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Abstract: Object segmentation, a key type of image segmentation, focuses on detecting and delineat-
ing individual objects within an image, essential for applications like robotic vision and augmented
reality. Despite advancements in deep learning improving object segmentation, underwater ob-
ject segmentation remains challenging due to unique underwater complexities such as turbulence
diffusion, light absorption, noise, low contrast, uneven illumination, and intricate backgrounds.
The scarcity of underwater datasets further complicates these challenges. The Segment Anything
Model (SAM) has shown potential in addressing these issues, but its adaptation for underwater
environments, AquaSAM, requires fine-tuning all parameters, demanding more labeled data and
high computational costs. In this paper, we propose WaterSAM, an adapted model for underwater
object segmentation. Inspired by Low-Rank Adaptation (LoRA), WaterSAM incorporates trainable
rank decomposition matrices into the Transformer’s layers, specifically enhancing the image encoder.
This approach significantly reduces the number of trainable parameters to 6.7% of SAM’s parame-
ters, lowering computational costs. We validated WaterSAM on three underwater image datasets:
COD10K, SUIM, and UIIS. Results demonstrate that WaterSAM significantly outperforms pre-trained
SAM in underwater segmentation tasks, contributing to advancements in marine biology, underwater
archaeology, and environmental monitoring.

Keywords: underwater object segmentation; underwater image; Segment Anything Model (SAM)

1. Introduction

Image segmentation has emerged as a critical technique, enabling machines to interpret
and understand visual information. It involves partitioning an image into meaningful
segments, allowing for the identification of distinct objects and regions within the visual
data. Among the various types of image segmentation, object segmentation plays a vital
role by focusing on detecting and delineating individual objects within an image. For
instance, in robotic vision, object segmentation allows robots to identify and manipulate
objects with precision. In the field of augmented reality, it enhances the ability to overlay
digital content seamlessly onto real-world objects.

With the rapid advancement of deep learning, the performance of object segmen-
tation has seen remarkable improvements. However, underwater object segmentation
still faces significant hurdles, posing a critical challenge for numerous underwater visual
applications. Unlike images captured in general settings, underwater images are marred by
unique complexities. The ocean environment introduces underwater turbulence diffusion,
intense light absorption and scattering, various types of noise, low contrast, uneven illumi-
nation, monotonous color palettes, and intricate backgrounds [1]. Moreover, the scarcity
of underwater datasets further exacerbates these issues, complicating efforts to improve
segmentation accuracy. Addressing these challenges is crucial for advancements in marine
biology, underwater archaeology, and environmental monitoring, paving the way for more
accurate and efficient underwater exploration and analysis.
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Despite the critical importance of this field, research dedicated to underwater object
segmentation remains limited. With the emergence of the foundation model, i.e., the
Segment Anything Model (SAM) [2], improving the performance of underwater object
segmentation with limited labelled data becomes realistic. AquaSAM [3] represents the
pioneering effort to adapt the Segment Anything Model (SAM) to the underwater domain,
aiming to achieve universal image segmentation in this challenging environment. However,
AquaSAM fine-tunes all the parameters of SAM, which needs more labelled data for better
performance and a high computation cost.

In this paper, we propose an adapted segment anything model for underwater object
segmentation, named WaterSAM. Inspired by LoRA [4], WaterSAM adapts SAM to un-
derwater scenarios by injecting trainable rank decomposition matrices into each layer of
the Transformer architecture. Specifically, WaterSAM adds trainable rank decomposition
matrices into the image encoder of the original SAM, which enhances the feature extraction
ability of the image encoder and helps extract robust image features from underwater
images. Compared with fine-tuning all the parameters of SAM, WaterSAM has only 6.7%
of all the parameters to be trained while keeping the parameters of pre-trained SAM un-
changed, which greatly reduces the number of trainable parameters and the computation
cost. Furthermore, by injecting trainable rank decomposition matrices into WaterSAM,
WaterSAM can efficiently capture downstream task-specific information with fewer labelled
data.We validated our proposed model on three underwater image datasets: COD10K,
SUIM, and UIIS. The results on these datasets demonstrate that our model significantly out-
performs pre-trained SAM alone in underwater segmentation tasks, making an important
contribution to the field of underwater segmentation and related tasks.

In summary, our contributions are as follows:

• We propose WaterSAM, an adapted version of the Segment Anything Model (SAM)
specifically designed to address the unique challenges of underwater object segmentation.

• We collect and process three underwater image datasets (COD10K, SUIM, UIIS) to
enhance their suitability for evaluating underwater segmentation performance.

• WaterSAM significantly reduces the number of trainable parameters to just 6.7% of
the original model, achieving strong performance in underwater segmentation tasks.
Experimental results on these datasets demonstrate the effectiveness of WaterSAM,
offering lower computational costs and efficient training with fewer labeled data.

2. Background

In this section, we review the related work to our WaterSAM. It includes the image
segmentation and foundation model adaptation.

2.1. Image Segmentation

Image segmentation is a classical computer vision task that divides an image into
specific, unique areas to highlight objects of interest and provide information for object
detection and related tasks. Over the years, numerous methods for image segmentation
have been developed, including classic segmentation methods, co-segmentation methods,
and deep learning-based semantic segmentation. Classical image segmentation methods
aim to divide an image into segments or regions based on features such as color, brightness,
or texture. Co-segmentation, on the other hand, involves the simultaneous segmentation
of multiple images to identify and extract the same or similar objects across these im-
ages. However, due to the limitations in performance of these traditional methods, deep
learning-based approaches are now commonly applied for more accurate and effective
image segmentation.

2.1.1. Segmentation Methods Based on Deep Learning

FCN: The Fully Convolutional Network (FCN) [5], was introduced by Long et al. in
2015. It transformed image segmentation into an end-to-end image processing problem by
replacing fully connected layers with convolutional layers. The key innovation of FCN is
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its ability to handle images of any size, making it a foundational model for modern deep
neural networks in semantic segmentation.

YOLO: YOLO [6] (You Only Look Once) is a prediction method based on global
image information and functions as an end-to-end object detection system, which can also
be employed for segmentation tasks. YOLO divides images into grids and predicts the
bounding boxes and categories of objects within each grid cell. The latest version, YOLOv8,
builds upon the YOLO family, incorporating the experiences of previous versions while
introducing innovative features and improvements to enhance performance and flexibility.

Mask R-CNN: Mask R-CNN [7] is a state-of-the-art algorithm for object segmentation,
offering capabilities in target detection, object segmentation, and key point detection.
Notable for its high speed and accuracy, Mask R-CNN builds on the foundations of two
classical algorithms: Faster R-CNN for object detection and FCN (Fully Convolutional
Networks) for semantic segmentation. Faster R-CNN provides efficient and precise target
detection, while FCN excels in semantic segmentation tasks.

U-Net: U-Net [8] is a convolutional neural network designed for biomedical image
segmentation. It builds upon a fully convolutional neural network with architectural
modifications and extensions that enable it to achieve more accurate segmentations with
fewer training images. Beyond biomedical segmentation, the U-Net architecture has been
applied in diffusion models for iterative image denoising and serves as a foundation for
many contemporary image generation models.

2.1.2. Underwater Image Segmentation Models

Underwater segmentation technology is pivotal in marine science, robotics, and com-
puter vision for identifying and classifying objects or regions in underwater images. The
task is particularly challenging due to poor visibility and color distortion caused by light
absorption and scattering. This section provides an academic review of classical and
contemporary techniques in underwater image segmentation.

Initially, traditional computer vision techniques were employed for underwater image
segmentation, but they struggled with the unique characteristics of underwater environ-
ments and did not achieve high-precision results. Zhang et al. [9] proposed a locally
adaptive color correction method based on the principle of minimum color loss and a
fusion strategy guided by the maximum attenuation map, effectively minimizing color loss
by accounting for different color channels’ distinct attenuation characteristics. Similarly, Li
et al. [10] introduced an underwater color image segmentation method that achieves high
segmentation accuracy by dynamically estimating the optimal weights for fusing the RGB
channels, resulting in a grayscale image with high foreground-background contrast.

Subsequently, researchers turned to machine learning methods, which demonstrated
superior performance in extracting complex features from underwater images. Efforts have
been directed towards addressing color distortion issues and employing deep learning
techniques to enhance segmentation performance. Drews-Jr et al. [11] pioneered the use
of a convolutional neural network (CNN) for underwater image segmentation in natural
settings, pretraining the network on non-underwater images and fine-tuning it with a
smaller dataset of manually labeled underwater images. Similarly, Arain et al. [12] pre-
sented methods for improving underwater obstacle detection by integrating sparse stereo
point clouds with monocular semantic image segmentation. Their approach enhanced
obstacle detection, effectively rejected transient objects such as fish, and improved range
estimation compared to using feature-based sparse and dense stereo point clouds alone.

2.2. Foundation Model Adaption

Foundation model fine-tuning involves further training a pre-trained foundation
model with domain-specific datasets. This process aims to optimize the model’s perfor-
mance on specific tasks, enabling better adaptation to and completion of tasks within a
particular domain. Fine-tuning is an efficient way to enhance model performance, as it
allows larger models to achieve more customized functionality. While large-scale mod-
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els possess formidable capabilities, their efficacy may vary across specialized domains.
However, through fine-tuning, these models can be meticulously tailored to meet the
specific demands and nuances of a designated domain. This section introduces some classic
foundation model fine-tuning methods.

Parameter-Efficient Fine-Tuning (PEFT) Methods

Fine-tuning a foundation model typically involves adjusting all layers and parameters to
suit a specific task, using smaller learning rates and task-specific data. This process leverages
the shared features of the pre-trained model but often requires substantial computational
resources. In contrast, Parameter-Efficient Fine-Tuning (PEFT) technology allows models to
adapt swiftly to new tasks, even in resource-constrained environments, by capitalizing on
the knowledge embedded within pre-trained models. PEFT enhances model performance,
reduces training duration, and lowers computational costs, making deep learning research
more accessible. PEFT methods include LoRA, QLoRA, and Adapter Tuning.

LoRA: Low-Rank Adaptation (LoRA) [4] is a technique for fine-tuning large pre-
trained language models, such as GPT-3 or BERT. It introduces small, low-rank matrices at
crucial layers of the model, enabling fine-tuning without significant modifications to the
entire model structure. This approach allows effective model fine-tuning while preserving
its original performance level and minimizing additional computational burden.

QloRA: Quantized Low-Rank Adaptation (QLoRA) [13] is an efficient model fine-
tuning technique that combines the principles of LoRA with deep quantization technology.
QLoRA integrates quantization techniques, quantized operations, and fine-tuning stages.
This approach significantly reduces memory and computational requirements in large-scale
models, facilitating deployment and training in resource-constrained environments.

Adapter Tuning: Similar to LoRA, adapter tuning [14] aims to enable a pre-trained
model to adapt to new tasks while keeping the original parameters unchanged. This
method involves inserting small neural network modules, known as “adapters”, between
each layer or selected layers of the model. These adapters are trainable, whereas the
parameters of the original model remain fixed.

3. Preliminary and Methodology

In this section, we provide a detailed overview of our proposed WaterSAM model.
Since it is built upon the SAM model, we begin with a review of the SAM model’s image
encoder, which we have adapted. Next, we offer a concise introduction to Low-Rank
Adaptation (LoRA) [15]. Finally, we explain how LoRA is integrated into the image encoder.

3.1. Segment Anything Model

To enhance the performance of the SAM model in underwater regions, we utilize SAM
as the backbone and leverage the knowledge it has learned. As illustrated in Figure 1, SAM
comprises a prompt encoder, an image encoder, and a lightweight mask decoder. It employs
a Transformer-based architecture, with the image encoder built on Vision Transformer (ViT)
to extract image embeddings.

Figure 1. The network architecture of SAM.

SAM divides the input image into fixed-size blocks, linearly transforms each block
into a vector representation, and adds positional coding to these vectors to retain positional
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information. This sequence of embedded vectors is then processed through a multi-layer
standard Transformer encoder, which includes a multi-head self-attention mechanism and a
feedforward neural network. Finally, a classification header processes the output sequence
to complete the image classification task.

The image encoder processes an input image of 1024 × 1024 pixels and outputs a
64 × 64 feature map. We keep the weights of the pre-trained prompt encoder and mask
decoder frozen to avoid substantial computational overhead. During training, we primarily
fine-tune the image encoder and use bounding boxes as prompts to assist the model in
achieving better segmentation performance. With the aim to improve SAM performance in
the underwater scenario, we use SAM as the backbone and leverage the knowledge learned
from it.

3.2. Low-Rank Adaptation

Low-Rank Adaptation (LoRA) is a parameter-efficient fine-tuning technique designed
to perform an implicit low-rank transformation of the weight matrix in a foundational
model. The core idea of LoRA is to approximate the incremental parameters of full-
parameter fine-tuning in large language models (LLMs) with fewer training parameters.
This results in efficient fine-tuning that uses less memory.

In contrast to full fine-tuning, where the model starts with its pre-trained weights
and undergoes iterative gradient updates to optimize the conditional language modeling
objective, LoRA significantly reduces the number of trainable parameters required for
downstream tasks. It achieves this by employing low-rank approximation training with
smaller matrices, while keeping the original LLM parameters frozen.

The LoRA technique is represented by the equation:

W0 + ∆W = W0 + BA (1)

where W0 represents the original parameters, ∆W represents the change in parameters, and
B and A are smaller matrices used for the low-rank approximation. The schematic diagram
of the principle is shown in Figure 2.

Figure 2. Illustration of the low-rank adaptation module.

3.3. Adapted Image Encoder in WaterSAM

To adapt SAM for underwater segmentation tasks, we add an adaption module to
the image encoder of SAM. The adaption is developed based on LoRA, which is added to
attention mechanisms of the image encoder. In this section, we will present our approach
and the underlying principles.

The structure of the trainable LoRA and its application to the self-attention mecha-
nism in the image encoder, which is based on Vision Transformer (ViT), are visualized
in Figure 3. In our method, we apply LoRA to the query (Q) and value (V) layers. By
modifying the query layer, the model can influence its information selection process, while
adjusting the value layer allows the model to govern how it processes and utilizes the
selected information.
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Figure 3. Architecture of image encoder in WaterSAM: designing LoRA in the attention mechanism
in the image encoder.

The number of trainable parameters is determined by the rank r and the shape of
the original weights, given by |Θ| = 2 × LLoRA × dmodel × r, where LLoRA represents the
number of weight matrices to which we apply LoRA, r represents the rank of weight
matrices. This approach allows for efficient fine-tuning with a significantly reduced num-
ber of parameters, enhancing the encoder’s adaptability without the need for extensive
computational resources. For the prompt encoder and mask decoder in WaterSAM, we
keep them the same as the those in the pre-trained SAM.

4. Experiment
4.1. Experimental Environment

Our experiments were conducted on the online GPU cloud computation platform,
AutoDL1, which provided a flexible and scalable environment to meet our computational
needs. The configurations used in our experiments are as follows: Python 3.8.19, CUDA
10.0, CPU 20 vCPU Intel(R) Xeon(R) Platinum 8457C, Ubuntu 18.04.6 LTS, GPU NVIDIA
L20 with 48 GB GPU Memory.

4.2. Datasets

We evaluated our proposed model on three public datasets: COD10K, SUIM and UIIS.
COD10K: The COD10K [16] dataset comprises 10,000 images, including 5066 camou-

flaged, 3000 background, and 1934 non-camouflaged images. These images were collected
from various photography websites. For our study, we extracted all figures from the
aquatic category and utilized the object masks for our training and testing, which included
759 training figures and 474 testing figures.

SUIM: The SUIM [17] encompasses seven categories, containing 1525 paired samples
for training and validation, and 110 paired samples for benchmark evaluation. Each image
within the dataset may include various species. We observed that SAM excels at segmenting
individual entities but has limitations with large continuous areas such as corals and sea-
water. To enhance SAM’s capability in segmenting distinct underwater entities, we selected
three specific categories for our study: Human divers, Robots (AUVs/ROVs/instruments),
and Fish and vertebrates. Consequently, we processed images containing multiple cate-
gories into binary object-mask pairs. The training set comprises 1466 pairs, while the test
set contains 120 pairs.

UIIS: The UIIS [18] dataset is the first general Underwater Image Instance Segmen-
tation (UIIS) dataset containing 4628 images across seven categories with pixel-level an-
notations for underwater instance segmentation tasks. The dataset is provided in a JSON
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file format. Before usage, we converted it to a structure analogous to that of the SUIM
dataset. Subsequently, we performed two sets of experiments: the first utilizing the entire
UIIS dataset, and the second focusing specifically on the categories of fish, human divers,
and robots.

4.3. Parameter Setting

When training on the datasets, we experimented with multiple values of rank to
optimize the balance between computational efficiency and performance. Ultimately, we
found that setting the rank to 64 provided the optimal balance across various datasets.
Specifically, for the UIIS dataset, we also experimented with training using a rank of
128 (denoted as UIIS**). This higher rank value did improve the segmentation accuracy,
but it also doubled the time required for each epoch, resulting in significantly higher
computational costs.

4.4. Experiment Outcomes and Analysis
4.4.1. Quantative Results

In our data evaluation, we utilized the mean intersection over union (mIoU) and
overall accuracy (OA) to measure the degree of region overlap and boundary agreement
between the ground truth and segmentation results. We performed multiple comparisons
between our WaterSAM model and the pretrained SAM (ViT-B) model across three datasets.
As shown in the Table 1, our WaterSAM demonstrated superior performance for underwater
segmentation tasks across all datasets.

For the COD10K dataset, the mIoU metric experienced the most significant increase,
rising from 16.98% to 84.96%, marking a 400% improvement. The OA metric also saw a
substantial rise from 29.47% to 96.09%.

In the SUIM * dataset, WaterSAM achieved a notable increase in mIoU from 38.41% to
90.47%, which corresponds to a 136% improvement. The OA also improved considerably
from 61.98% to 98.08%, a 58% enhancement.

Regarding the UIIS dataset, the mIoU improved from 46.64% to 84.24%, an 81%
increase, while the OA increased from 64.58% to 93.16%, reflecting a 44% improvement.
For the UIIS * subset, the improvements were even more pronounced, with the mIoU rising
from 50.35% to 94.38%, an 87% increase, and the OA increasing from 79.92% to 99.31%,
a 24% improvement. Additionally, for the UIIS ** dataset, WaterSAM maintained a high
performance with an mIoU of 94.49% and an OA of 99.34%, showcasing its robustness even
with challenging categories like reefs and the sea floor.

Table 1. Results comparison between SAM and our WaterSAM across three datasets.

Dataset
Mean IoU Score Overall Accuracy

WaterSAM SAM Improve (%) WaterSAM SAM Improve (%)

COD10K 84.96 16.98 400 96.09 29.47 226

SUIM * 90.47 38.41 136 98.08 61.98 58

UIIS 84.24 46.64 81 93.16 64.58 44

UIIS * 94.38 50.35 87 99.31 79.92 24

UIIS ** 94.49 - - 99.34 - -
* Segmentation based solely on object categories with a learning rate of 0.001. ** Training with a learning rate of
0.0005, which yields the best results.

4.4.2. Qualitative Results

As shown in Figure 4, we observed that the pretrained SAM (ViT-B) model frequently
struggles to accurately delineate object boundaries, sometimes failing to detect the bound-
aries altogether. This suggests that one of the major challenges for SAM in underwater
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object segmentation is the indistinct separation of objects in underwater environments.
Accurately segmenting targets with weak boundaries is particularly difficult.

Additionally, SAM’s segmentation performance is significantly hampered when the
target object is large, has a complex shape, or has a color tone similar to the background.
Conversely, SAM may exhibit lower accuracy or produce anomalies when segmenting
objects with clear boundaries, especially when the surrounding objects also show good
contrast, such as in the segmentation of multiple fish within a single image.

These observations indicate that WaterSAM enhances SAM’s ability to tackle more
challenging segmentation tasks. Specifically, WaterSAM demonstrates improved robustness
in suboptimal environments with indistinct object boundaries, particularly in underwa-
ter image segmentation. Furthermore, WaterSAM shows a significant improvement in
performing segmentation tasks involving small entities.

Figure 4. Visualization of segmentation results of WaterSAM in comparison to SAM.

4.4.3. Comparison with Existing Methods

For underwater image segmentation, the existing work AquaSAM utilizes the original
SAM model without any modifications. It relies on fine-tuning all the parameters of SAM,
which demands substantial computational resources and a large amount of labeled data.
In contrast, our proposed WaterSAM requires training only 6.7% of the SAM model’s
parameters, making it more resource-efficient. We compare the performance of WaterSAM
and AquaSAM using the same dataset, SUIM. We report the mean IoU score of two models
in the Table 2. As shown in the table, WaterSAM achieves more accurate segmentation
results than AquaSAM, with an improvement of approximately 20%. This advantage stems
from the fact that AquaSAM demands more labeled data for training, but the SUIM dataset
contains only 1500 training images. This highlights WaterSAM’s advantage in adapting
SAM for downstream tasks.

Table 2. A comprehensive comparison of WaterSAM and AquaSAM on SUIM dataset.

WaterSAM AquaSAM

mean IoU 98.08 76.64

5. Conclusions

In conclusion, this paper presents WaterSAM, an adapted model for underwater
object segmentation based on the Segment Anything Model (SAM). Our comprehensive
evaluations across multiple underwater datasets, including COD10K, SUIM, and UIIS,
demonstrate WaterSAM’s significant improvements in segmentation performance. By
integrating trainable rank decomposition matrices into the Transformer’s layers, WaterSAM
effectively reduces computational costs while maintaining high accuracy. This advancement
is particularly notable in challenging underwater environments, where traditional models
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struggle with poor visibility and complex backgrounds. The results highlight WaterSAM’s
potential for enhancing applications in marine biology, underwater archaeology, and
environmental monitoring. As the development of SAM, the new iteration, SAM2 [19],
performs better in image segmentation and can be used for video segmentation. For future
work, we will adapt SAM2 for underwater video segmentation tasks.
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