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Abstract: Due to the rapid development of a global navigation satellite system and the rapid growth of
ships, the traditional control algorithms are not suitable; hence, the longitudinal rocking phenomenon
generated by external disturbances is more serious when a ship is sailing. This paper takes a
mathematical model of the super large oil tanker “KVLCC2”’s longitudinal motion as the controlled
plant, establishing a multi-input multi-output instability control system, using the root trajectory
shaping method and a weighting matrix to ensure the stability of its transfer function’s mathematical
model. An improved closed-loop gain-shaping algorithm is utilized to design a simple robust
controller. And a dual nonlinear positive feedback control algorithm is added to the control system
to further improve the controller’s pitching stabilization performance and reduce the controller’s
output energy. In order to verify that the controller has a consistently strong robustness, simulation
experiments are carried out by adding a level 6, 7 and 8 wind wave model and a perturbation link to
the control system, respectively. The results show that when the value of the hysteresis constant is
taken as 0.25, the output values of the heave displacement and the pitch angle are greatly reduced,
and the longitudinal rocking phenomenon is significantly improved. The dual nonlinear positive
feedback control algorithm enhances the ship’s pitching stabilization control capability and further
reduces the controller’s output energy, which provides technical support for the smooth and efficient
sailing of super large ships under changing sea conditions. Combined with a global navigation
satellite system, this algorithm provides a new method for pitching stabilization control of super
large ships.

Keywords: super large ships; rough sea conditions; dual nonlinear feedback; positive feedback;
pitching stabilization

1. Introduction

With the development of global satellite navigation control in the navigation field, the
safety and real-time monitoring of ship transportation at sea have been greatly improved.
As one of the most important means of maritime transportation, ships play an important
role in most international trade and cargo transportation. At present, there are many types
of ships used in the maritime transportation industry, mainly including container ships,
bulk carriers, oil tankers and liquefied natural gas vessels [1,2]. During ship navigation,
ships are always affected by external environmental disturbances, such as sea wind, waves,
currents and other objective factors. These cause the ship to translate and rotate around
each of its three axes, resulting in six degrees of freedom. The effects of pitch and heave
motion are particularly serious [3].

Pitching can have the effects such as increased hull stress, reduced crew comfort,
reduced sailing stability and increased fuel consumption. Ni Jun [4] utilized a mechan-
ical structure to manipulate the motion of rocking reduction fins and made the rocking
reduction fins and fluid move against each other. As a result, an anti-swaying moment was
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generated on the surface of the fins to achieve a sway reduction effect. However, the fin
stabilizers have a slight pitching stabilization effect at a low speed and even no effect at zero
speed. Zhang [5] took a polar research ship as a model and used a proportional–integral–
differential (PID) controller to control the swing of the fin stabilizers. When the ship’s speed
is zero, the purpose of stabilizing the ship is achieved by controlling the stabilizer fin. This
makes up for the disadvantages of conventional fin stabilizers. Huang [6] proposed a new
passive anti-longitudinal cross-type rocking rudder which was composed of the original
vertical rudder blade, a reaction rudder blade in the horizontal direction and a rudder
ball at the intersection. Although the anti-longitudinal rocking rudder has the advantages
of simple use, easy maintenance and no additional damping, the device requires a lot of
power to realize the pitching stabilization function.

With the development of the ship industry towards intelligent control automation,
more control algorithms have been used to control ships’ pitching stabilization, such as
fuzzy control, adaptive control, nonlinear feeders, etc. These make up for the shortcomings
of the traditional pitching stabilization devices above and improve the flexibility and
efficiency of ships’ pitching stabilization systems [7]. Li [8] proposed a new pitching
stabilization control algorithm based on algebraic model predictive control (AMPC), and
through this, could calculate the heave displacement velocity and the angular velocity,
which greatly improved the speed of online calculation. Thus, it achieved the purpose of
predictive control and improved the pitching stabilization ability of the control system.
Based on model predictive control, Xu [9] proposed a new type of pitching stabilization
control method by combining model predictive control and sliding mode control, which
enhanced the prediction accuracy and also improved the strong robust performance of the
system. Zhang [10] designed a robust controller that used proportional differentiation (PD)
and an expansion state observer (ESO). From the simulation results, the effect of pitching
stabilization was well controlled, but the controller’s output energy also increased.

In recent years, nonlinear feedback and modification algorithms have been proposed
to solve the above problem of controller energy output dissipation [11,12]. Zhang [13] took
the “Yukun” ship from Dalian Maritime University as the controlled plant and proposed
a nonlinear feedback control algorithm based on the inverse tangent function, and the
control effect was significantly improved. Meanwhile, Cao [14] designed a nonlinear
modification controller based on the power function. This not only improved the ability of
the controller’s pitching stabilization but also saved the controller output energy.

However, the method proposed above is only applicable to good sea conditions, and
the rocking reduction effect decreases and the controller’s output energy increases for rough
sea conditions. Based on the above incentives, this paper makes the following contributions:

(1) Taking the super large oil tanker “KVLCC2” as the controlled plant, designing a
simple robust controller with strong robustness for a multi-input and multi-output
(MIMO) unstable mathematical model.

(2) Due to the characteristics of large inertia and long time delays for super large ships,
the traditional algorithms do not yield the necessary output for response control.
Therefore, this paper moves beyond the concept of single nonlinear negative feed-
back and puts forward a dual nonlinear positive feedback control algorithm, which
improves the capacity for pitching stabilization and further solves the problem of
controller energy output dissipation.

(3) Utilizing the improved algorithm proposed in this paper, an experiment is carried out
under level 6, 7 and 8 sea states for a super large ship, respectively. The results show
that the improved controller can significantly reduce the ship’s pitch angle, heave
displacement and longitudinal rocking frequency under different sea conditions. The
improved algorithm can still achieve the expected pitching stabilization effect under
rough sea conditions.

The other sections of this paper are organized as follows. Section 1 introduces the
mathematical model of the motion of the super-large “KVLCC2” tanker; Section 2 describes
the research methodology for the ship model; Section 3 proposes the design method for the
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simple robust controller; Section 3 introduces the dual nonlinear positive feedback control
algorithm for improving the control system; Section 4 carries out simulation experiments
to verify the pitching stabilization performance of the system; Section 5 provides the
conclusions and outlook.

2. Mathematical Modeling of Ship Motion

Based on the theorem of Newtonian mechanics and the motion characteristics of ships
sailing, we establish a mathematical model of the longitudinal motion of the super large
oil tanker “KVLCC2” [15]. As shown in Figure 1, for the tanker’s motion’s coordinate
system, we take the ship’s center of gravity G as the coordinate origin; the X-axis is in the
center plane of the boat and parallel to the baseline, pointing towards the bow as positive;
the Y-axis is perpendicular to the centerline face and points starboard as positive; and the
Z-axis is mutually perpendicular to the horizontal plane and is positive upwards [16].
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Analyzing the motion characteristics of a ship under the influence of waves, we can
obtain a mathematical model of the ship’s longitudinal motion [17]:{

(M + azz)
..
zG + bzz

.
zG + czzzG + azθ

..
θ + bzθ

.
θ + czθθ = FZC cos ωet + FZS sin ωet

(Iθθ + aθθ)
..
θ + bθθ

.
θ + cθθθ + aθz

..
zG + bθz

.
zG + cθzzG = MθC cos ωet + MθS sin ωet

(1)

In Equation (1), M represents the hull mass, aij denotes the added mass or added mass
moment of inertia and bij is a damping coefficient associated with the linear or angular
velocity of the motion. cij is the resilience or moment coefficient of resilience;

..
zG,

.
zG, zG

are the pendulum acceleration, velocity and amplitude, respectively;
..
θ,

.
θ, θ are the pitch

motion angular acceleration, angular velocity and angle; FZ, Mθ are the pendulum force
and the longitudinal swing moment, respectively; and ωe is the wave encounter angle.

Making the following assumptions, the mathematical model of the ship is further
simplified [18]:

(1) The ship is treated as a rigid body, and its elastic deformation is ignored.
(2) For the ship’s pitching stabilization control system, only two degrees of freedom of

pitch and heave are considered.

Based on the above assumptions, we let the outputs be the pitch angle θ and the heave
displacement h. Then, the transfer function-type mathematical model G is

G =

(
G11 G12
G21 G22

)
=

1
G1

(
a11 a12
a21 a22

)
. (2)

Table 1 shows the ship parameters, and the parameters in Formula (2) can be obtained
according to reference [19].
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Table 1. Basic parameters of oil tanker “KVLCC2”.

Item Sign Value

Length between perpendiculars L(m) 320.0
Breadth B(m) 58.0

Longitudinal center of gravity XC(m) 11.2
Rudder area Aδ

(
m2) 112.26

Speed (max) V(kn) 15.8
Displacement ∇[m3] 312,600.0

Draft (full load) D(m) 20.8
Block coefficient Cb 0.81

3. Modeling Research Methods

G1, a11 and a21 all have imaginary roots in the right half plane of the imaginary
axis; thus, the system is easily divergent. According to the principle of root trajectory
molding [20], the weight function of the root trajectory molding of the controlled plant is
taken as

L(s) =
(

L11 0
0 L22

)
. (3)

We design the weight function coefficient matrix as λ.

λ =

(
a 0
0 b

)
(4)

The above equation takes a = 100, 000, b = 200, 000. According to the principle of
weight function molding [21], L11 and L22 in Equation (3) are taken as

L11(s) =
3s + 4
s + 4

, (5)

L22(s) =
500(0.5s + 1)(s + 0.1)

s + 4
. (6)

L11 and L22 contain a pole and two zeros. In summary, the generalized controlled
plant is obtained as

P(s) = L(s)G(s)λ =

(
L11G11 L11G12
L22G21 L22G22

)(
a 0
0 b

)
=

(
aL11G11 bL11G12
aL22G21 bL22G22

)
. (7)

Figure 2 shows a root trajectory diagram of the system after shaping by the weight
function. Observing the root trajectory diagrams of P11, P12, P21 and P22, it can be seen that
all of the roots are located in the left half plane of the imaginary axis. Therefore, the system
is stable as a whole.
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4. Design of the Robust Controller

Figure 3 illustrates the structure of the controller design, where noise is utilized to
simulate wave disturbance (referred to as disturbance r). The controller output is denoted
as u, and the total system output is represented by y.
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Since ships generate longitudinal rocking and heave motions under the action of
waves during actual navigation, white noise is thus used to simulate the wave interference
input r [22] (in the Simulink simulation experiment, the parameter is set to 0.1). We use a
first-order closed-loop gain-shaping algorithm to design robust controllers. A closed-loop
transfer function is formed with a simple integral link and a steady-state output value G′

to solve the problem of poor controller robustness.
When designing the controller, we let its diagonal element be 0.

K =

 C
T11s 0

0 C
T22s

, C =
1
A

, D =
1
B

(8)

The transfer function can be introduced through the above equation as
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y
r
=

KP
1 + KP

=

(
AC
T11s 0
0 BD

T22s

)
/

[
1 +

(
AC
T11s 0
0 BD

T22s

)]
=

(
AC
T11s 0
0 BD

T22s

)(
T11s+AC

T11s 0
0 T22s+BD

T22s

)−1

. (9)

Further simplification yields the following:

y
r
=

(
1

T11s+1 0
0 1

T22s+1

)
. (10)

Equation (10) is the mathematical expression for the first-order closed-loop gain-
shaping algorithm which belongs to a simple, robust control algorithm, by which we can
obtain lower-order controllers.

This simple and robust controller also has the advantage of processing data blocks.
Using global satellite navigation technology, real-time data from the ship are fed into the
controller, which can respond quickly and make parameter adjustments.

5. The Double Nonlinear Positive Feedback Control System
5.1. Positive Feedback

Negative feedback is a common feedback mechanism in control systems which com-
pares the output signal of the system with a desired reference signal. And using the
difference as a correction of the input signal, it thus tunes the behavior of the system to
reduce the difference and finally achieves the desired output of the system [23]. In contrast,
this paper adopts the idea of positive feedback, which is an equivalent transformation of
negative feedback into another form. The transfer function of the negative feedback closed-
loop system can be expressed as K′G/(1 + K′G), and K′ denotes the control algorithm after
adding nonlinear feedback. Positive feedback is a feedback signal in the loop from negative
to positive, then multiplying the original negative feedback controller by −1 to become a
positive feedback controller, namely −K′. Finally, we multiply by −1 for the system totality
and transform it into mathematical formula form, as in Equation (11).

K′G
1 + K′G

= (−1)· (−K′)G
1 − (−K′)G

(11)

A nonlinear positive feedback control system can achieve a faster control response by
amplifying the excitation of the system, prompting the system to respond faster to external
stimuli. Meanwhile, nonlinear positive feedback counteracts nonlinear effects. Thus, it
can cope better with nonlinear challenges and achieve more stable control than negative
feedback. Therefore, a nonlinear positive feedback control system is chosen in this paper to
enhance the excitation effect and make the system more stable.

5.2. Dual Nonlinear Positive Feedback

Aiming at single nonlinear positive feedback control requires more intensive design
and regulation in general and can easily cause system instability. Therefore, based on single
nonlinear feedback, this paper selects double nonlinear positive feedback to adjust the out-
put of the controller in time. With error feedback through a feed-forward system, nonlinear
feedback replaces the original error feedback so as to improve the anti-pitching performance
and energy-saving effect of the system. Meanwhile, a positive feedback control system
enables better adaptation to changes in the external environment, effectively suppressing
unstable behavior in the system, thereby improving the stability of the ship control system.
Dual nonlinear positive feedback can accurately regulate the controller’s output in terms of
the difference between the output and the input. Meanwhile, it avoids unnecessary energy
iterations and reduces the energy consumption of the ship control system.
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As shown in Figure 4, feed-forward is added in front of the controller, and the negative
feedback of the system is changed into a positive feedback link. Equation (11) realizes the
equivalent transformation of negative and positive feedback.
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The dual nonlinear functions chosen in this paper are{
f (u)1 = cos (a·e)
f (u′)2 = tan (b·e).

(12)

In Equation (12), a = 0.1, b = 0.25. Equations (13) and (14) can be obtained according
to the Taylor formula.

cos(ae) ≈ 1 − (ae)2

2
+

(ae)4

4!
+ o
(
(ae)4

)
(13)

tan (be) ≈ (be) +
(be)3

3
+

2(be)5

15
+

17(be)7

315
+ o
(
(be)7

)
(14)

Keeping Equation (13) within the second order,

cos (a·e) = 1 − (ae)2

2
. (15)

Keeping Equation (14) within the third order,

tan (b·e) = be +
(be)3

3
. (16)

By multiplying Equations (15) and (16), we can obtain the following:

f (e) = cos (ae)· tan (be) = be + (
b3

3
− a2b

2
)e3. (17)

The error e will directly affect the output of the whole control system; hence, the
following two cases are analyzed theoretically, respectively.

• When the error e is relatively low, f (e) ≈ be = 0.25e. We let ω = 0.25 < 1 and calculate
the steady-state error ess according to the final value theorem.

ess = lim
s→0

sX(s) = lim
s→0

s
1

1 + KP
(

ω 0
0 ω

) r
s

(18)

Then, we see Equation (18) where KP is as follows:

KP =

 1
T11s 0

0 1
T22s

. (19)
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By substituting KP into Equation (18), we can obtain

ess = lim
s→0

r

1 +

( ω
T11s 0

0 ω
T22s

) = 0. (20)

From the results of Equation (20), it can be seen that the ess output value is 0. Therefore,
it can be judged that when the error is small, the dual nonlinear positive feedback control
has no additional effect on the system.

• When the value of the error e is large, f (e) ≈ be = 0.25e will not hold. The system was
re-analyzed as follows.

Keeping Equation (13) within the fourth order,

cos(ae) = 1 − (ae)2

2
+

(ae)4

4!
. (21)

Keeping Equation (14) within the fifth order,

tan (be) = (be) +
(be)3

3
+

2(be)5

15
. (22)

Multiplying Equations (21) and (22) yields Equation (23).

f (e)= cos (ae)· tan (be)

= be + (
b3

3
− a2b

2
)e3 + (

2b5

15
− a2b3

6
+

a4b
24

)e5 +

(
a4b3

72
− a2b5

15

)
e7 +

a4b5

180
e9

(23)

The output of a nonlinear link in the system under the action of a sinusoidal signal
x(t) = A sin (ωt) can be approximated using a first-order harmonic component. Based
on the functional description method, the steady-state output y(t) is harmonically ana-
lyzed [24], and its first-order Fourier series expansion is obtained as Equation (24).

y(t) = A0 + A1 cos(ω0t) + B1 sin(ω0t) (24)

where A0 represents the DC component, and A1, B1 represent the first-order harmonic
components. 

A0 =
1
π

∫ 2π
0 y(t)d(ω0t)

A1 =
1
π

∫ 2π
0 y(t) cos(ω0t)d(ω0t)

B1 =
1

2π

∫ 2π
0 y(t) sin(ω0t)d(ω0t)

(25)

With the input e = A sin (ω0t), f (e) can be converted into Equation (26).

f (t) = bA sin (ω0t) + (
b3

3
− a2b

2
)A3 sin3 (ω0t) + (

2b5

15
− a2b3

6
+

a4b
24

)A5 sin5 (ω0t)

+

(
a4b3

72
− a2b5

15

)
A7 sin7 (ω0t) +

a4b5

180
A9 sin9 (ω0t)

(26)

The descriptive function N(A) of the nonlinear system can be calculated by Equation (27).

N(A) =
B1 + jA1

A
(27)

Through Equation (25), we obtain A0 = 0, A1 = 0.
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B1 =
2
π

∫ π

2
0

[
bA sin(ω0t) + (

b3

3
− a2b

2
)A3 sin3(ω0t) + (

2b5

15
− a2b3

6
+

a4b
24

)A5 sin5(ω0t)

+

(
a4b3

72
− a2b5

15

)
A7 sin7(ω0t) +

a4b5

180
A9 sin9 (ω0t)]· sin(ω0t)d(ω0t)

=
b
2

A +
3
8
(

b3

3
− a2b

2
)A3 +

5
16

(
2b5

15
− a2b3

6
+

a4b
24

)A5 +
35

128

(
a4b3

72
− a2b5

15

)
A7 +

7a4b5

5120
A9

(28)

All powers of three or more can be ignored since the positive selection function value
A is small. Therefore, it can be obtained that B1 ≈ b

2 A.

N(A) =
B1

A
= 0.125 (29)

The N(A) value of 0.125 is the constant value. As a result, even if the error increases
significantly, the dual nonlinear positive feedback ensures that the system is stabilized, and
there is no additional adverse effect.

6. The Simulation Experiment and Result Analysis

In practice, the double nonlinear positive feedback control algorithm is combined
with a global navigation satellite system to further improve the ship’s pitch reduction
performance. The navigation system is used to input the ship’s real-time position, speed,
heading and other key parameters into the simple and robust controller designed in this
paper. The controller adjusts the ship’s navigation and motion parameters according
to the ship’s positioning data and motion state and then adjusts the ship’s propulsion
system and roll stabilizer to achieve the purpose of reducing its pitch. This paper assumes
that the ship’s real-time position, speed and heading are known and then conducts the
following experiments.

6.1. Modeling of External Interference

Waves are the main cause of longitudinal rocking during ship navigation. This paper
uses white noise to drive a second-order transfer function to simulate wave disturbances,
which makes it simple, convenient and easy to verify the controller’s performance. The prin-
ciple is that the ITTC one-parameter spectrum is linearly approximated as y(s) = h(s)·ω(s),
with ω(s) representing a zero-mean Gaussian white noise process [25] and the power spec-
trum taken to be 1.0. h(s) represents the second-order wave transfer function, as shown in
Equation (30).

h(s) =
2ξωnσωs

s2 + 2ξωns + ωn2 (30)

where σω =
√

0.0185Tωh1/3 refers to the constant of the wave’s intensity; ξ is the damping
factor; ωn = 4.85/Tω refers to the wave’s frequency; and Tω is the wave’s period. This
paper simulates level 6, 7 and 8 sea states, and the second-order wave transfer function for
different wind conditions can be calculated according to Equation (31). Then, we add it to
the control system to check the performance of the controller in reducing longitudinal sway
under changing sea conditions. Table 2 shows the second-order wave transfer function for
different wind levels.
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Table 2. Second-order wave transfer function for different wind levels.

Wind Level Calculation of the Wind
Level (kn)

Meaningful Wave
Height (m) Wave Period (s) Second-Order Wave

Transfer Function

No. 6 24.5 3.962 7.0 0.5927s
s2+0.4157s+0.4801

No. 7 30.5 7.01 8.7 1.2542s
s2+0.446s+0.3108

No. 8 37 11.28 10.5 2.2964s
s2+0.4619s+0.2134

6.2. Verification of Dual Nonlinear Positive Feedback

The controller will have a certain pure lag link in the realization of the pitching
stabilization process. This pure lag link may lead to a slower response from the system,
which may influence the effect of the control. To verify the dual nonlinear positive feedback
control algorithm, a pure lag link e−τs is added to the control system, and the ingestion
model system is shown in Figure 5.
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A time lag constant is added to the control system, and simulation experiments are
carried out under level 6, 7 and 8 sea states, respectively. The time lag constant is set to
τ = 0.25, and the time is set to 300 s. We let hm be the maximum heave displacement, θm be
the maximum pitch angle and e1, e2 be the energy metrics for the total heave displacement
and total pitch angle, respectively. The calculation is shown in Equations (31) and (32).

e1 =

√√√√√ n
∑

t=1

(
hi − h

)2

n − 1
(31)

e2 =

√√√√√ n
∑

t=1

(
θi − θ

)2

n − 1
(32)

From Figures 6–11, it can be seen that adding the dual nonlinear positive feedback
control algorithm to the control system significantly improves the system’s pitching sta-
bilization performance. Table 3 shows the performance parameters under changing sea
conditions. By analyzing Table 3, it can be concluded that the dual nonlinear positive
feedback control system increases the maximum displacement output value by 16% and the
maximum pitch angle output value by 70% and improves e1, e2 by 39% and 80% compared
with linear feedback control under level 6 sea conditions. Its pitching stabilization perfor-
mance and energy-saving effect are significantly enhanced. Comparing Figures 8 and 9, it
can be seen that dual nonlinear positive feedback control still reduces the ship model’s pitch
angle and the frequency of the ship’s longitudinal rocking under level 7 sea conditions.
The maximum displacement output value increased by 44% and the maximum pitch angle
output value by 40% and e1, e2 improved by 18% and 55% compared with linear feedback
control under level 7 sea conditions. Analyzing Figure 10 shows that the pitch angle of the
ship model increases significantly and dramatically under level 8 sea conditions. By adding
a dual linear positive feedback control algorithm to the system, the violent longitudinal
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rocking is improved. According to the above comparison, the dual nonlinear positive
feedback control algorithm proposed in this paper not only achieves the expected pitching
stabilization effect under a level 6 sea state but also in level 7 and 8 sea conditions; it
can significantly reduce the output values of the maximum heave displacement and the
maximum pitch angle and the frequency of longitudinal rocking.
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Table 3. Performance parameters under changing sea conditions.

Wind Level
Linear Feedback Dual Nonlinear Positive Feedback

hm θm e1 e2 hm θm e1 e2

No.6 0.081 0.096 0.028 0.040 0.068 0.029 0.017 0.008
No.7 0.091 0.113 0.033 0.047 0.087 0.058 0.027 0.021
No.8 0.121 0.151 0.048 0.066 0.120 0.136 0.047 0.047

7. Conclusions

This paper takes the super large oil tanker “KVLCC2” as the controlled plant, using the
weighting matrix to make its transfer function’s mathematical model stable and utilizing
the root trajectory shaping method to verify the stability of the model. The improved
closed-loop gain-shaping algorithm is used to design a simple robust controller. And a
dual nonlinear positive feedback algorithm is added to the control system. It is proven
according to mathematical derivation that both large and small errors resulting from the
introduction of feedback will not have an additional effect on the steady state of the system.
Introducing the second-order wave transfer function and a perturbation link for level
6, 7 and 8 sea states, the results show that the dual nonlinear positive feedback control
algorithm is effective in pitching stabilization in rough sea conditions and further reduces
the controller’s energy output, solving the problem of excessive control energy in the
existing algorithms. The proposed algorithm is subversive and innovative, providing
technical support for domestic and international super large ships to navigate under severe
sea conditions. Meanwhile, it plays a role in advancing the development of super large
ships. In the future, the algorithm proposed in this paper will be added to a real ship, and
all the parameters will be input into the double nonlinear positive feedback control system
by the navigation system to further verify the applicability and reliability of the algorithm
proposed in this paper.
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