance, there is still a significant gap compared to our DA-YOLOv7 model.

Table 5. Performance comparison of object recognition models on the URPC dataset.

Model Precision (%) Recall (%) mAp@0.5 (%)

SSD 74.2 68.7 75.4
RetinaNet 75.2 66.8 73.4

Faster-RCNN 78.8 73.1 76.1
YOLOX 73.3 64.1 69.5

YOLOv5s 78.9 75.3 80.8
YOLOv6 81.7 79.1 80.4
YOLOv7 82.9 78.3 83.2

YOLOv8n 83.8 79.2 85.7
YOLOv8s 86.4 82.1 87.1

DA-YOLOv7 90.0 84.4 89.9

Our DA-YOLOv7 model has extremely remarkable advantages. Its precision is as high
as 90.0%, far exceeding other models, so it can identify targets more accurately and reduce
misjudgments. The recall rate is 84.4%, indicating that it can effectively capture more
real targets and reduce the situation of missed detections. The mAp@0.5 reaches 89.9%,
demonstrating its stable and excellent detection performance under different thresholds.
The DA-YOLOv7 model can perform outstandingly because of its unique architectural
design and elaborate optimization strategy. It adopts advanced feature extraction and
fusion techniques, extracting key and discriminative features from complex data, thereby
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achieving precise positioning and recognition of targets. At the same time, its efficient
training algorithm and parameter adjustment enable the model to maintain excellent
performance and generalization ability when facing various complex scenes and target
changes. Overall, the DA-YOLOv7 model has shown a decisive advantage and excellent
comprehensive performance, far exceeding other models on the URPC dataset.

Figure 15 vividly showcases the recognition performance of the updated model in four
distinct scenarios. It demonstrates the model’s remarkable capacity for precise recognition
even under arduous underwater conditions. Whether dealing with sparse or dense targets,
the model exhibits its superiority. In sparse target situations, it accurately identifies and
locates individual targets. In dense target scenarios, it can distinguish multiple targets
despite the complexity.
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The performance of the updated model in these four scenarios highlights its advanced
design and training. This advanced design and training hold great promise for various
applications in underwater exploration, marine biology research, and underwater robotics.
The model’s ability to handle different underwater conditions with precision and relia-
bility makes it a valuable tool for these fields, enabling more accurate exploration, better
understanding of marine life, and improved performance of underwater robots.

The DA-YOLOv7 model successfully identified the targets in diverse underwater
scenes, manifesting its robust recognition performance. As depicted in Figure 16, with the
augmentation in the number of iterations, the values exhibit a stable descending trend and
eventual stabilization, attaining convergence after 200 iterations.
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5. Conclusions

This study proposed an improved DA-YOLOv7 model based on YOLOv7 to tackle the
challenges in target recognition within complex underwater environments and the issue of
low recognition accuracy resulting from small samples of underwater sonar images. The
following significant results were obtained:

1. With innovative improvements in YOLOv7, the OA-ELAN module, the SPPCSPCBi-
Former module, and the G-ELAN-H module were introduced, significantly enhancing
the model’s performance. The OA-ELAN module augments the ability to extract local
features and capture critical information, thereby improving the recognition accuracy
of features such as object shapes and edges; the SPPCSPCBiFormer module enhances
the ability to capture long-range correlations and contextual information in the input
feature map, enhancing the processing and generalization ability of multi-scale targets;
the G-ELAN-H module boosts the model’s adaptability to various target sizes and
shapes, further enhancing the generalization performance.

2. For the problem of small samples of underwater sonar images, pre-training and
transfer learning methods were adopted. The large-scale UATD dataset was used
to pre-train DA-YOLOv7 to obtain pre-trained weights, which were then applied to
the training of the small sample SCTD dataset, effectively avoiding overfitting and
improving the generalization ability of small sample data.

3. Experiments on the UATD, URPC, and SCTD datasets showed that DA-YOLOv7
performed excellently in accuracy, recall rate, and running speed. Especially in the
mAP@0.5 metric, it improved by 8.2% compared to YOLOv7, reaching 89.4%, and
the running speed was 97.09 FPS, achieving a balance between accuracy and real-
time performance, establishing a new benchmark for underwater sonar image target
recognition.

4. DA-YOLOv7 demonstrated excellent robustness and accuracy in different underwater
environments, such as the lake bottom and shallow water areas of UATD, the diverse
biological communities of URPC, and the ocean test scenarios of SCTD, showing
broad application potential.

Future work on DA-YOLOv7 includes reducing the dependence on training data,
enhancing the model’s adaptability to new environments and targets, improving the
model’s anti-noise ability and computational efficiency to adapt to resource-constrained
environments, simplifying the model structure to increase maintainability, exploring more
effective data augmentation and balancing strategies to enhance generalization ability,
testing the model’s generalization performance on a more diverse underwater sonar image
dataset, and developing more effective noise suppression techniques, optimizing the model
structure to reduce computational costs, and exploring data augmentation strategies to
improve generalization ability and model interpretability. These efforts aim to optimize the
network structure further, enhance the anti-noise ability, adapt to more diverse underwater
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environments, and support the ability of automated monitoring and resource management
in underwater environments.
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Layer Aggregation Network
SPPCSPCBiFormer Spatial Pyramid Pooling Channel Shuffling and Pixel-level Convolution

Bilateral-branch Transformer
G-ELAN-H Ghost-Shuffle Convolution Enhanced Layer Aggregation

Network-High performance
DCNNs Deep convolutional neural networks
R-CNN Regions with Convolutional Neural Network features
DCN Deformable Convolutional Networks
STAFNet Swin Transformer Based Anchor-Free Network
URPC The Underwater Optical Target Detection Intelligent Algorithm

Competition 2021 Dataset
FCOS Fully Convolutional One-Stage Object Detection
VGG16 Visual Geometry Group 16-layer network
IMA Invert Multi-Class AdaBoost
LWAP Local Wavelet Acoustic Pattern
MLP Multilayer Perceptron
YOLO You Only Look Once
ASFF Adaptive Spatial Feature Fusion
ScEMA Scale and Channel Efficient Module Attention
ODConv Omni-Directional Convolution
CPCA Channel Prior Convolutional Attention
UATD Underwater Acoustic Target Detection Dataset
SCTD Smaller Common Sonar Target Detection Dataset
CBS Convolution-Batch Normalization-SiLU activation function
ELAN Efficient Layer Aggregation Network
MP The Multi-scale Layer
SPPCSPC Spatial Pyramid Pooling Channel Shuffling and Pixel-level Convolution
BiFormer The Bilateral-branch Transformer
SPP Spatial Pyramid Pooling
CSPC Channel Shuffling and Pixel-level Convolution
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