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Abstract: In this paper, a bio-inspired sliding mode control (bio-SMC) and minimal learning parame-
ter (MLP) are proposed to achieve the cooperative formation control of underactuated unmanned
surface vehicles (USVs) with external environmental disturbances and model uncertainties. Firstly,
the desired trajectory of the follower USV is generated by the leader USV’s position information based
on the leader–follower framework, and the problem of cooperative formation control is transformed
into a trajectory tracking error stabilization problem. Besides, the USV position errors are stabilized by
a backstepping approach, then the virtual longitudinal and virtual lateral velocities can be designed.
To alleviate the system oscillation and reduce the computational complexity of the controller, a sliding
mode control with a bio-inspired model is designed to avoid the problem of differential explosion
caused by repeated derivation. A radial basis function neural network (RBFNN) is adopted for
estimating and compensating for the environmental disturbances and model uncertainties, where the
MLP algorithm is utilized to substitute for online weight learning in a single-parameter form. Finally,
the proposed method is proved to be uniformly and ultimately bounded through the Lyapunov
stability theory, and the validity of the method is also verified by simulation experiments.

Keywords: unmanned surface vehicle; leader-follower; bio-inspired model; MLP-RBF neural network;
sliding mode control; cooperative formation control

1. Introduction

Recently, due to significant advancements in marine science and technology, such as
marine resource exploration, maritime casualty and ocean mapping [1–4], the intelligent
control of unmanned surface vehicles (USVs) has become a hot topic. As small intelligent
unmanned maritime carrier platforms, USVs can replace humans to perform various com-
plex tasks, particularly in harsh marine environments [5,6]. However, with the increasing
complexity and diversity of maritime operations, a single USV often struggles to efficiently
accomplish these tasks [7,8]. In response to this challenge, the cooperative formation of
multiple USVs has gained widespread attention [9,10]. One significant problem concerned
with multiple USVs is formation tracking control, which requires the USVs to keep a pre-
scribed formation while USVs are navigating along a given desired trajectory [11,12]. A
number of related research works on the autonomous cooperative formation control of
USVs have been carried out, and many valuable research results have been published.

A novel terminal sliding surface control (TSMC) was designed by [13] to solve the
cooperative formation control problem of unmanned surface vehicle-remotely operated
vehicles (USV-ROVs) subject to uncertainties under deceptive attacks. The USV’s dynamic
model was established by [14] for the leader–follower formation in polar coordinates,
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where a sliding mode control is employed to design the controller. Based on the leader–
follower framework, USV formation control was designed by utilizing the model predictive
control (MPC) algorithm [15]. Combined with the leader–follower formation strategy, a
deep reinforcement learning (DRL) algorithm was introduced in [16], where the follower
USVs can self-adjust even through deviating from the formation. A hierarchical sliding
mode control strategy was designed to solve the formation control problem of USVs based
on the sampling communication by [17], where a sign function was developed for the
sliding mode control. In [18], an adaptive sliding mode control was used to reduce system
oscillations, and the hyperbolic tangent function was employed to enhance the robustness
of the control system. A distributed control law was designed by [19] based on a novel
sliding surface in which the constructed sliding surface is capable of being reached in a
finite time.

On account of the time-varying external disturbances and mode uncertainties, two
novel distributed coordinated finite time-tracking controllers were proposed based on
the sliding mode control method in [20], and the radial basis function neural networks
(RBFNNs) combined with the minimal learning parameter (MLP) was applied in [21].
Combined with a lateral velocity tracking differentiator (LVTD), a novel dynamic surface
sliding mode control (DSSMC) method was designed by [22] for the cooperative forma-
tion control of underactuated USVs with complex disturbances. The OAST-SMC with
backstepping method was employed to solve the external disturbances and enhance the
precision of formation control in [23]. An accurate disturbance observer (ADO) and a novel
fixed-time fast terminal sliding mode (FTFTSM) were designed for parametric uncertainties
and complex disturbances [24]. To investigate the formation tracking control problem
of networked USVs under a directed graph, a prescribed-time distributed cooperative
formation tracking control scheme was provided by [25], where the prescribed-time sliding
surface was designed based on the state observer.

Through the analysis of the above existing research results, it should be pointed
out that, in studies [14–16], the problem of cooperative formation control was addressed
based on the leader–follower framework. The cooperative formation control algorithms of
USVs were designed for fully actuated USVs in [19,24,25]; however, due to factors such as
system dynamic characteristics and physical constraints in the actual engineering practice, the
control system may become underactuated. Meanwhile, autonomous cooperative formation
control problems were solved by using the sliding mode method in [13,17,18,20,21], but the
problem of differential explosion was not discussed in these paper. This problem is caused
by repeated derivation during the sliding mode design process and may increase the
computational complexity of the controller and the system oscillation. Besides, although
the complex ocean environment disturbances were addressed in [22,23,25], the problem of
model uncertainties was not considered.

Motivated by the above analysis, to address the control problem of USV formation
with ocean environment disturbances and model uncertainties, a bio-inspired sliding
mode control (bio-SMC) method is designed in this paper. Based on the leader–follower
framework, the problem of cooperative formation control is transformed into a trajectory
tracking error stabilization problem for each USV, and then the virtual control laws of
the longitudinal and lateral velocities are designed by using a backstepping method to
stabilize the position error. A sliding mode control with a bio-inspired model is designed to
alleviate the system oscillation and reduce the computational complexity of the controller,
and then the problem of differential explosion caused by repeated derivation could be
avoided. Besides, a radial basis function neural network (RBFNN) with the MLP algorithm
is adopted for estimating and compensating for the environmental disturbances and model
uncertainties. Compared with the existing research results, the main contributions of this
paper can be summarized as follows: (1) Based on the leader–follower framework, the
virtual longitudinal and lateral velocities are designed by using the backstepping method,
and then the controller design can become more convenient. (2) The second-order sliding
surface with an integral is constructed for reducing steady-state error, and a hyperbolic
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tangent function is employed in place of the sign function to reduce system oscillations.
(3) A bio-inspired model is designed to avoid the problem of differential explosion caused
by repeated derivation, and then the virtual velocities can be smoothed. (4) A radial basis
function neural network (RBFNN) with the minimal learning parameter (MLP) algorithm
is adopted for approximating the environmental disturbances and model uncertainties.

This paper is organized as follows: the mathematical model of USV and error model
of USV formation are described in Section 2. In Section 3, the control law including the
surge force and the yaw moment are described. The stability of the controller is proved in
Section 4. The simulation experiments are presented to verify the accuracy and effectiveness
of the proposed method in Section 5. Finally, the conclusion is given in Section 6.

2. Problem Description

A coordinated formation control algorithm of USVs is designed in this paper, through
which the formation trajectory tracking issue can be addressed effectively. The formation
trajectory tracking problem can be described as shown in Figure 1.
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Figure 1. Formation trajectory tracking diagram.

The formation trajectory tracking problem can be considered as how the USV forma-
tion should navigate along the desired trajectory under the influence of ocean disturbances,
where each USV is required to maintain the predefined formation relative to other USVs.
To achieve the problem mentioned above, the model of USVs and the tracking error model
of USV formation are built, as shown in Sections 2.1 and 2.2.

2.1. Mathematical Model of USV

As shown in Figure 1, assume that there exist N USVs in formation, which includes
one leader USV and N − 1 follower USVs. According to the literature [26], the mathematical
model of the ith(i = 1, 2, · · · , N) USV under the influence of ocean disturbances and model
uncertainties can be expressed as follows:{ .

ηi = R(φi)vi
Mi

.
vi + Ci(vi)vi + Di(vi)vi = τi + di + ∆fi

(1)

where ηi = [xi, yi, φi]
T is the position and heading angle vector of the ith USV, in which

xi is the longitudinal position, yi is the lateral position and φi is the heading angle.
vi = [ui, vi, ri]

T represents the velocity vector of the ith USV, in which ui, vi and ri are
the longitudinal velocity, lateral velocity and heading angle speed. τci = [τui, 0, τri]

T is the
control input vector of the ith USV. di = [dui, dvi, dri]

T represents the external disturbances
vector of the ith USV. ∆fi = [∆ fui , ∆ fvi , ∆ fri ]

T denotes the model uncertainties of the ith

USV. Mi = diag(m1i, m2i, m3i) is the inertia matrix including added mass of the ith USV.
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Di(vi) = diag(d1i, d2i, d3i) represents the hydrodynamic damping coefficient matrix of the
ith USV. R(φi),Ci(vi) are the rotation matrix and the Coriolis-centripetal matrix of the ith

USV, specifically defined as follows:

R(φi) =

cos φi − sin φi 0
sin φi cos φi 0

0 0 1

, C(vi) =

 0 0 −m2ivi
0 0 m1iui

m2ivi m1iui 0


According to Equation (1), the model of the ith USV with three degrees of mathematical

freedom can be expanded as follows:

.
xi = ui cos φi − vi sin φi.
yi = ui sin φi + vi cos φi.
φi = ri.
ui = fui (ui, vi, ri) + τui/m1i.
vi = fvi (ui, vi, ri).
ri = fri (ui, vi, ri) + τri/m3i

(2)

where the specific expressions of the fui (ui, vi, ri), fvi (ui, vi, ri), fri (ui, vi, ri) are as follows:
fui (ui, vi, ri) = (m2i/m1i)viri − (d1i/m1i)ui + dui/m1i + ∆ fui

fvi (ui, vi, ri) = −(m1i/m2i)uiri − (d2i/m2i)vi + dvj/m2i + ∆ fvi

fri (ui, vi, ri) = ((m1i − m2i)/m3i)uivi − (d3i/m3i)ri + dri/m3i + ∆ fri

(3)

2.2. Error Model of USV Formation

The leader–follower framework proposed in Figure 1 is designed to maintain a prede-
fined formation while USVs are navigating, as specifically described in Figure 2 below:
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As shown in Figure 2, the jth(j = 1, 2, . . . , N − 1) USV serves as the follower USV
for the leader USV. Yl = [xl , yl ]

T is the position vector of the leader USV. Yj = [xj, yj]
T

is the position vector of the jth follower USV. φl is the heading angle of the leader USV;
Lj = [lxj, lyj]

T is the formation position vector from the jth follower USV to the leader USV,
where lxj is the desired relative longitudinal position in the coordinate system of the leader
USV and lyj is the desired relative lateral position in the coordinate system of the leader
USV. Yjd = [xjd, yjd]

T is the desired position vector of the jth follower USV, where xjd is the
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desired longitudinal position of the jth follower USV and yjd is the desired lateral position
of the jth follower USV. The desired position of the jth follower USV can be expressed
as follows:

Yjd = Yl + J(φl) · Lj (4)

where J(φl) =

[
cos(φl) − sin(φl)
sin(φl) cos(φl)

]
is the standard rotation matrix.

Based on the above analysis, the trajectory tracking problem of the jth follower
USV could be transformed to design a suitable control τi that ensures tracking error
Yje = Yj − Yjd approaches zero.

3. Controller Design

As shown in Figure 1, to enable USVs to track a desired trajectory in a specified
formation, it is crucial to design an appropriate control algorithm. The flowchart of
cooperative formation control of USVs is designed as shown in Figure 3.
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Figure 3. Flowchart of cooperative formation control for underactuated USVs.

As seen in Figure 3, the cooperative formation control process of USVs can be divided
into two main parts: the controller of the lead USV would be designed by a backstepping
method and the bio-inspired sliding model method. Then, the actual trajectory of the
leader USV and formation information are used to generate the desired trajectories for each
follower USV, and the controllers of the follower USVs would be designed the same as for
the leader USV, which includes the design of the virtual velocity control law in Section 3.1,
the design of the surge force controller in Section 3.2 and the design of the yaw moment
controller in Section 3.3.

3.1. Design of Virtual Velocities

As seen in Figure 3, it is crucial for the controller to design virtual velocities based
on the position errors. The position errors of the jth follower USV could be proposed
as follows: [

x f je

y f je

]
=

[
x f j

− x f jd

y f j
− y f jd

]
(5)

where x f j
, y f j

are the actual longitudinal position and lateral position of the jth follower

USV and x f jd, y f jd are the desired longitudinal position and lateral position of the jth

follower USV. x f je, y f je are longitudinal position error and lateral position error of the jth

follower USV.
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Combining this with Equation (2), the derivation of Equation (5) could be written
as follows: [ .

x f je.
y f je

]
=

[
cos(φ f j

) − sin(φ f j
)

sin(φ f j
) cos(φ f j

)

][
u f j

v f j

]
−

[ .
x f jd.
y f jd

]
(6)

where u f j
, v f j

are the actual longitudinal velocity and lateral velocity of the jth follower

USV. φ f j
is the actual heading angle of the jth follower USV.

To stabilize the position errors of the jth follower, the Lyapunov function could be
designed as follows:

V1 fi
= x2

fie/2 + y2
fie/2 (7)

Combining this with Equations (2) and (6), the derivation of Equation (7) can be
obtained as follows:

.
V1 fi

=
∂V1 fi
∂x fi e

∂xe
∂t +

∂V1 fi
∂y fi e

∂y fi e

∂t

= x fie
.
x fie + y fie

.
y fie

= x fie(u f j
cos(φ f j

)− v f j
sin(φ f j

)− .
x f jd) + y fie(u f j

sin(φ f j
) + v f j

cos(φ f j
)− .

y f jd)

(8)

Generally, the values of virtual velocities α f ju and α f jv are related to the position errors,

and based on the backstepping method, the virtual velocities α f ju and α f jv of the jth follower
USV could be designed as follows:[

α f ju

α f jv

]
=

[
cos(φ f j

) sin(φ f j
)

− sin(φ f j
) cos(φ f j

)

] .
x f jd − k1 f j

x f je/
√

x2
f je

+ y2
f je

+ C f j
.
y f jd

− k2 f j
y f je/

√
x2

f je
+ y2

f je
+ C f j

 (9)

where k1 f j
, k2 f j

, C f j
are positive numbers.

Based on the above analysis, the trajectory tracking problem of the jth follower USV
could be transformed to design a suitable control τj that ensures errors of the virtual
velocities and actual velocities approach zero.

3.2. Design of the Surge Force

Utilizing the virtual longitudinal velocity α f ju designed in Section 3.1, the surge force

of the jth follower USV could be designed based on the bio-inspired sliding mode method.
Define the longitudinal velocity error u f je as follows:

u f je = u f j
− α f ju (10)

To reduce the steady-state error, the integral sliding surface s1 f j
with u f je could be

designed as follows:

s1 f j
= u f je + λ1 f j

∫ t

0
u f je(s)ds (11)

where λ1 f j
is a positive number.

Combining this with the Equation (2), the derivation of Equation (11) could be obtained
as follows: .

s1 f j
=

.
u f j

− .
α f ju + λ1 f j

u f je

= f f ju(u f j
, v f j

, r f j
) + τuj/m1j −

.
α f ju + λ1 f j

u f je
(12)
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In order to avoid differential explosion caused by repeated derivation and smooth the
virtual velocity α f ju, the bio-inspired model could be designed [27], where the virtual longi-

tudinal velocity derivative
.
α fiu in Equation (12) is transformed into

.
β f ju

, shown as follows:

.
β f ju

= −B1 f j
β f ju + (C1 f j

− β f ju) f (α f ju)− (D1 f j
+ β f ju)g(α f ju)

f (α f ju) =

{
α f ju, α f ju ≥ 0
0, α f ju < 0

, g(α f ju) =

{
0, α f ju > 0
−α f ju, α f ju ≤ 0

(13)

where β f ju is the output of the bio-inspired model. B1 f j
represents the model of the

attenuation rate and is the positive constant. C1 f j
and D1 f j

denote the upper and lower
bounds of the β fiu. f (α f ju) and g(α f ju) are linear threshold functions.

To prevent the system oscillation caused by using the sign function, Equation (14)
could be designed with a hyperbolic tangent function, listed as follows:

.
s1 f j

= −ε1 f j
tanh(s1 f j

)− σ1 f j
s1 f j

(14)

where ε1 f j
and σ1 f j

are positive numbers.

Combining this with the Equations (12)–(14), the surge force of the jth follower USV
could be obtained as follows:

τf ju = m1j[− f f ju(u f j
, v f j

, r f j
) +

.
β f ju

− λ1 f j
u f je − ε1 f j

tanh(s1 f j
)− σ1 f j

s1 f j
] (15)

3.3. Design of the Yaw Moment

Utilizing the virtual lateral velocity α f jv designed in Section 3.1, the yaw moment of

the jth follower USV could be designed based on the bio-inspired sliding mode method.
Define the lateral velocity error v f je as follows:

v f je = v f j
− α f jv (16)

where v f j
is the actual lateral velocity of the jth follower USV.

Due to the lack of a controller in the lateral direction for the underactuated USV, the
second-order integral sliding surface with the lateral velocity error v f je could be designed
as follows:

s2 f j
=

.
v f je + λ2 f j

v f je + λ3j

∫ t

0
v f je(s)ds (17)

where λ2 f j
and λ3 f j

are positive numbers.
Combining this with the Equation (2), the derivation of Equation (17) could be obtained

as follows:
.
s2 f j

=
..
v f j

− ..
α f jv + λ2 f j

(
.
v f j

− .
α f jv) + λ3j(v f j

− α f jv) (18)

To obtain
..
α f jv in Equation (18), the derivation of Equation (9) is proposed as follows:

[ .
α f ju.
α f jv

]
= r f j

[
− sin(φ f j

) cos(φ f j
)

− cos(φ f j
) − sin(φ f j

)

][ .
x f jd − k1 f j

w−1
f j

x f je
.
y f jd

− k2 f j
w−1

f j
y f je

]
+[

cos(φ f j
) sin(φ f j

)

− sin(φ f j
) cos(φ f j

)

][ ..
x f jd − k1 f j

(w−1
f j

− w−3
f j

x2
f je
)

.
x f je + k1 f j

w−3
f j

x f jey f je
.
y f je

..
y f jd

− k2 f j
(w−1

f j
− w−3

f j
y2

f je
)

.
y f je

+ k2 f j
w−3

f j
x f jey f je

.
x f je

]

= r f j

[
α f jv

−α f ju

]
+

[
cos(φ f j

) sin(φ f j
)

− sin(φ f j
) cos(φ f j

)

][ ..
x f jd − k1 f j

(w−1
f j

− w−3
f j

x2
f je

.
x f je + k1 f j

w−3
f j

x f jey f je
.
y f je

..
y f jd

− k2 f j
(w−1

f j
− w−3

f j
y2

f je
)

.
y f je

+ k2 f j
w−3

f j
x f jey f je

.
x f je

] (19)

where w f j
=

√
x2

f je
+ y2

f je
+ C f j

.
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Thus, combining this with Equation (19),
..
α f jv could be obtained as follows:

..
α f jv = − .

r f j
α f ju − r f j

.
α f ju +

.
g f j

g f j
= −[

..
x f jd − k1 f j

(w−1
f j

− w−3
f j

x2
f je
)

.
x f je + k1 f j

w−3
f j

x f jey f je
.
y f je

] sin(φ f j
)+

[
..
y f jd

− k2 f j
(w−1

f j
− w−3

f j
y2

f je
)

.
y f je

+ k2 f j
w−3

f j
x f jey f je

.
x f je] cos(φ f j

)

(20)

According to Equation (20), Equation (18) could be rewritten as follows:

.
s2 f j

=
..
v f j

− (− .
r f j

α f ju − r f j

.
α f ju +

.
g f j

) + λ2 f j
(

.
v f j

− .
α f jv) + λ3j(v f j

− α f jv)

=
..
v f j

− [−( f f jr(u f j
, v f j

, r f j
) + 1

m3j
τrj)α f ju − r f j

.
α f ju +

.
g f j

)

+λ2 f j
(

.
v f j

− .
α f jv) + λ3j(v f j

− α f jv)

(21)

By utilizing the bio-inspired model, the virtual lateral velocity derivative
.
α f jv in

Equation (21) is transformed into
.
β f jv

, shown as follows:

.
β f jv

= −B2 f j
β f jv + (C2 f j

− β f jv) f (α f jv)− (D2 f j
+ β f jv)g(α f jv)

f (α f jv) =

{
α f jv, α f jv ≥ 0
0, α f jv < 0

, g(α f jv) =

{
0, α f jv > 0
−α f jv, α f jv ≤ 0

(22)

where β f jv is the output of the bio-inspired model. B2 f j
represents the model of attenuation

rate and is the positive constant. C2 f j
and D2 f j

denote the upper and lower bounds of β fiv.
f (α f ju) and g(α f ju) are linear threshold functions.

The sliding mode reaching law with a hyperbolic tangent function could be designed
as follows:

.
s2 f j

= −ε2 f j
tan h(s2 f j

)− σ2 f j
s2 f j

(23)

where ε2 f j
and σ2 f j

are positive numbers.

Combining this with Equations (21)–(23), the yaw moment of the jth follower USV can
be obtained as follows:

τrj =
m3j
α f ju

[− ..
v f j

− λ2 f j
(

.
v f j

−
.
β f jv

)− λ3j(v f j
− β f jv)− r f j

.
β f ju

+
.
g f j

− ε2 f j
tan h(s2 f j

)− σ2 f j
s2 f j

]− m3j f f jr(u f j
, v f j

, r f j
)

(24)

3.4. Design of RBF Neural Network

According to Equations (15) and (24), the functions f f ju(u f j
, v f j

, r f j
) and f f jr(u f j

, v f j
, r f j

)

are defined as unknown functions, which represent the ocean disturbances and model
uncertainties. As shown in Figure 3, the RBF neural network is proposed to approximate
the functions f f ju(u f j

, v f j
, r f j

) and f f jr(u f j
, v f j

, r f j
). The structure diagram of the RBF neural

network with multiple inputs and a single output is described in Figure 4.
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where 1 jf
δ   and 2 jf

δ   are the approximation errors of the neural network. 0>
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j j j j
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Figure 4. The structure diagram of the RBF neural network.
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As seen in Figure 4, the RBF neural network is a three-layer feedforward network,
which includes an input layer, a hidden layer and an output layer. Based on the Gaussian
basis function, the RBF neural network can approximate the uncertain terms without the
need for complex mathematical theoretical analysis. The expression of the RBF neural
network could be designed as follows:

f f ju(u f j
, v f j

, r f j
) = W∗T

f ju
h(z f j

) + δ1 f j
, δ1 f j

< δ f jU

f f jr(u f j
, v f j

, r f j
) = W∗T

f jr
h(z f j

) + δ2 f j
, δ2 f j

< δ f jR

h(z f j
) = exp(−

∥∥∥z f j
− ck

∥∥∥2
/2b2

k), bk > 0, (k = 1, 2, · · · , n
) (25)

where δ1 f j
and δ2 f j

are the approximation errors of the neural network. δ f jU > 0 and δ f jR > 0

are the upper bounds of δ1 f j
and δ2 f j

. z f j
= [u f j

, v f j
, r f j

]T is the input vector of the RBF neural

network, h(z f j
) = [h1(z f j

), h2(z f j
), · · · , hn(z f j

)]T represents the radial basis function vector
of the neural network. bk is the width of the Gaussian basis function. The positive integer k
represents the kth node in the hidden layer of the neural network.ck = [c1, c2, · · · , cn]

T ∈ Rn

denotes the center value of the kth hidden neuron. W∗
f ju

= [w∗
f ju,1, w∗

f ju,2, · · · , w∗
f ju,n]

T ∈ Rn

and W∗
f jr

= [w∗
f jr,1, w∗

f jr,2, · · · , w∗
f jr,n]

T ∈ Rn are the weights associated with the kth hidden
neuron, which are designed as follows:

W∗
f ju

= argmin
W∈Rn

 sup
z f j

∈Ω

∣∣∣ f f ju(u f j
, v f j

, r f j
)− WT

f ju
h(z f j

)
∣∣∣


W∗
f jr

= argmin
W∈Rn

 sup
z f j

∈Ω

∣∣∣ f f jr(u f j
, v f j

, r f j
)− WT

f jr
h(z f j

)
∣∣∣


(26)

Since W∗
f ju

and W∗
f jr

are often unattainable in practical applications, the estimated val-

ues
∧
W f ju and

∧
W f jr are designed to replace W∗

f ju
and W∗

f jr
. Combining this with

Equations (15) and (24), the surge force and the yaw moment of the jth follower USV could
be rewritten as follows:

τf ju = m1j[−
∧
f f ju

(u f j
, v f j

, r f j
) +

.
β f ju

− λ1 f j
u f je − ε1 f j

tanh(s1 f j
)− σ1 f j

s1 f j
]

τrj =
m3j
α f ju

[− ..
v f j

− λ2 f j
(

.
v f j

−
.
β f jv

)− λ3j(v f j
− β f jv)− r f j

.
β f ju

+
.
g f j

− ε2 f j
tan h(s2 f j

)− σ2 f j
s2 f j

]− m3j
∧
f f jr

(u f j
, v f j

, r f j
)

(27)

where
∧
f f ju

(u f j
, v f j

, r f j
) =

∧
WT

f ju
h(z f j

) is the estimated value of f f ju(u f j
, v f j

, r f j
) and

∧
f f jr

(u f j
, v f j

, r f j
) =

∧
WT

f jr
h(z f j

) is the estimated value of f f jr(u f j
, v f j

, r f j
).

Meanwhile, to simplify the calculation, the MLP algorithm is utilized to substitute

for online weight in a single-parameter form. Specifically,
∥∥∥W∗

f ju

∥∥∥2
and

∥∥∥W∗
f jr

∥∥∥2
could be

designed as follows: 
ϕ1 f j

=
∥∥∥W∗

f ju

∥∥∥2

ϕ2 f j
=

∥∥∥W∗
f jr

∥∥∥2 (28)
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where ϕ1 f j
and ϕ2 f j

are positive constants. And by defining ϕ̂1 f j
and ϕ̂2 f j

as the estimated
value of ϕ1 f j

and ϕ2 f j
, the adaptive parameters could be designed as follows:

·
ϕ̂1 f j

= ζ1 f j
(s2

1 f j
hT

f j
h f j

/2 − γ1 f j
ϕ̂1 f j

)
·
ϕ̂2 f j

= ζ2 f j
(s2

2 f j
hT

f j
h f j

/2 − γ2 f j
ϕ̂2 f j

)
(29)

where ζ1 f j
, ζ2 f j

, γ1 f j
, γ2 f j

are positive numbers.
Combining this with Equations (27) and (29), the surge force and the yaw moment of

the jth follower USV could be designed as follows:
τf ju = m1j[−s1 f j

ϕ̂1 f j
hT

f j
h f j

/2 +
.
β f ju

− λ1 f j
u f je − ε1 f j

tanh(s1 f j
)− σ1 f j

s1 f j
]

τrj =
m3j
α f ju

[− ..
v f j

− λ2 f j
(

.
v f j

−
.
β f jv

)− λ3j(v f j
− β f jv)− r f j

.
β f ju

+
.
g f j

− ε2 f j
tan h(s2 f j

)− σ2 f j
s2 f j

]− m3js2 f j
ϕ̂2 f j

hT
f j

h f j
/2

(30)

4. Stability Analysis

To verify the stability of the designed controller, combining with the errors in sliding
mode controller design and estimation error of the RBF neural network, the Lyapunov
function could be designed as follows:

V2 f j
= s2

1 f j
/2 + s2

2 f j
/2 + y2

f ju
/2 + y2

f jv
/2 + ϕ̃2

1 f j
/(2ζ1 f j

) + ϕ̃2
2 f j

/(2ζ2 f j
)

y f ju = β f ju − α f ju, y f jv = β f jv − α f jv

ϕ̃1 f j
= ϕ1 f j

− ϕ̂1 f j
, ϕ̃2 f j

= ϕ2 f j
− ϕ̂2 f j

(31)

Combining this with Equations (13), (14), (22), (24) and (31), the derivation of the
Lyapunov function V2 f j

could be presented as follows:
.

V2 f j
= s1 f j

.
s1 f j

+ s2 f j

.
s2 f j

+ y f ju
.
y f ju

+ y f jv
.
y f jv

− ϕ̃1 f j

.
ϕ̂1 f j

/ζ1 f j
− ϕ̃2 f j

.
ϕ̂2 f j

/ζ2 f j

= s1 f j
[W∗

f ju
Th(z f j

) + δ1 f j
− s1 f j

ϕ̂1 f j
hT

f j
h f j

/2 − ε1 f j
tanh(s1 f j

)− σ1 f j
s1 f j

] + s2[W∗
f jr

Th(z fk
) + δ2 f j

−s2 f j
ϕ̂2 f j

hT
f j

h f j
/2 − ε2 f j

tanh(s2 f j
)− σ2 f j

s2 f j
] + y f ju(

.
β f ju

− .
α f ju) + y f jv(

.
β f jv

− .
α f jv)

−ϕ̃1 f j

.
ϕ̂1 f j

/ζ1 f j
− ϕ̃2 f j

.
ϕ̂2 f j

/ζ2 f j

= −σ1 f j
s2

1 f j
− σ2 f j

s2
2 f j

+ s1 f j
δ1 f j

+ s2 f j
δ2 f j

− s1 f j
ε1 f j

tanh(s1 f j
)− s2 f j

ε2 f j
tanh(s2 f j

)

+s1 f j
W∗

f jr
Th(z f j

)− s2
1 f j

ϕ̂1 f j
hT

f j
h f j

/2 + s2 f j
W∗

f jr
Th(z f j

)− s2
2 f j

ϕ̂2 f j
hT

f j
h f j

/2 + y f ju[−B1 f j
β f ju

+(C1 f j
− β f ju) f (α f ju)− (D1 f j

+ β f ju)g(α f ju)−
.
α f ju] + y f jv[−B2 f j

β f jv + (C2 f j
− β f jv) f (α f jv)

−(D2 f j
+ β f jv)g(α f jv)−

.
α f jv]− ϕ̃1 f j

.
ϕ̂1 f j

/ζ1 f j
− ϕ̃2 f j

.
ϕ̂2 f j

/ζ2 f j

≤ −σ1 f j
s2

1 f j
− σ2 f j

s2
2 f j

+ s1 f j
δ1 f j

+ s2 f j
δ2 f j

− ε1 f j

∣∣∣s1 f j

∣∣∣− ε2 f j

∣∣∣s2 f j

∣∣∣+ s1 f j
W∗

f jr
Th(z f j

)

−s2
1 f j

ϕ̂1 f j
hT

f j
h f j

/2 + s2 f j
W∗

f jr
Th(z f j

)− s2
2 f j

ϕ̂2 f j
hT

f j
h f j

/2 + y f ju[−B1 f j
β f ju + (C1 f j

− β f ju) f (α f ju)

−(D1 f j
+ β f ju)g(α f ju)−

.
α f ju] + y f jv[−B2 f j

β f jv + (C2 f j
− β f jv) f (α f jv)− (D2 f j

+ β f jv)g(α f jv)

− .
α f jv]− ϕ̃1 f j

.
ϕ̂1 f j

/ζ1 f j
− ϕ̃2 f j

.
ϕ̂2 f j

/ζ2 f j

(32)

According to Equations (25) and (28), the following inequalities could be presented
as follows: 

s1 f j
δ1 f j

≤ s2
1 f j

/2 + δ2
1 f j

/2 ≤ s2
1 f j

/2 + δ2
f jU

/2

s2 f j
δ2 f j

≤ s2
2 f j

/2 + δ2
2 f j

/2 ≤ s2
2 f j

/2 + δ2
f jR

/2

2s1 f j
W∗

f ju
Th f j

≤ s2
1 f j

∥∥∥W∗
f ju

∥∥∥2∥∥∥h f j

∥∥∥2
+ 1 = s2

1 f j
ϕ1 f j

hT
f j

h f j
+ 1

2s2 f j
W∗

f ju
Th f j

≤ s2
2 f j

∥∥∥W∗
f jr

∥∥∥2∥∥∥h f j

∥∥∥2
+ 1 = s2

2 f j
ϕ2 f j

hT
f j

h f j
+ 1

(33)
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As seen from Equations (13) and (22), there exists f (α f ju) ≥ 0, f (α f jv) ≥ 0 and
g(α f ju) ≥ 0, g(α f jv) ≥ 0, and then Equation (32) could be simplified as follows:

.
V2 f j

≤ −σ1 f j
s2

1 f j
− σ2 f j

s2
2 f j

+ s2
1 f j

/2 + δ2
f jU

/2 + s2
2 f j

/2 + δ2
f jR

/2 − ε1 f j

∣∣∣s1 f j

∣∣∣− ε2 f j

∣∣∣s2 f j

∣∣∣
+s1 f j

ϕ̃1 f j
hT

f j
h f j

/2 + s2 f j
ϕ̃2 f j

hT
f j

h f j
/2 + 1 + y f ju(−B f juβ f ju + C1 f j

α f ju −
.
α f ju)

+y f jv(−B f jvβ f jv + C2 f j
α f jv −

.
α f jv)− ϕ̃1 f j

.
ϕ̂1 f j

/ζ1 f j
− ϕ̃2 f j

.
ϕ̂2 f j

/ζ2 f j

s.t.


C1 f j

= D1 f j
, C2 f j

= D2 f j

B f ju = B1 f j
+ f (α f ju) + g(α f ju) > 0

B f jv = B2 f j
+ f (α f jv) + g(α f jv) > 0

(34)

Combining this with Equation (29), and assuming B f ju = C1 f j
and B f jv = C2 f j

, then
the Equation (34) can be written as follows:

.
V2 f j

≤ −(2σ1 f j
− 1)s2

1 f j
/2 − (2σ2 f j

− 1)s2
2 f j

/2 + δ2
f jU

/2 + δ2
f jR

/2 + s1 f j
ϕ̃1 f j

hT
f j

h f j
/2

+s2 f j
ϕ̃2 f j

hT
f j

h f j
/2 + 1 − B f juy2

f ju
− y f ju

.
α f ju − B f jvy2

f jv
− y f jv

.
α f jv

−ϕ̃1 f j
(s1 f j

hT
f j

h f j
/2 − γ1 f j

ϕ̂1 f j
)− ϕ̃2 f j

(s2 f j
hT

f j
h f j

/2 − γ2 f j
ϕ̂2 f j

)

≤ −(2σ1 f j
− 1)s2

1 f j
/2 − (2σ2 f j

− 1)s2
2 f j

/2 + δ2
f jU

/2 + δ2
f jR

/2 − B f juy2
f ju

− y f ju
.
α f ju − B f jvy2

f jv

−y f jv
.
α f jv + γ1 f j

ϕ̃1 f j
ϕ̂1 f j

+ γ2 f j
ϕ̃2 f j

ϕ̂2 f j

(35)

Since the desired trajectories of USVs are smooth and bounded, the control inputs and
velocities of USVs are bounded, it leads to:

−y f ju
.
α f ju ≤

σf ju

2 y2
f ju

+ 1
2σf ju

.
α

2
f ju ≤

σf ju

2 y2
f ju

+ 1
2σf ju

.
U

2
f jmax

−y f jv
.
α f jv ≤

σf jv

2 y2
f jv

+ 1
2σf jv

.
α

2
f jv ≤

σf jv

2 y2
f jv

+ 1
2σf jv

.
V

2
f jmax

2ϕ̃1 f j
ϕ̂1 f j

= (ϕ1 f j
− ϕ̂1 f j

)ϕ̂1 f j
+ ϕ̃1 f j

(ϕ1 f j
− ϕ̃1 f j

) = ϕ2
1 f j

− ϕ̂2
1 f j

− ϕ̃2
1 f j

≤ ϕ2
1 f j

− ϕ̃2
1 f j

2ϕ̃2 f j
ϕ̂2 f j

= (ϕ2 f j
− ϕ̂2 f j

)ϕ̂2 f j
+ ϕ̃2 f j

(ϕ2 f j
− ϕ̃2 f j

) = ϕ2
2 f j

− ϕ̂2
2 f j

− ϕ̃2
2 f j

≤ ϕ2
2 f j

− ϕ̃2
2 f j

(36)

where
.

U f jmax is the maximum value of
.
α f ju and

.
V f jmax is the maximum value of

.
α f jv.

Combining this with Equation (36), Equation (35) could be simplified as follows:
.

V2 f j
≤ −(2σ1 f j

− 1)s2
1 f j

/2 − (2σ2 f j
− 1)s2

2 f j
/2 − (B f ju − σf ju/2)y2

f ju
− (B f jv − σf jv/2)y2

f jv

−γ1 f j
ϕ̃2

1 f j
/2 − γ2 f j

ϕ̃2
2 f j

/2 + δ2
f jU

/2 + δ2
f jR

/2 +
.

U
2
f jmax/(2σf ju) +

.
V

2
f jmax/(2σf jv)

+γ1 f j
ϕ2

1 f j
/2 + γ2 f j

ϕ2
2 f j

/2

≤ µV2 f j
+ C3

s.t.


µ = min

{
(2σ1 f j

− 1)/2, (2σ2 f j
− 1)/2, B f ju − σf ju/2, B f jv − σf jv/2, γ1 f j

/2, γ2 f j
/2

}
C3 = δ2

f jU
/2 + δ2

f jR
/2 +

.
U

2
f jmax/(2σf ju) +

.
V

2
f jmax/(2σf jv) + γ1 f j

ϕ2
1 f j

/2 + γ2 f j
ϕ2

2 f j
/2 + 1

B f ju − σf ju/2 > 0, B f jv − σf jv/2 > 0

(37)

By solving Equation (37), it leads to

0 ≤ V2 f j
(t) ≤ C3/µ + [V2 f j

(0)− C3/µ]e−µt (38)

According to Equation (38), V2 f j
(t) converges within a ball of radius C3/µ, so that it is

ultimately uniformly bounded. By choosing appropriate control parameters, the convergent
limit of V2 fi

(t) is inclined to zero. And it can be demonstrated that the designed sliding
mode controller finally tends to be stable at t → ∞ with x f je → 0 , y f je → 0 , u f je → 0 and
v f je → 0 .
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5. Computer Simulation

To highlight the advantages of the proposed bio-inspired sliding mode control (bio-
SMC) method and the radial basis function neural network (RBF), four experiment cases
including circular trajectory, straight line trajectory, sinusoidal trajectory and combination
trajectory of straight line and circle are set in this section, and three USVs are taken as an
example, where one is the leader USV, and the other two are the follower USVs. The USV
model parameters are presented by [28], and the specific parameters are shown in Table 1.

Table 1. USVs model parameters.

Parameter Value (Unit) Parameter Value (Unit)

m1j 25.8 kg d1j 12 kg/s
m2j 33.8 kg d2j 17 kg/s
m3j 2.76 kg.m2 d3j 0.5 kg.m2/s

The simulation time interval is 0.1 s and the external environmental disturbance is
dj = [2 sin(0.1t), 0.2 sin(0.01t), sin(0.1t)]T . The model uncertainties of USV are considered
as ∆ f j = [−0.2d1ju2

j /m1j − 0.1d1ju3
j /m1j,−0.2d2jv2

j /m2j − 0.1d2jv3
j /m2j,−0.2d3jr2

j /m3j

−0.1d3jr3
j /m3j]

T .
Considering the constraints of the actuators on USVs in practical engineering, limita-

tions are set on the control input, especially described as follows:{
τumax = 50 N, τrmax = 30 N · m
dτumax = 50 N/s, dτrmax = 50 N · m/s

(39)

In order to intuitively describe the tracking effect of the USV, the longitudinal position
error of the USV is defined as xej =

∣∣∣xj − xdj

∣∣∣ and lateral position error of the USV is

defined as yej =
∣∣∣yj − ydj

∣∣∣. And the longitudinal velocity error and lateral velocity error
are uje = uj − αju and vje = vj − αjv.

Case 1. Circular trajectory

The desired circular trajectory of the leader USV is described as: xd = 30 sin 0.05t,
yd = −30 cos 0.05t. The initial state information for each USV in the formation system is
presented in Table 2.

Table 2. USVs initial state (Case 1).

Parameter Leader USV Follower USV1 Follower USV2

η [−5(m),−35(m), 45(◦)]T [−6(m),−32(m), 45(◦)]T [−6(m),−42(m), 45(◦)]T

v [0, 0, 0]T [0, 0, 0]T [0, 0, 0]T

L [0(m), 5(m)]T [0(m),−5(m)]T

The input of the RBF neural network
∧
f f ju

(u f j
, v f j

, r f j
) is 3; the number of nodes in the

hidden layer is 9; the width of the Gaussian basis function is 2 and the vector values for
the center points are normally distributed in the range of [−15, 15]. The input of the RBF

neural network
∧
f f jr

(u f j
, v f j

, r f j
) is 3; the number of nodes in the hidden layer is 9; the width

of the Gaussian basis function is 4 and the vector values for the center points are normally
distributed in the range of [−0.3, 0.3]. The controller parameters are presented in Table 3.
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Table 3. USVs controller parameters (Case 1).

Parameter Leader USV Follower USV1 Follower USV2

C 50 40 50
k1 3 2 3
k2 5 2 6.5
λ1 0.002 0.002 0.002
λ2 6 4.5 5
λ3 0.05 0.05 0.05
ε1 0.01 0.001 0.01
ε2 0.01 0.01 0.01
σ1 0.5 0.5 0.5
σ2 0.01 0.01 0.01
B1 2 1.5 2
B2 4 4 4

C1, D1 3.4 2.5 3.75
C2, D2 4 4 4

ζ1 20 60 10
ζ2 0.01 0.015 0.015
γ1 0.0005 0 0
γ2 0.001 0.001 0.001

The simulation results of Case 1 are shown in Figures 5–11.
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Figure 6. Diagrams of USVs’ tracking error (Case 1). (a) longitudinal position error; (b) lateral
position error.
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Figure 10. Diagrams of USVs’ velocity error (Case 1). (a) longitudinal velocity error; (b) lateral
velocity error.
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Figure 11. Approximation results of USVs (Case 1). (a) surge dynamic damping; (b) yaw
dynamic damping.
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Case 2. Straight line trajectory

The desired straight line trajectory of the leader USV is described as: xd = t, yd = t.
The initial state information for each USV in the formation system is presented in Table 4.

Table 4. USVs initial state (Case 2).

Parameter Leader USV Follower USV1 Follower USV2

η [−5(m),−2(m), 0]T [−12(m),−15(m), 90(◦)]T [−4(m),−20(m),−90(◦)]T

v [0, 0, 0]T [0, 0, 0]T [0, 0, 0]T

L [−5(m), 10(m)]T [−5(m),−10(m)]T

The parameters of the RBF neural network are same as for Case 1, besides the width
of the Gaussian basis function, and the width of the Gaussian basis function is 2. The
controller parameters are presented in Table 5.

Table 5. USVs’ controller parameters (Case 2).

Parameter Leader USV Follower USV1 Follower USV2

C 50 50 40
k1 3.5 3.5 2
k2 6 6 3
λ1 0.012 0.012 0.001
λ2 6.5 5 5
λ3 0.001 0.05 0.05
ε1 0.05 0.05 0.05
ε2 0.01 0.01 0.01
σ1 0.05 0.1 0.1
σ2 0.01 0.01 0.01
B1 2.5 5.5 5.5
B2 4 4 4

C1, D1 4 7 7
C2, D2 4 4 4

ζ1 3 8 8
ζ2 0.01 0.025 0.025
γ1 0.008 0.08 0.001
γ2 0.1 0.1 0.1

The simulation results of Case 2 are shown in Figures 12–18.

Case 3. Sinusoidal trajectory

The desired sinusoidal trajectory of the leader USV is described as xd = t,
yd = 25 sin(0.05t)− 35. The initial state information for each USV in the formation system
is presented in Table 6.

Table 6. USVs’ initial state (Case 3).

Parameter Leader USV Follower USV1 Follower USV2

η [−5(m),−35(m), 45(◦)]T [−6(m),−32(m), 45(◦)]T [−6(m),−42(m), 45(◦)]T

v [0, 0, 0]T [0, 0, 0]T [0, 0, 0]T

L [0(m), 5(m)]T [0(m),−5(m)]T
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Figure 14. Diagrams of USVs’ control input signals (Case 2). (a) surge force; (b) yaw moment.
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Figure 15. Diagrams of USVs’ velocity variables (Case 2). (a) Leader USV; (b) Follower USV1;
(c) Follower USV2.
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velocity error.
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Figure 18. Approximation results of USVs’ (Case 2). (a) surge dynamic damping; (b) yaw
dynamic damping.

The parameters of the RBF neural network are same as for Case 2, and the controller
parameters are presented in Table 7.
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Table 7. USVs’ controller parameters (Case 3).

Parameter Leader USV Follower USV1 Follower USV2

C 30 30 40
k1 2 9.5 9
k2 3.5 4 5
λ1 0.0001 0.0001 0.0001
λ2 1.2 1.2 1.2
λ3 0.001 0.01 0.001
ε1 0.01 0.05 0.05
ε2 0.01 0.01 0.01
σ1 0.02 0.01 0.01
σ2 0.1 0.01 0.01
B1 4 4 4
B2 4 6.7 7.75

C1, D1 4 4 4
C2, D2 4 4 4

ζ1 1 0.01 0.1
ζ2 0.015 0.01 0.006
γ1 0.0005 0.0005 0.0005
γ2 0.001 0.001 0.001

The simulation results of Case 3 are shown in Figures 19–25.
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Figure 20. Diagrams of USVs’ tracking error (Case 3). (a) longitudinal position error; (b) lateral
position error.
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Figure 21. Diagrams of USVs’ control input signals (Case 3). (a) surge force; (b) yaw moment.

Case 4. Combination trajectory of straight line and circle

The desired sinusoidal trajectory of the leader USV is described as follows:{
xd = t − 90, yd = −25, 0 ≤ t < 90 s
xd = 25 sin(0.05(t − 90)), yd = 25 cos(0.05(t − 90)), t ≥ 90 s

The initial state information for each USV is presented in Table 8.

Table 8. USVs’ initial state (Case 4).

Parameter Leader USV Follower USV1 Follower USV2

η [−90(m),−30(m), 0(◦)]T [−95(m),−20(m), 0(◦)]T [−95(m),−40(m), 0(◦)]T

v [0, 0, 0]T [0, 0, 0]T [0, 0, 0]T

L [0(m), 5(m)]T [0(m),−5(m)]T
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Figure 22. Diagrams of USVs’ velocity variables (Case 3). (a) Leader USV; (b) Follower USV1;
(c) Follower USV2.
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Figure 23. Diagrams of USVs’ virtual velocity variables (Case 3). (a) longitudinal virtual velocity;
(b) lateral virtual velocity.
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Figure 24. Diagrams of USVs’ velocity error (Case 3). (a) longitudinal velocity error; (b) lateral
velocity error.
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Figure 25. Approximation results of USVs’ (Case 3). (a) surge dynamic damping; (b) yaw dynamic
damping.

The parameters of the RBF neural network are same as for Case 1, and the controller
parameters are presented in Table 9.

Table 9. USVs’ controller parameters (Case 4).

Parameter Leader USV Follower USV1 Follower USV2

C 30 30 30
k1 5 0.8 1.4
k2 3 2 1.94
λ1 0.002 0.002 0.002
λ2 2.5 3.1 2
λ3 0.001 0.001 0.001
ε1 0.01 0.01 0.01
ε2 0.05 0.05 0.05
σ1 0.1 0.01 0.01
σ2 0.01 0.01 0.01
B1 2.5 5.5 6
B2 4 4 4

C1, D1 4 6.7 7.75
C2, D2 4 4 4

ζ1 1 60 60
ζ2 0.015 0.01 0.05
γ1 0.0005 0.0005 0.0005
γ2 0.001 0.0001 0.001
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The simulation results of Case 4 are shown in Figures 26–32.
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bio-SMC and RBF.
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Figure 27. Diagrams of USVs’ tracking error (Case 4). (a) longitudinal position error; (b) lateral
position error.
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Figure 28. Diagrams of USVs’ control input signals (Case 4). (a) surge force; (b) yaw moment.
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Figure 29. Diagrams of USVs’ velocity variables (Case 4). (a) Leader USV; (b) Follower USV1;
(c) Follower USV2.
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Figure 30. Diagrams of USVs’ virtual velocity variables (Case 4). (a) longitudinal virtual velocity;
(b) lateral virtual velocity.
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Figure 31. Diagrams of USVs’ velocity error (Case 4). (a) longitudinal velocity error; (b) lateral
velocity error.
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The effectiveness of the RBF and the bio-inspired sliding mode control (bio-SMC) are
analyzed through the above four experiment cases, in which Figures 5a, 12a, 19a and 26a
show the trajectory tracking results of the traditional sliding mode control (SMC) without
RBF, while Figures 5b, 12b, 19b and 26b indicate the formation trajectories with RBF.
Through comparative analysis of these figures, USVs are able to track the desired trajectory
with RBF under the influence caused by ocean disturbances and model uncertainties.
Combining Figures 6, 13, 20 and 27, after the formation system is stable, the tracking errors
of USVs are generally greater than 1 m without RBF, but the tracking errors are far less
than 0.5 m without RBF. Similarly, as seen from the velocity error plots, which include
Figures 10, 17, 24 and 31, the velocity errors of USVs are smaller with RBF. Meanwhile,
according to Figures 11, 18, 25 and 32, the RBF can accurately observe ocean disturbances
and model uncertainties of USVs, and the effectiveness of RBF can be intuitively verified.

Then, as shown in Figures 5c, 12c, 19c and 26c, which indicate the results of formation
trajectories with bio-SMC and RBF, it is found that the fluctuation of the bio-SMC trajectory
is smaller compared to Figures 5b, 12b, 19b and 26b in the early stage of trajectory tracking.
Meanwhile, as seen from Figures 9, 16, 23 and 30, where the virtual velocity variables can
be obtained, by utilizing bio-SMC, the virtual velocity changes become smoother within
the first 30 s. Also, by analyzing Figures 8, 15, 22 and 29, the bio-SMC has a significant
effect on stabilizing these velocity variables within the first 30 s.

According to Figures 6, 13, 20 and 27, the bio-SMC has no adverse effect on USVs’
trajectory tracking accuracy when the formation system is stable. Figures 7, 14, 21 and 28
illustrate that within the first 30 s, the controllers of USVs designed by bio-SMC can obtain
smoother control inputs. Therefore, based on the above analysis, the bio-SMC has better
control capability compared to the traditional sliding mode control.

6. Conclusions

To address the cooperative formation control problem of underactuated USVs with
external environmental disturbances and model uncertainties, a bio-inspired sliding mode
control (bio-SMC) and the RBF neural network with minimal learning parameter (MLP)
have been designed in this paper. The virtual control laws of the longitudinal and lateral
velocities are designed by using a backstepping approach, and the controller design has
become more convenient. The sliding surface has been designed with a hyperbolic tangent
function to avoid excessive oscillations. Meanwhile, a bio-inspired model has been pro-
posed to smooth the virtual velocities successfully and to avoid the problem of differential
explosion caused by repeated derivation. Furthermore, the RBF neural network with MLP
algorithm has been adopted to compensate for the ocean disturbances and uncertain system.
The effectiveness and reliability of the proposed method have been verified by simulation
experiments, and all the conclusions are verified by simulation experiment results. This
paper is highly focused on the theoretical aspects with less emphasis on practical deploy-
ment, and future research will be devoted towards extending the current framework into
real-world applicability.
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