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Abstract: As water waves travel from deep to shallow waters, they experience increased nonlinearity
and decreased dispersion due to the reduced water depth. While the impact of bed slope on wave
propagation celerity is documented, it is often overlooked in commonly used depth-integrated wave
models. This study uses the WKB approximation and solves higher-order slope-related terms to
analyze the influence of varying depth, including the gradient and laplacian of water depth. One
result is an extended longwave for linear wave reflection and transmission on a ramp to deeper
waters. The main outcome and focus of this work, however, is a new, simple analytical expression for
linear dispersion that includes bed variations. The results are applied to two cases: wind-generated
water wave propagation in the nearshore, emphasizing corrections to bathymetry inversion methods,
and tsunami propagation over the continental slope, highlighting the limitations of neglecting slope
on dispersion and the significant role of the Laplacian of water depth.
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1. Introduction

As wind-generated water waves travel from the depths of the ocean toward shallower
coastal regions, the diminishing depth has significant implications for their propagation.
In deep waters, nonlinear effects are usually minimal, and the waves remain unaffected
by the seabed, meaning that their propagation is independent of depth. In this regime,
dispersive effects dominate, leading to different celerities for different wave frequencies.
However, as waves enter intermediate to shallow waters, where they begin to feel the
bottom—i.e., where wave propagation is influenced by water depth—nonlinear effects can
become significant, and dispersive effects are reduced. In fact, in shallow waters, celerity
depends solely on water depth and becomes independent of wave frequency (i.e., there is
no dispersion).

For both practical and scientific purposes, water wave propagation models must be
computationally efficient. This necessity leads to a key simplification: depth-integrating the
governing equations to derive a system of two-dimensional equations [1–4]. Additionally,
it is common practice to assume that the flow is inviscid and irrotational, which is a good
approximation except within the thin bottom boundary layer and during wave breaking.
The effects of the boundary layer and wave breaking are typically incorporated into the
energy equation [5–7]. Further simplifications involve time-averaging the governing equa-
tions to bypass resolving the wave phase, allowing a focus on wave statistics over large
spatial domains [8].

Regarding phase-resolving equations, which is the focus here, although depth-integrated
and irrotational, they must still effectively capture nonlinear, dispersive, and bed slope effects.
These models can be broadly categorized into two largely complementary families: those
derived from Airy theory and those based on the Shallow-Water Equations (SWEs).
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Airy theory is fully dispersive, i.e., valid for arbitrary depths, but it is applicable only
to small-amplitude waves [2,9]. Further, it is limited to flat beds. Despite its simplicity, Airy
theory provides linear equations that yield useful approximate expressions for velocity
profiles, pressure fields, and other wave characteristics. One fundamental result from Airy
theory is the dispersion relationship, which relates the wave angular frequency, ω = 2π/T
(T = wave period), the wavenumber, k = 2π/L (L = wavelength), and the water depth, h.
This relationship, valid in principle for flat beds, is given by [10] (Burnside)

ω2 = gk tanh kh, (1)

where g is the gravitational acceleration. Because of the asymptotic behavior of the hy-
perbolic tangent, it is commonly considered that kh ≳ π indicates deep water conditions
(where ω2 = gk), while kh ≲ π/10 indicates shallow waters (where ω2 = gk2h) [2].

There are two main extensions of the Airy linear theory. The first is Stokes theory [1,11],
which introduces a perturbative approach based on wave amplitude to account for non-
linear effects to some extent. While Stokes theory has limitations in shallow waters, it is
valuable for applications such as the harmonic decomposition of waves [1]. The second
extension involves the Mild-Slope Equations (MSEs) [12,13] and related variants, includ-
ing the “Modified” and “Complementary” MSEs, e.g., [14–17]. This family of equations
is particularly useful for addressing bed-related phenomena such as wave shoaling, re-
fraction, and diffraction. Given that the MSEs implicitly account for two characteristic
lengths—namely, the wavelength and the length scale over which the bed bathymetry
changes—the WKB (Wentzel–Kramers–Brillouin) perturbative method is particularly well
suited for their derivation [1,18]. Notably, although the MSEs account for bed slope effects,
the dispersion Equation (1) remains unchanged. This is because, at the perturbative order
considered, the bed can be considered locally flat with respect to dispersion.

On the other hand, the SWEs can handle arbitrary nonlinearity (large-amplitude
waves) but only in shallow waters, where the water depth is small compared to the wave-
length [19]. Starting from the SWEs and using perturbative techniques, Boussinesq-type
equations (BTEs) are derived to incorporate dispersive effects, extending the range of appli-
cability to deeper waters [20–24]. The ability of the BTEs to manage dispersive conditions is
typically assessed by comparing the performance of the linearized BTEs against the linear
Airy theory, specifically in terms of wave celerity and shoaling behavior [24,25].

The above models do not fully capture the influence of bed slope on wave dispersion,
particularly in fully dispersive conditions. This work addresses this gap by introducing a
new formulation that incorporates bed slope effects into the dispersion Equation (1). In
order to achieve this, we apply the WKB approximation to a sufficient order, enabling us to
accurately capture the effects of bed slope on the dispersion. Actually, the limitations of
the Burnside equation are already well documented. Broadly speaking, if σ represents the
slope, its influence can be neglected only when [18]

σ

kh
,

is small. Importantly, it is not just σ that must be small, but rather σ/k must be small
compared to h, where σ/k = 2πσL is a measure of the depth change over a wavelength.
Thus, the same slope σ can be considered mild or steep depending on kh, with slopes
appearing milder in deep waters (large kh) and steeper in shallow waters (small kh). For
values of kh ranging from approximately 0.46 to 0.86, Booij [26] found that the mild slope
hypothesis holds when σ ≲ 1/3 (expressed in terms of ω2h/g instead of kh in the original
work). Therefore, the mild slope condition can be more precisely stated as

σ

kh
≲ 0.38

{
=

1/3
0.86

}
. (2)
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For very shallow waters and a sloped plane bed, the problem has already been
addressed by Ehrenmark [27] (see also [28]). The expression by Ehrenmark [27] reads

ω2 = gk tanh
(

arctan σ

σ
kh

)
,

through an asymptotic analysis. Since the above holds only for very shallow waters, the
hyperbolic tangent tends to the identity, and

k =
ω√
gh

√
σ

arctan σ
= k0

(
1 +

σ2

6
+O (σ4)

)
, (3)

where k0 = ω/
√

gh is the Burnside solution for shallow waters. According to Equation (3),
k ⩾ k0, so the celerity c = ω/k is reduced by the slope.

The previous approach is valid only for the asymptotic case of very shallow waters. For
the fully dispersive regime, Ge et al. [29] recently presented a dispersion relationship that
incorporates bed slope effects, but it is limited to the specific case of sinusoidal bathymetry.
In contrast, we derive a more general expression that is fully dispersive and applicable to
arbitrary bathymetry. We employ a WKB approach following [1,18] but extend the analysis
to higher-order terms. The resulting equation bears a striking resemblance to that proposed
by Ge et al. [29], with the critical difference of an opposite sign—a distinction that is highly
significant. We then apply the proposed dispersion equation to several important cases
to demonstrate the impact of accounting for (or neglecting) bed slope variations in the
dispersion relationship.

2. Governing Equations

Throughout the work, x = (x, y) will refer to the horizontal coordinates, and z to the
vertical one, with z = 0 at the mean sea water level, z = η at the free surface, and z = −h at
the bottom (Figure 1 for the one-dimensional case). We use the notation usually employed
in water-wave textbooks as, e.g., those by Dean and Dalrymple [2] or Svendsen [3]. Also,
as usual in depth-integrated models and many other wave propagation models, the flow is
considered inviscid and irrotational [1–3,18], and the potential of the velocity is denoted
with Φ. In assuming, hereinafter, a rigid bed, the linearized equations for Φ are [18]

∇2Φ +
∂2Φ
∂z2 = 0, −h ⩽ z ⩽ 0, (4)

∇Φ·∇h +
∂Φ
∂z

= 0, z = −h, (5)

∂2Φ
∂t2 + g

∂Φ
∂z

= 0 z = 0, (6)

where ∇ stands for the horizontal gradient (∂/∂x, ∂/∂y) .

Figure 1. Coordinates x and z (one-dimensional case), and elevations of the mean sea level (z = 0),
free surface (z = η), and bed (z = −h).

Equations (4)–(6) are, respectively, the mass conservation, the kinematic boundary
condition at the bottom, and a combination of the kinematic and the dynamic boundary
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conditions at the free surface. The Bernoulli equation, as well as the kinematic and dynamic
boundary conditions at the free surface, is avoided so that the equations are expressed
exclusively using the potential Φ [3,18]. The linearized kinematic and dynamic boundary
conditions at the free surface are, for future use,

∂η

∂t
− ∂Φ

∂z
= 0 z = 0, (7)

∂Φ
∂t

+ gη = 0 z = 0. (8)

The depth-integrated continuity and momentum equations are, e.g., [18],

∇·
∫ 0

−h
∇Φ +

∂η

∂t
= 0, (9)

g∇η +∇∂Φz=0

∂t
= 0, (10)

and the depth-integrated and time-averaged energy equation is〈
∇·

∫ 0

−h

∂Φ
∂t

∇Φ dz
〉

= 0, (11)

where ⟨·⟩ stands for the time average (i.e., over one wave period anticipating the time-
harmonic flow conditions).

2.1. Equations for Time-Harmonic Free-Surface Flows

Assuming a time-harmonic solution, we consider

Φ = Φ1 exp (−iωt) + complex conjugate, (12)

η = η1 exp (−iωt) + complex conjugate, (13)

with ω as the wave angular frequency; Φ1 and η1, two complex valued functions of x and
z; and i =

√
−1, the imaginary unit hereinafter. From free-surface boundary condition (8),

it is
η1 =

iω
g

Φ1,z=0, (14)

so that η1 is known if Φ1, which is the focus herein, is resolved.
As any complex variable, the time-independent Φ1 (x, z) can be expressed in its polar

form as
Φ1 = A (x, z) exp (iθ (x, z) ) , (15)

with A and θ as two real functions (the amplitude and the phase, respectively). Introducing
the above Equations (12) and (15) into Equations (4)–(6), we obtain a set of equations with
the following real part:

∇2 A − Ak2 +
∂2 A
∂z2 − A

∂θ

∂z
∂θ

∂z
= 0, −h ⩽ z ⩽ 0, (16)

∇A·∇h +
∂A
∂z

= 0, z = −h, (17)

−ω2 A + g
∂A
∂z

= 0, z = 0, (18)

with k2 = ∇θ·∇θ. The imaginary part is
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2∇A·∇θ + A∇2θ + 2
∂A
∂z

∂θ

∂z
+ A

∂2θ

∂z2 = 0, −h ⩽ z ⩽ 0, (19)

A∇θ·∇h + A
∂θ

∂z
= 0, z = −h, (20)

gA
∂θ

∂z
= 0, z = 0. (21)

Similarly, in recalling Equation (14), the depth-integrated continuity and energy
Equations (9) and (11) read

∇·
∫ 0

−h
(∇A + iA∇θ) exp (iθ) dz +

ω2

g
Az=0 exp (iθz=0) = 0, (22)

∇·
∫ 0

−h
A2∇θ dz = 0, (23)

The momentum Equation (10) is automatically satisfied in this time-harmonic flow
case. In recalling Equations (12) and (13), Equation (10) becomes

g∇η1 − iω∇Φ1,z=0 = 0,

which is automatically satisfied if, as stated in Equation (14), η1 = ig−1ω Φ1,z=0.

2.2. The Imaginary Part: Vertical Profile of the Phase

In multiplying by A, Equation (19) is

∇· (A2∇θ) +
∂

∂z

(
A2 ∂θ

∂z

)
= 0, (24)

so that, by integrating in z from −h to z and using bottom boundary condition (20),
we obtain

∂θ

∂z
= − 1

A2 ∇·
∫ z

−h
A2∇θ dz. (25)

Taking into account the free surface boundary condition (21), the above reduces to
(energy) Equation (23) for z = 0. Equation (25) provides insight into the vertical variation
in the phase θ. In the derivation of the Mild-Slope Equation and relatives, the phase is
typically assumed to be uniform with respect to the vertical coordinate, i.e., ∂θ/∂z = 0.
Solving the (non-uniform) vertical profile to a higher-order accuracy will, however, be
necessary to obtain the modified dispersion relationship.

3. The WKB Approximation

Equations in Section 2.1, which do not require any condition on the bottom slope being
small, do not have analytical solutions other than trivial solutions. To obtain analytical non-
trivial solutions that allow us to understand some relevant aspects of wave propagation
(wave celerity, wave shoaling, . . . ), the bed is usually considered to vary slowly to obtain
MSEs and relatives. In this Section 3, we introduce the WKB approximation, the same
method used to obtain MSEs, which allows us to rigorously apply this assumption.

Following the usual WKB approximation in water wave propagation problems [18,30],
with χ as a characteristic small value of the bed slope, the slow spatial coordinates x⋆ = χx are
introduced. The space derivatives relative to this variable are ∇⋆ = χ−1∇, and consequently,

∇⋆h = χ−1∇h = χ−1O (χ) = O (1) ,
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i.e., x⋆ allows for the depth variations for that coordinate to be order one. Further, A and θ
are expanded in WKB as (see Dingemans [30], pp. 60–63, for a detailed rationale behind
these equations)

A = A0 + χ2 A1 +O (χ4) , θ = χ−1 (θ0 + χ2θ1 +O (χ4) ) , (26)

assuming that Ai and θi are slow variables, so that their derivatives ∇⋆ and ∇2
⋆ are order

one. From the above expansions, we obtain, e.g.,

∇A = χ∇⋆A0 + χ3∇2
⋆A1 +O (χ5) , ∇2 A = χ2∇2

⋆A0 +O (χ4) ,

and
∇θ = ∇⋆θ0 + χ2∇⋆θ1 +O (χ4) .

From the last equation, k = ∇θ and k0 = ∇⋆θ0 are the wavenumber vector and its
leading order approximation, respectively, with k = k0 +O (χ2) , and further,

k =
√
∇θ·∇θ =

√
∇⋆θ0·∇⋆θ0 + 2χ2∇⋆θ0·∇⋆θ1 +O (χ4)

=
√
∇⋆θ0·∇⋆θ0 + χ2 ∇⋆θ0·∇⋆θ1√

∇⋆θ0·∇⋆θ0
+O (χ4) ,

i.e.,
k = k0 + χ2k1 +O (χ4) , (27)

where k2
0 = ∇⋆θ0·∇⋆θ0 and k1 = k−1

0 ∇⋆θ0·∇⋆θ1. The main goal of this work is, actually,
to obtain the expressions for k0 and k1, and therefore the (linear) dispersion relationship
including the influence of the bed variations.

For future use, it is also of interest that, from Equation (25),

∂θ

∂z
= − χ

A2
0
∇⋆·

∫ z

−h
A2

0∇⋆θ0 dz +O (χ3) = O (χ1) , (28)

so that, in recalling the expansions in Equation (26),

∂θ0

∂z
= (χ +O (χ2) )

∂θ

∂z
= O (χ2) ,

and therefore,
∂k0

∂z
=

∂

∂z
∇⋆θ0 = ∇⋆

∂θ0

∂z
= O (χ2) . (29)

In order to obtain Equation (28), it has been considered, e.g., that

1
A2 =

1
A2

0 + 2χ2 A0 A1 +O (χ4)
=

1
A2

0
+O (χ2) .

These kinds of manipulations will often be carried out without being explicitly shown.

4. The Leading-Order Solution

By introducing Expansion (26) into Equations (16)–(18) and noting ∂θ/∂z = O (χ1)
from Equation (28), we obtain, to the leading order,

−A0k2
0 +

∂2 A0

∂z2 = 0, −h ⩽ z ⩽ 0, (30)

∂A0

∂z
= 0, z = −h, (31)

−ω2 A0 + g
∂A0

∂z
= 0, z = 0. (32)
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4.1. Solution for the Equations

The solution of the above equations, and all the results in this Section 4.1, are well
known and given here without detailed explanations [3]. The amplitude A0 is

A0 = Kc0 cosh q0, [q0 = k0 (z + h) ] . (33)

From the free surface condition (32), we obtain

ω2 = gk0 tanh µ0, (34)

which is the leading-order Burnside [10] dispersion relationship. Equations (33) and (34),
with constant Kc0, constitute the Airy solution for water-wave propagation over flat beds [2].
Many interesting phenomena can already be understood from these two equations (deep
and shallow water conditions, good approximations of the velocity profile and the pressure
field, standing waves, . . . ).

Even within this leading-order solution, the variations in Kc0, which is a representation
of the wave height, can be estimated due to the water depth changes. From Equation (23),
the leading order is

∇· (K2
c0 (sinh 2µ0 + 2µ0) s0) = 0, [µ0 = k0h] , (35)

where s0 = k0/k0 is the unit vector in the direction of the wave propagation. Expression (35)
relates Kc0 with the water depth, embedded in µ0. It is a fundamental equation in the
MSE family.

From Equation (15), Φ1 = Kc0 cosh q0 exp (iθ) , and from Equation (14),

η1 =
iω
g

Φ1,z=0 =
iω
g

Kc0 cosh µ0 exp (iθz=0) ,

or
η1 =

iH0

4
exp (iθz=0) , with H0 =

4ω

g
Kc0 cosh µ0,

which is the wave height. In using the wave height, energy Equation (35) is

∇· (H2
0 cg0) = 0, with cg0 =

∂ω

∂k0
s0,

which is the group celerity vector. The latter equation has been widely used to understand
the shoaling in terms of the wave height as it approaches the shore, and Green’s law is a
particular case for shallow waters [2]. Introducing a drag term on the right-hand side has
been used to understand the wave attenuation associated with bottom friction [7].

4.2. Spatial Derivatives

To obtain higher-order approximations of the solution in the following Sections 5 and 6,
the gradient and the Laplacian of the main functions obtained in the leading-order solution
will be required. For any function f of h, it is

∇ f =
d f
dh

∇h, ∇2 f =
d f
dh

∇2h +
d2 f
dh2 |∇h|2,

and therefore, d f /dh and d2 f /dh2 suffice to obtain ∇ f and ∇2 f as functions of ∇h and
∇2h. Following Schäffer and Madsen [31], we define

α f = − h
f

d f
dh

, β f = −h2

f
d2 f
dh2 ,
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which are dimensionless, by construction, and it turns out that for the functions we are
interested in, they depend solely on µ0. The gradient and Laplacian can be expressed as

∇ f = −α f
f
h
∇h, ∇2 f = −α f

f
h
∇2h − β f

f
h2 |∇h|2.

As shown in Appendix A,

αk0 =
G0

1 + G0
, G0 =

2µ0

sinh 2µ0
, (36)

αKc0 =
G0M0

2 (1 + G0)
2 , M0 = cosh 2µ0 + 1. (37)

Other functions, such as αµ0 , βk0 , and βKc0 , are also included in Appendix A. In
addition, as q0 = k0 (z + h) , we have

dq0

dh
=

dk0

dh
(z + h) + k0 =

dk0

dh
q0

k0
+ k0 =

−αk0 q0 + µ0

h
, (38)

and after manipulation,

∂A0

∂h
=

Kc0

h
(δc0 cosh q0 + (δs1q0 + δs0) sinh q0) , (39)

∂2 A0

∂h2 =
Kc0

h2 ( (ϵc2q2
0 + ϵc1q0 + ϵc0) cosh q0 + (ϵs1q0 + ϵs0) sinh q0) , (40)

where the functions δ and ϵ are shown in Table 1.

Table 1. Expressions for δ and ϵ—see Appendix A for α and β.

δs1 = −αk0

δc0 = −αKc0 δs0 = µ0

ϵc2 = α2
k0

ϵc1 = −2µαk0 ϵs1 = 2αKc0 αk0 − βk0

ϵc0 = µ2
0 − βKc0 ϵs0 = −2µ0 (αKc0 + αk0 )

5. Solution to O (χ1)

Section 5 presents results for ∂θ/∂z based on the leading-order solution, which, as
shown in Equation (28), is O (χ1) . The implications of this solution on the classical problem
of the wave reflection over a ramp are hinted at.

5.1. The Vertical Profile of the Phase

In recalling the expansions and introducing the solution into Equation (25),

∂θ0

∂z
= − χ2

K2
c0 cosh2 q0

∇⋆·
∫ z

−h
K2

c0 cosh2 q0 k0 dz +O (χ4) . (41)

In taking into account that k0 varies slowly in z—see Equation (29)—the above can be
integrated to obtain ∂θ0/∂z and, further, to obtain

θ0 = θ0b +
χ2q0

2µ0
(2αKc0 tanh q0 + αk0 q0 − 2µ0)∇⋆h·s0 +O (χ4) , (42)

with s0 being the above-mentioned unit vector in the direction of the wave propagation,
and θ0b as a function of x only—not of z. In recalling that θ = χ−1θ0 + . . .

θ = θb +
q0

2µ0
(2αKc0 tanh q0 + αk0 q0 − 2µ0)∇h·s0 = θb +O (χ) , (43)
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with θb = χ−1θ0b.

5.2. Transmission and Reflections on a Ramp

The above results, particularly the vertical profile obtained in Equation (43) for the
phase, which has not been described in the literature to the author’s knowledge, allow us
here to extend the longwave theory of wave transmission and reflection on a ramp, e.g.,
ref. [1] to include the dispersion effects. This section is not required for the rest of the
work and can be skipped if the reader’s interest is solely in the dispersion relationship
including the bed slope influence. Moreover, it is not the author’s intention to thoroughly
analyze all the implications of the previous result beyond a brief illustration of the reflection
problem over a ramp, as the primary objective here is to establish a dispersion relation that
incorporates the effects of the bed slope. Analyzing the impact of the above results on the
Bragg resonance analysis, e.g., falls out of the scope of this work.

In introducing the results in Sections 4.1 and 5.1 into Expansion (26), the solution is

Φ1 =
gH0

4ω

cosh q0

cosh µ0
exp (iθ) , η1 =

iH0

4
exp (iθz=0) , (44)

where θ is given in Equation (43). This is the solution to order O (χ1) .
For the analysis of wave transmission and reflection on a ramp for the one-dimensional

case, we now follow the procedure as in Mei [1], but considering the vertical variations in
the phase θ. A key issue is the fact that the water flux,

Q1 =
∫ 0

−h

∂Φ1

∂x
dz,

introduces the function θ, which is now a function of z through q0, into Φ1. In using the
results above, the continuity and momentum depth-integrated equations, instead of the
Saint-Venant equations used by Mei [1] for longwaves, are as follows:

∂Q1

∂x
− iωη1 = 0, (45)

−iωQ1

(
µ0

tanh µ0
+ i f s

dh
dx

)
+ gh

dη1

dx
= 0. (46)

where s = +1 if the wave propagates in the direction of x, and s = −1 otherwise, and

f =
(αk0 − G0αKc0) tanh µ0 + µ0αKc0 (tanh2 µ0 − 1)

tanh2 µ0
.

Note that in using the definitions of the functions involved in f , in shallow waters, we
have, for the first term in Equation (46),

lim
µ0→0

(
µ0

tanh µ0
+ i f s

dh
dx

)
= 1− i

µ0

3
s

dh
dx

→ 1,

so that the bed slope effect becomes negligible in shallow waters, with Equations (45) and (46)
reducing to the Saint-Venant equations. Departing now from Equations (45) and (46) and
following the same reasoning as that by Mei [1], the solution is (here “+” stands for the incident
component traveling in the direction of x, and “−” stands for the reflected one)

η1 =
E+ exp (i (+θb + S+) ) + E− exp (i (−θb + S−) )√cg0

, (47)

where S+ and S− are constants of integration used to arbitrarily set lags between the
incident and the reflected components (often omitted), and cg0 = ∂ω/∂k0 is the group
celerity. Also, E+ and E−, the energies, satisfy the equations
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dE+

dx
=

r
h

dh
dx

exp (i (−2θb + S− − S+) ) E−, (48)

dE−
dx

=
r
h

dh
dx

exp (i (+2θb + S+ − S−) ) E+. (49)

with

r =
µ0αKc0 (1 − tanh2 µ0)

tanh µ0
.

In Equations (47)–(49), the phase θb can be replaced with θ, because the differences
between them are O (χ1) , therefore corresponding to the following order of accuracy in
the WKB perturbative framework. Figure 2 shows the new function r (µ0) ; note that in
shallow waters, r tends to 1/4, and Equations (48) and (49) reduce to Equation (4.5.13) in
Mei [1]—after some rewriting of Mei’s equations.

Figure 2. Function r = r (µ0) for the transmission and reflection on a ramp.

6. Solution to O (χ2)

The main result of this work, to find a dispersion relationship to express k = k0 + χ2k1
as a function of the wave angular velocity and the water depth while taking into account the
varying bed, is presented in this section by solving the order O (χ2) of Equations (16)–(18).

6.1. Equations for A1

In introducing Expansion (26) into the partial differential Equation (16) and retaining
all the terms up to order O (χ2) , and after some rearrangements,

I︷ ︸︸ ︷
−A0k2

0 +
∂2 A0

∂z2 +χ2
(
∇2

⋆A0 − 2A0k0k1 − A1k2
0 +

∂2 A1

∂z2

)
− χ−2 A0

∂θ0

∂z
∂θ0

∂z
= O (χ4) . (50)

The last term on the left-hand side includes ∂θ0/∂z = O (χ2) , so it is O (χ2) and
is to be retained. Furthermore, according to the leading-order solution in Equation (30),
the first two terms, I = −A0k2

0 + ∂2 A0/∂z2, cancel out if the are evaluated using k0.
However, we are to find the solutions using (and evaluating A0 at) k = k0 + χ2k1. A Taylor
expansion gives

I = −A0 (k = k0 + χ2k1) k2
0 +

∂2 A0

∂z2 (k = k0 + χ2k1) =

− A0k2
0 +

∂2 A0

∂z2 − χ2k1
∂A0

∂k
k2

0 + χ2k1
∂

∂k
∂2 A0

∂z2 , (51)
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where all the evaluations on the right-hand side are at k0, so that −A0k2
0 + ∂2 A0/∂z2 = 0

on the right-hand side of Equation (51), and therefore,

I = χ2
(
−∂A0

∂k
k2

0 +
∂

∂k
∂2 A0

∂z2

)
k1, (52)

with the evaluations of A0 and its derivatives performed at k0. Note, however, that the
evaluations of these terms could also be carried out at k = k0 + χ2k1, since they add terms
that are, overall, O (χ4) and negligible.

Since A0 = Kc0 cosh q0, the above expression (52) is also, after manipulation,

I = 2χ2 A0 k0k1,

so that Equation (50) is also (recall that ∂θ0/∂z = O (χ2) , and thus, all the terms below are
the same order)

−A1k2
0 +

∂2 A1

∂z2 = −∇2
⋆A0 + χ−4 A0

∂θ0

∂z
∂θ0

∂z
.

The above corresponds to the terms O (χ2) of continuity Equation (16). In proceeding
similarly with boundary conditions (17) and (18), the equations for A1 are

−A1k2
0 +

∂2 A1

∂z2 = −∇2
⋆A0 − χ−4 A0

∂θ0

∂z
∂θ0

∂z
, −h ⩽ z ⩽ 0, (53)

∂A1

∂z
= −∇⋆A0·∇⋆h, z = −h, (54)

−ω2 A1 + g
∂A1

∂z
= gKc0mk1, z = 0, (55)

with
m = µ0 tanh µ0 sinh µ0 − sinh µ0 − µ0 cosh µ0. (56)

Equations (53) and (54) will allow us to solve for A1, and then k1 will be obtained from
Equation (55).

6.2. Analytical solutions for ∂θ0/∂z = 0

The forcing term including the squared ∂θ0/∂z in Equation (53) prevents analytical
solutions to exist. For illustration and also practical purposes, it is useful to first introduce
the solution of the problem ignoring this forcing term.

The gradient and the Laplacian of A0 in Equations (53) and (54) are

∇⋆A0 =
∂A0

∂h
∇⋆h, ∇2

⋆A0 =
∂A0

∂h
∇2

⋆h +
∂2 A0

∂h2 |∇⋆h|2,

where ∂A0/∂h and ∂2 A0/∂h2 are known from Equations (39) and (40). Differential Equa-
tion (53) happens to have an analytical solution. Already imposing boundary condition (54),
the solution is

A1

Kc0
=

(
− δs1

4
q2

0 −
δs0

2
q0

)
cosh q0

h∇2
⋆h

µ2
0

+

(
−2δc0 + δs1

4
q0 +

µ0

2

)
sinh q0

h∇2
⋆h

µ2
0

+

(
−ϵs1 + ϵc2

4
q2

0 +
−2ϵs0 + ϵc1

4
q0

)
cosh q0

|∇⋆h|2

µ2
0

+

(
− ϵc2

6
q3

0 −
ϵc1

4
q2

0 +
−2ϵc0 + ϵs1 − ϵc2

4
q0 −

αk0 µ0

2

)
sinh q0

|∇⋆h|2

µ2
0

+ Kc1 cosh q0. (57)
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This new contribution of O (χ2) to the velocity profile is not considered in the work
by Ge et al. [29], and it is also different than the depth functions considered in Modified and
Complementary MSEs [14–16]. Solving the horizontal variations om Kc1 (constant in z) in
Equation (57) requires, just as in the leading order for Kc0, the use of energy Equation (23),
even though, again as with the leading-order case, the dispersion relationship does not
require this constant Kc1 to be solved. The wavenumber k1 is obtained from Equation (55),
i.e.,

k1 =
1

gKc0m

(
−ω2 A1 + g

∂A1

∂z

)
, at z = 0, (58)

or, using the leading-order dispersion relationship ω2 = gk0 tanh µ0—allowed since the
errors introduced in k1 are O (χ2) , i.e., O (χ4) in k = k0 + χ2k1—and using the above
solution (57) for A1, after manipulation, we have

k1 = k0 (F1h∇2
⋆h + F2|∇⋆h|2) , (59)

where Fi denotes the expressions of µ0, which are shown in Appendix B and plotted in
Figure 3. As anticipated, Kc1 is not involved in Equation (59) for k1. By introducing the
above into k = k0 + χ2k1, we finally obtain

k = k0 (1 + F) , (60)

where F, which can be seen as a correction factor due to the bed slope, is

F = F1h∇2h + F2|∇h|2. (61)

Figure 3. Functions Fi = Fi (µ0) for i = 1, 2, 3 using log-log (A) and semi-log (B) scales. Dashed line
is at µ0 = 2.3.

The proposed expression (60), with F in Equation (61), trivially reduces to the Burnside
solution when ∇2h = 0 and |∇h| = 0, for flat beds. Functions F1 and F2, in Figure 3 (−F1
shown, since F1 < 0 and logarithmic scales are used), are so that |Fi| < 10−2 for µ0 ≳ 2.3,
decreasing exponentially as µ0 increases (Figure 3B). In other words, in deep waters, the
dispersion relationship is not affected by the variations in the bed, as it is not by the depth
itself. For practical purposes, we will consider that the influence of the slope is negligible
for µ0 > 2.3.

On the other hand, for µ0 ≲ 0.1, the slope in the log–log plot (Figure 3A) is −2, i.e.,
both functions are ∝ µ−2

0 . Specifically, they are

F1 ∼ − 1
8µ2

0
, F2 ∼ +

1
32µ2

0
, [µ0 ≲ 0.1] ,
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so that in shallow waters,

F ∼ −h∇2h
8µ2

0
+

|∇h|2

32µ2
0

, [µ0 ≲ 0.1] . (62)

Given that the perturbative approximations are valid as long as the perturbation
created, here F, is relatively small, say |F| < Fc (a critic value), the above expression (62)
also allows us to theoretically find the limit for the application of the present analysis in
shallow waters. For the particular case of the bed being a sloped plane, when ∇2h = 0,
from the above expression,

|∇h|
µ0

≲
√

32Fc

{
|∇h|

µ0
≲ 2.5 if Fc ∼ 0.2

}
. (63)

This condition has the same structure as the one for MSEs in Equation (2) and rep-
resents a significant increase in the validity domain. Also, for sloped planes, Figure 4
includes two relevant isolines for F = F2|∇h|2, showing the zone of present interest in
the plane {|∇h|, µ0} , which corresponds to 0.001 ≲ F ≲ Fc with Fc ∼ 0.2; for F > Fc, the
influence is too high, while for F < 0.001, it can be considered negligible. The domain of
the asymptotic result obtained by Ehrenmark [27] is illustrated in Figure 4 as µ0 ⩽ 10−3,
only as an indication to show that the domains are complementary. While both solutions
recover the Burnside expression for |∇h| = 0, no quantitative comparison is possible for
small slopes since the solution of Ehrenmark is valid for infinitesimally small values of µ0,
where the present theory has a singularity (except for flat beds).

Figure 4. Sloped plane: isolines 0.2 and 0.001 for F = F2|∇h|2 (sloped plane).

For practical purposes, and although the exact expressions for F1 and F2 are provided
in Appendix B, the simpler expressions

F1 = −
exp (−0.315µ2

0 − 0.039µ3
0 + 0.013µ4

0)

8µ2
0

(64)

F2 = +
exp (+2.430µ2

0 − 2.173µ3
0 + 0.641µ4

0 − 0.069µ5
0)

32µ2
0

, (65)

provide approximations with errors below 0.5% for the range of interest, i.e.,
0 ⩽ µ0 ⩽ 2.3.

6.3. Numerical Solution for the General Case (∂θ0/∂z ̸= 0)

In the general case, when ∂θ0/∂z is not null, i.e., recalling Equation (43), when
∇h·s0 ̸= 0, the system of Equations (53)–(55) has no analytical solutions for A1. Now, the
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Equation (53) with bottom boundary condition (54) is to be solved numerically to obtain
A1, and k1 is recovered from (55), also numerically. However, given the linear nature of the
equations, it can be foreseen that the solution is still k = k0 (1 + F) , now with

F = F1h∇2h + F2|∇h|2 + F3 (∇h·s0)
2, (66)

where functions F1 and F2 are the ones presented above, and F3, obtained numerically,
is shown in Figure 3. In fact, in solving the system of equations numerically, F1 and F2
can also be estimated numerically, and they have been used to check the quality of the
numerical integration and the overall validity of Expression (66). For the range of interest,
0 ⩽ µ0 ⩽ 2.3, the relative errors of the numerical estimations of F1 and F2, compared to
the exact expressions, are below 10−6, which also guarantees the quality of the numerical
estimation of F3. The function F3, included in Figure 3, can be again approximated in the
range of interest through an exponential expression as

F3 = −
exp (−0.396µ2

0 − 0.143µ3
0 − 0.047µ4

0 + 0.034µ5
0)

6
, (67)

with errors below 0.5% relative to the numerical solution. Function F3 is non-negligible,
when compared to F1 and F2, only for µ0 ≳ 0.3 (see Figure 3A), i.e., where all Fi are small
and the influence of the bottom variations is expected to be nearly negligible.

6.4. Comparison to the Expression by Ge et al. [29]

The expression by Ge et al. [29], for sinusoidal bathymetries, is obtained using Fred-
holm’s alternative theorem (FAT) and by coupling the governing equation with the wave
number and the varying seabed effects, without explicitly using perturbative approaches
(see the original paper for details). Their equation is

ω2

gk
= (tanh kh + G1h∇2h + G2|∇h|2) , (68)

where

G1 (µ) = − ξ

4µ
, G2 (µ) =

ξ2 (9σ2 − µ1µ + µ2µ2 + µ3µ3 + µ4µ4)

12 (σ + µξ) 3 , (69)

with σ = tanh µ, ξ = 1 − σ2, and

µ1 = 12σ + 9σ3,

µ2 = 9 + 45σ2 − 18σ4,

µ3 = 28σ − 78σ3 + 30σ5,

µ4 = 10 − 40σ2 + 42σ4 − 12σ6.

Equation (68) can be rewritten in the same form as our Equation (60). First, note
that G1h∇2h and G2|∇h|2 are the small perturbations due to the bed shape, O (χ2) . By
following the perturbation theory procedures, we can assume that k is k0 + χ2k1 +O (χ4) .
In doing so, the above Equation (68) yields, with µ0 = k0h,

k0 =
ω2

g tanh k0h
,

i.e., the Burnside equation, and

χ2k1 = k0
G1 (µ0) h∇2h + G2 (µ0) |∇h|2

µ0 tanh2 µ0 − tanh µ0 − µ0
,
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so that we can write (compare to Equations (60) and (61))

k = k0 (1 + F1,Gh∇2h + F2,G|∇h|2) +O (χ4) , (70)

where

Fi,G =
Gi (µ0)

µ0 tanh2 µ0 − tanh µ0 − µ0
, i = 1, 2.

Note that, from Figure 5, and for µ ≲ 0.3, in spite of the different approaches consid-
ered, the results collapse for both i = 1, 2. However, the signs are opposite, i.e., Fi,G ̸≈ −Fi.

Figure 5. Functions Fi = Fi (µ0) and Fi,G = Fi,G (µ0) for i = 1, 2 using log-log (A) and semi-log
(B) scales.

6.5. Numerical Checking of the Solution

The results for the second-order solution involve a considerable amount of algebra that
deserves some kind of fully independent checking, especially after the results in Section 6.4.
Here, we will numerically check the case of ∂θ0/∂z = 0, i.e., when an analytical solution is
available (Section 6.2). We consider this case because the analytical solution simplifies the
analysis, and at the same time, it includes the core of the work (F1 and F2, which dominate
F, are obtained in this case). Additionally, we will consider a one-dimensional (1D) case for
convenience and without loss of generality.

In recalling Equation (60), the second-order solution is

k = k0 + χ2k1 = k0 (1 + F) = k0 (1 + F1hhxx + F2h2
x) , (71)

where F1 and F2 have analytical expressions in Appendix B. From Equations (33) and (57)
for A0 and A1, the second-order solution for A is the following; in recalling Section 6.1, note
that the evaluations are performed particularly for A0 and Kc0, using k and q = k (z + h) ,

A = A0 + χ2 A1 = Kc0 cosh q + Kc0

(
− δs1

4
q2 − δs0

2
q
)

cosh q
hhxx

µ2

+ Kc0

(
−2δc0 + δs1

4
q +

µ

2

)
sinh q

hhxx

µ2

+ Kc0

(
−ϵs1 + ϵc2

4
q2 +

−2ϵs0 + ϵc1

4
q
)

cosh q
h2

x
µ2

+ Kc0

(
− ϵc2

6
q3 − ϵc1

4
q2 +

−2ϵc0 + ϵs1 − ϵc2

4
q −

αk0 µ

2

)
sinh q

h2
x

µ2

+ Kc0Kc1 cosh q, (72)
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where Kc0 is, from Equation (35),

Kc0 =
a√

sinh 2µ + 2µ
,

where a is a constant representative of the deep-water wave amplitude.

The numerical checking is carried using the profile by Yu and Slinn [32], i.e.,

h = 3.5 tanh
(
−6

x
l

)
− 1.2

x
l
− 2.5 exp

(
−100

( x
l
+ 0.25

)2
)

,

where x < 0. Figure 6 shows the profile for two different values of l; it is straightforward
from the expression of the profile that changing l has the effect of stretching or shrinking
in the horizontal axis direction, and it can be readily shown that, for constant x0/l (e.g.,
dashed lines in Figure 6), it is hx ∝ l−1 and hxx ∝ l−2, so that l−1 plays the role of χ here.

Figure 6. Yu and Slinn [32] profile for numerical checkings. FSBS: point to check the free-surface
boundary condition; PDE: point to check the partial differential equation; BBC: point to check the
bottom boundary condition.

The original conditions, prior to the use of WKB, the governing Equations (16)–(18)
read as follows in 1D and ignoring ∂θ/∂z:

(PDE) Axx − Ak2 + Azz = 0, −h ⩽ z ⩽ 0, (73)

(BBC) Axhx + Az = 0, z = −h, (74)

(FSBC) −ω2 A + gAz = 0, z = 0, (75)

where, as in Figures 6 and 7, PDE = partial differential equation, BBC = bottom boundary
condition, and FSBC = free-surface boundary condition. The correctness of the results
is checked by introducing the above solutions (71) and (72) into a finite difference dis-
cretization of the governing Equations (73)–(75). To ensure that errors due to the finite
difference discretization do not spoil the analysis, ∆x = ∆z = 0.01 and very-high-order
finite difference approximations are used, with truncation errors O (∆x8, ∆z8) .

According to the perturbative approach followed in this work, when introducing
the obtained solutions in the original (raw) governing equations, there will be errors
O (χ4) = O (l−4) in all three equations (PDE, BBC, and FSBC), which correspond to
unresolved orders—recall that ∂θ/∂z = 0. Figure 7A shows how the errors do actually
behave as expected—the evaluations are always performed at x/l = −0.2, as highlighted
in Figure 6.

To illustrate how any change in the proposed solution can spoil it, making the con-
vergence not be O (χ4) , we consider two (wrong-on-purpose) cases. First, the Burnside
solution k0 is considered instead of k = k0 (1 + F) in all the equations involved; the result,
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in Figure 7B, shows that the convergence rate for both the PDE and the BBC is correct, but it
is O (χ2) for the FSBC, precisely the equation from which k is derived. This emphasizes the
well-known relevance of the free-surface boundary in obtaining the dispersion relationship.
Finally, as shown in Figure 7C, if the result is considered to be δc0 = −1.01αKc0 instead of
δc0 = −αKc0 , as it should be according to Table 1, in this case, the convergence of both the
PDE and FSBC is spoiled.

Figure 7. Evolution of the errors for equations using the proposed solutions. (A) Proposed solution
(thin lines have slope −4, corresponding to O (l−4) ); (B) incorrectly using Burnside equation for k
(thin lines have slopes −2 and −4); (C) using the proper k but introducing an error on purpose—
δc0 = −1.01αKc0 instead of δc0 = −αKc0 as it should according to Table 1 (thin lines have slopes −2
and −4).

7. Two Cases of Application

Water wave propagation numerical models rely on depth-integrated equations such
as the linear and fully dispersive MSEs (modified or not) or the nonlinear and weakly
dispersive Boussinesq-type equations. These equations often neglect the effects of bottom
variations or utilize velocity profile assumptions that differ from the solution presented in
this study, and do not provide an expression for the corresponding dispersion equation. In
using the new results presented here, particularly in Section 6 for O (χ2) , the consequences
of including (or neglecting) the bottom variations on the wave celerity are shown in this
Section 7 with two one-dimensional (1D) examples—although the results provided here
are valid for 2D cases. Both examples correspond to shallow-water conditions since, as
already seen, the influence of the bed shape is negligible in deep waters.

7.1. Nearshore Propagation and Depth Inversion Problem

A first example deals with the propagation of wind-generated water waves as they
approach the shore over a barred beach profile. We consider the propagation of linear
waves with a period T = 7 s over the barred beach profile shown in Figure 8D, given by

h = 3.5 tanh
(
−6

x
l

)
− 1.2

x
l
− 2.5 exp

(
−100

( x
l
+ 0.25

)2
)

, (76)

where x < 0 and l = 100 m. Note that this profile has relatively strong slopes to enhance
the influence of the bottom variations; a more realistic case would consider l > 200 m.
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The parameter µ0 = k0h, which is of paramount importance in the present analysis, is
obtained from the leading-order dispersion equation and included in Figure 8A; it ranges
from ∼0.6 in the offshore deepest zone to ∼0.3 over the bar and ∼0.2 in the shallower part.
The factor F, which is required to obtain k = k0 (1 + F) , reads in this 1D case

F = F1hhxx + F2h2
x + F3h2

x, (77)

with hx = dh/dx and hxx = d2h/dx2. Figure 8B shows the evolution of the three terms of
the sum: the term F1hhxx dominates over the bar, while F2h2

x dominates very near the shore.
As expected, the term F3h2

x is generally small. The wave celerities c0 = ω/k0 and c = ω/k
are shown in Figure 8C, with the differences reaching values up to ±7%.

Figure 8. Wind-generated water waves of period T = 7 s propagation over a barred beach profile:
evolution of µ0 (A), components of F (B), celerities c0 and c (C) and water depth h (D).

The above differences, due to F, have consequences on a relatively recent branch of
algorithms for bathymetry estimation from video images. These algorithms, e.g., refs. [33–35]
obtain the bathymetry from videos of the wave propagation in the shallow-water region,
i.e., where the waves feel the bathymetry. For this purpose, these algorithms first obtain
estimates of the wave period and the wavenumber using different techniques such as Fourier
analysis or mode decomposition, and once ω and k have been estimated, all of them rely on
the leading-order dispersion relationship to retrieve the water depth h.

Figure 9 is meant to illustrate the consequences of using the leading-order dispersion
equation in bathymetric inversion methods, by simulating the type of errors that can be
incurred when disregarding the slope hx and curvature hxx of the bottom. Figure 9 shows a
bathymetry h, the same as in Figure 8D, the bathymetry retrieved using the leading-order
dispersion equation (Burnside), and the wavenumber values obtained through the modified
equation (i.e., the ones that would actually be observed). Linear waves of T = 7 s have
again been considered. The maximum errors, i.e., the differences between the proposed
bathymetry and the retried one are ∼20 cm in this case. If the characteristic length of the
bathymetry, l, is increased to 200 m in Equation (76), i.e., in milder conditions, these errors
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are reduced to ∼5 cm. It should be noted that the bathymetric inversion algorithms have
other difficulties related to the nonlinearity of the waves or the obliquity of the images that
can be more relevant.

Figure 9. The inversion problem in a barred beach profile (h retrieved with the Burnside equation).

7.2. Tsunami Propagation over the Continental Slope

A second example is used to specifically show the influence of the slope, hx, and also
to show the limitations of the present analysis in very shallow waters. We consider the
propagation of a tsunami over a continental slope as it travels to the shore. The continental
slope is the abrupt rise from the ocean floor to the edge of the continental shelf. It marks the
boundary between the continental shelf and the abyssal plain, and the slope angles typically
range from 3◦ to 6◦ degrees (i.e., 0.05 ≲ |hx| ≲ 0.10), reaching higher values in subduction
zones. The idealized continental slope considered in this example has |hx| = 0.075, taking
∼25 km to go from a depth of h = 2000 m to 100 m (see Figure 10D). The junctions between
the slope and flat zones (the abyssal plain and the continental shelf, respectively) have been
smoothed over a length l = 4 km using polynomials that ensure the continuity of h, hx, and
hxx. We initially consider the propagation of a tsunami with a wavelength L = 200 km in
the deep zone; this would correspond, using the dispersion relationship, to a period of
T ∼ 24 min and a celerity, in the deep zone, of ∼500 km/h.

Figure 10. Tsunami propagation over a continental shelf: evolution of µ0 (A), components of F (B),
celerities c0 and c (C) and water depth h (D).
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Figure 10 shows the most relevant results as in Figure 8. From Figure 10A, µ0 ≲ 0.07 in
all the domain, with µ0 ∼ 0.01 in the shallower zone (continental shelf). Here, the values of
µ0 are an order of magnitude smaller than in the previous example, which implies a more
limiting condition on the maximum slope that can be handled. Figure 10B shows again the
influence of each of the three terms summing up factor F in Equation (77). Owing to the
way in which the bathymetry has been defined, hxx is null over the whole slope (except in
the junction areas), and the term F1hhxx is zero. Further, F3 ≪ F2 in the slope, as expected
due to the small values of µ0 (Figure 3). In summary, the term F2h2

x dominates the slope,
with increasing values as the depth decreases and reaching values of ∼0.4. The impact on
the wave celerity is shown in Figure 10C; the traveling time of the wave over the part of
the slope where hxx = 0 is 231 s using c0 and 262 s using the celerity c (i.e., +13.1%).

Table 2 shows results obtained for the traveling time over the zone of the slope where
hxx = 0 for different combinations of slope |hx| and wavelength L in the deep zone.
The results show, quantitatively, that the greater the slope steepness and the longer the
wavelength, the larger the differences in the traveling time become. At the same time, as
the slope or the wavelength L increases, the maximum value of |F| at that zone, |F|max,
increases, and the condition |F|max < Fc is violated. This is indicated with symbols in
Table 2 (the results marked with † and ‡ should be regarded with caution). Tsunamis do
usually have values of µ0 so small that even relatively small slopes of the continental shelf
can violate the slope condition, both for the original condition in Equation (2), and also the
new one in Equation (63). This point highlights the potential errors in tsunami propagation
over the continental slope using depth-integrated models.

Table 2. Increment in traveling time over the slope (the zone where hxx = 0) using the modified dis-
persion relationship instead of using the leading-order relationship. The cases with 0.2 < |F|max ⩽ 0.4
are marked with † (|F|max = maximum value of |F| in the ramp), those with 0.4 < |F|max ⩽ 0.6 with
‡, and those with |F|max > 0.6 are ignored (—).

L in the Deep Zone [km]

Slope |hx| [-] 10 50 100 200 500

0.025 +0.0% +0.1% +0.5% +1.8% +11.4% ‡
0.050 +0.0% +0.4% +1.6% +6.4% † —
0.075 +0.0% +0.8% +3.2% +13.1% † —
0.100 +0.0% +1.3% +5.3% +21.5% ‡ —
0.150 +0.1% +2.5% +10.6% † — —
0.200 +0.0% +4.1% +17.4% † — —

A second relevant aspect of Figure 10 is that the term F1hhxx is dominant in the junction
zones and, moreover, forces the violation of the condition |F| < Fc. Given that the condition
is not satisfied, the results of the current theory cannot be applied to the junctions, and the
behavior of the celerity remains unknown in that zone.

8. Concluding Remarks

This study explored the impact of the spatial variability in the seabed on key wave
properties relevant to linear wave propagation employing a WKB approximation. Through
solving the equations up to second-order O (χ2) , where χ represents a characteristic value
of the slope, two significant outcomes emerged.

Firstly, the well-established longwave theory governing linear transmission and re-
flection over a ramp was expanded to intermediate and deep waters. Secondly, and more
prominently, a new dispersion relationship that incorporates the gradient and Laplacian of
the mean water depth was derived. This resulting expression is readily applicable, and its
implications for the problems of depth inversion and tsunami propagation are illustrated
with two examples.

For the specific case of sloped planes, the analysis broadens the applicability range of
the dispersion relationship over uneven bottoms from the classical mild-slope condition
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(|∇h| ≲ 0.38 kh) to an extended range (|∇h| ≲ 2.5 kh). Importantly, our findings under-
score potential pitfalls associated with employing depth-integrated models under specific
circumstances. The challenge posed by the tsunami propagation over the continental slope
is a case that may surpass the validity of this study, clearly showing the influence of the
Laplacian term.
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Appendix A. Expressions for α and β

In this appendix, we avoid, for ease, the subindex “0” to denote that we are dealing
with the leading-order solution. From dispersion relationship (34), deriving relative to h,
we have

0 = g
dk
dh

tanh µ + gk (1 − tanh2 µ)

(
dk
dh

h + k
)

,

so that after manipulation,

αk = −h
k

dk
dh

=
2µ

sinh 2µ + 2µ
=

G
1 + G

,
[

G =
2µ

sinh 2µ

]
. (A1)

Since c = ω/k and µ = kh, it can be easily shown that αc = −αk and αµ = αk − 1. It
can also be shown that αG = (1 − G cosh 2µ) αµ. From energy Equation (35), we have the
following manipulations:

αKc =
GM

2 (1 + G) 2 , [M = cosh 2µ + 1] , (A2)

Regarding β, related to second-order derivatives, it is, e.g.,

βk = −G2 (M + 2 (1 + G) )

(1 + G) 3 , (A3)

βKc =
2µ2

(1 + G) 3 +
G2M (2GM − 4 (1 + G) − 3M)

4 (1 + G) 4 . (A4)
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Appendix B. Functions F1 and F2 for k1

The expressions for both F1 and F2 are (j = 1, 2)

Fj =
1

12µ2
0

Fja µ0 tanh µ0 sinh µ0 − Fjb sinh µ0 − Fjc µ0 cosh µ0

µ0 tanh µ0 sinh µ0 − sinh µ0 − µ0 cosh µ0
,

where the coefficients Fja, Fjb, and Fjc are

F1a = −3 (α− + 2) ,

F1b = −3α−,

F1c = −3α+.

and

F2a = +2 (α2
k0
− 3αk0 + 3) µ2 − 3 (β− + α−αk0 − 2αk0) ,

F2b = +6 (α2
k0
− 2αk0 + 1) µ2 − 3 (β− + α−αk0) ,

F2c = +2 (α2
k0
− 3αk0 + 3) µ2 − 3 (β+ − α−αk0 − 2αk0 + 2α+) ,

where α± = 2αKc0 ± αk0 and β± = 2βKc0 ± βk0 .
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