Estimation of Source Range and Location Using Ship-Radiated Noise Measured by Two Vertical Line Arrays with a Feed-Forward Neural Network
Abstract
:1. Introduction
2. Methods
2.1. Acoustic Data Collection
2.2. Feature Extraction
2.3. Feed-Forward Neural Network
2.4. Correction for the Array Tilt Effect
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
VLA | vertical line array |
SAVEX-15 | Shallow-water Acoustic Variability Experiment |
SCM | Sample Covariance Matrix |
GCC | Generalized Cross Correlation |
MFP | matched field processing |
CNN | convolutional neural network |
MBES | Multibeam Echosounder |
AIS | Automatic Identification System |
GPS | Global Positioning System |
CPA | closest point of approach |
FNN | feed-forward neural network |
ELU | Exponential Linear Unit |
MAPE | Mean Absolute Percentage Error |
CIR | channel impulse response |
PINN | Physics-Informed Neural Network |
SVM | Support Vector Machine |
TMA | Target Motion Analysis |
CTD | Conductivity–Temperature–Depth |
Appendix A
Training and Validation Data | Test Data | |
---|---|---|
Source | 600 Hz sinusoidal wave | |
Source depth (m) | 5 | |
Receiver depth (m) | 23.5:3.75:79.75 | |
Array tilt (°) | 0 | −5:1:5 |
Source range (km) | 1:0.01:7 | |
Geoacoustic parameter | ||
Bottom depth (m) | 100 | |
Sound speed profile | Measured by Conductivity–Temperature–Depth (CTD) cast at the SAVEX-15 experimental site on 25 May 2015 at UTC 07:11 |
Appendix B
Training and Validation Data | Test Data | |
---|---|---|
Source | 600 Hz sinusoidal wave | |
Source depth (m) | 5 | |
Receiver depth (m) | 23.5:3.75:79.75 | |
) | 0 | |
Source range (km) | 1:0.01:7 | |
Geoacoustic parameter | ||
Bottom depth (m) | 100 | 97:1:103 |
Sound speed profile | Measured by Conductivity–Temperature–Depth (CTD) cast at the SAVEX-15 experimental site on 25 May 2015 at UTC 07:11 |
Appendix C
Same VLA Test | Different VLA Test | Large Training Data Test | ||||
---|---|---|---|---|---|---|
Training | VLA1 | VLA2 | VLA2 | VLA1 | VLA1&2 | |
Test | VLA1 | VLA2 | VLA1 | VLA2 | VLA1 | VLA2 |
SCM | 7.2/13.0 | 6.7/9.0 | 2.2/3.4 | 4.2/10.3 | 3.2/6.5 | 6.3/11.1 |
GCC | 17.0/13.0 | 19.6/11.4 | 6.1/4.0 | 22.4/11.6 | 5.0/6.6 | 13.4/10.7 |
References
- Jensen, F.B.; Kuperman, W.A.; Porter, M.B.; Schmidt, H. Computational Ocean Acoustics, 2nd ed.; Springer Science & Business Media: New York, NY, USA, 2011; pp. 733–749. [Google Scholar]
- Baggeroer, A.B.; Kuperman, W.A.; Mikhalevsky, P.N. An Overview of Matched Field Methods in Ocean Acoustics. IEEE J. Ocean. Eng. 1993, 18, 401–424. [Google Scholar] [CrossRef]
- Schmidt, H.; Baggeroer, A.B.; Kuperman, W.A.; Scheer, E.K. Environmentally Tolerant Beamforming for High-resolution Matched Field Processing: Deterministic Mismatch. J. Acoust. Soc. Am. 1990, 88, 1851–1862. [Google Scholar] [CrossRef]
- Byun, G.; Hunter Akins, F.; Gemba, K.L.; Song, H.C.; Kuperman, W.A. Multiple Constraint Matched Field Processing Tolerant to Array Tilt Mismatch. J. Acoust. Soc. Am. 2020, 147, 1231–1238. [Google Scholar] [CrossRef] [PubMed]
- Worthmann, B.M.; Song, H.C.; Dowling, D.R. High Frequency Source Localization in a Shallow Ocean Sound Channel Using Frequency Difference Matched Field Processing. J. Acoust. Soc. Am. 2015, 138, 3549–3562. [Google Scholar] [CrossRef]
- Lee, S.; Makris, N.C. The Array Invariant. J. Acoust. Soc. Am. 2006, 119, 336–351. [Google Scholar] [CrossRef]
- Kim, S.; Cho, S.; Jung, S.; Choi, J.W. Passive Source Localization Using Acoustic Intensity in Multipath-Dominant Shallow-Water Waveguide. Sensors 2021, 21, 2198. [Google Scholar] [CrossRef]
- Byun, G.; Kim, J.S.; Cho, C.; Song, H.C.; Byun, S.-H. Array Invariant-Based Ranging of a Source of Opportunity. J. Acoust. Soc. Am. 2017, 142, EL286–EL291. [Google Scholar] [CrossRef]
- Hahn, J.; Park, J.S.; Kim, J.S. Estimation Error of Target Range Using Array Invariant. In Proceedings of the Acoustical Society of Korea, Busan, Republic of Korea, 1–3 November 2023; p. 36. [Google Scholar]
- Byun, G.; Song, H.C. Adaptive Array Invariant. J. Acoust. Soc. Am. 2020, 148, 925–933. [Google Scholar] [CrossRef]
- Bianco, M.J.; Gerstoft, P.; Traer, J.; Ozanich, E.; Roch, M.A.; Gannot, S.; Deledalle, C.-A. Machine Learning in Acoustics: Theory and Applications. J. Acoust. Soc. Am. 2019, 146, 3590–3628. [Google Scholar] [CrossRef]
- Yang, H.; Lee, K.; Choo, Y.; Kim, K. Underwater Acoustic Research Trends with Machine Learning: Passive SONAR Applications. J. Ocean Eng. Technol. 2020, 34, 227–236. [Google Scholar] [CrossRef]
- Niu, H.; Li, X.; Zhang, Y.; Xu, J. Advances and Applications of Machine Learning in Underwater Acoustics. Intell. Mar. Technol. Syst. 2023, 1, 8. [Google Scholar] [CrossRef]
- Niu, H.; Reeves, E.; Gerstoft, P. Source Localization in an Ocean Waveguide Using Supervised Machine Learning. J. Acoust. Soc. Am. 2017, 142, 1176–1188. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Ozanich, E.; Gerstoft, P. Ship Localization in Santa Barbara Channel Using Machine Learning Classifiers. J. Acoust. Soc. Am. 2017, 142, EL455–EL460. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Peng, H. Underwater Acoustic Source Localization Using Generalized Regression Neural Network. J. Acoust. Soc. Am. 2018, 143, 2321–2331. [Google Scholar] [CrossRef] [PubMed]
- Chi, J.; Li, X.; Wang, H.; Gao, D.; Gerstoft, P. Sound Source Ranging Using a Feed-Forward Neural Network Trained with Fitting-Based Early Stopping. J. Acoust. Soc. Am. 2019, 146, EL258–EL264. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Niu, H.; Li, Z. A Multi-Task Learning Convolutional Neural Network for Source Localization in Deep Ocean. J. Acoust. Soc. Am. 2020, 148, 873–883. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Schmidt, H. Model-Based Convolutional Neural Network Approach to Underwater Source-Range Estimation. J. Acoust. Soc. Am. 2021, 149, 405–420. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Niu, H.; Yang, S.; Li, Z. Multiple Source Localization Using Learning-Based Sparse Estimation in Deep Ocean. J. Acoust. Soc. Am. 2021, 150, 3773–3786. [Google Scholar] [CrossRef]
- Ge, F.-X.; Bai, Y.; Li, M.; Zhu, G.; Yin, J. Label Distribution-Guided Transfer Learning for Underwater Source Localization. J. Acoust. Soc. Am. 2022, 151, 4140–4149. [Google Scholar] [CrossRef]
- Ferguson, E.L.; Williams, S.B.; Jin, C.T. Sound Source Localization in a Multipath Environment Using Convolutional Neural Networks. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, AB, Canada, 15–20 April 2018; pp. 2386–2390. [Google Scholar] [CrossRef]
- Ferguson, E.L.; Williams, S.B.; Jin, C.T. Convolutional Neural Network for Single-Sensor Acoustic Localization of a Transiting Broadband Source in Very Shallow Water. J. Acoust. Soc. Am. 2019, 146, 4687–4698. [Google Scholar] [CrossRef]
- Ferguson, E.L. Multitask Convolutional Neural Network for Acoustic Localization of a Transiting Broadband Source Using a Hydrophone Array. J. Acoust. Soc. Am. 2021, 150, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Lefort, R.; Real, G.; Drémeau, A. Direct Regressions for Underwater Acoustic Source Localization in Fluctuating Oceans. Appl. Acoust. 2017, 116, 303–310. [Google Scholar] [CrossRef]
- Wang, W.; Ni, H.; Su, L.; Hu, T.; Ren, Q.; Gerstoft, P.; Ma, L. Deep Transfer Learning for Source Ranging: Deep-Sea Experiment Results. J. Acoust. Soc. Am. 2019, 146, EL317–EL322. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Gong, Z.; Ozanich, E.; Gerstoft, P.; Wang, H.; Li, Z. Deep-Learning Source Localization Using Multi-Frequency Magnitude-Only Data. J. Acoust. Soc. Am. 2019, 146, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Yang, Y.; Xu, M.; Lü, L.; Liu, Z.; Shi, Y. Source Localization in the Deep Ocean Using a Convolutional Neural Network. J. Acoust. Soc. Am. 2020, 147, EL314–EL319. [Google Scholar] [CrossRef]
- Thode, A.M.; Kim, K.H.; Blackwell, S.B.; Greene, C.R.; Nations, C.S.; McDonald, T.L.; Macrander, A.M. Automated Detection and Localization of Bowhead Whale Sounds in the Presence of Seismic Airgun Surveys. J. Acoust. Soc. Am. 2012, 131, 3726–3747. [Google Scholar] [CrossRef]
- Neilsen, T.B.; Escobar-Amado, C.D.; Acree, M.C.; Hodgkiss, W.S.; Van Komen, D.F.; Knobles, D.P.; Badiey, M.; Castro-Correa, J. Learning Location and Seabed Type from a Moving Mid-Frequency Source. J. Acoust. Soc. Am. 2021, 149, 692–705. [Google Scholar] [CrossRef] [PubMed]
- Van Komen, D.F.; Neilsen, T.B.; Howarth, K.; Knobles, D.P.; Dahl, P.H. Seabed and Range Estimation of Impulsive Time Series Using a Convolutional Neural Network. J. Acoust. Soc. Am. 2020, 147, EL403–EL408. [Google Scholar] [CrossRef] [PubMed]
- Goldwater, M.; Zitterbart, D.P.; Wright, D.; Bonnel, J. Machine-Learning-Based Simultaneous Detection and Ranging of Impulsive Baleen Whale Vocalizations Using a Single Hydrophone. J. Acoust. Soc. Am. 2023, 153, 1094–1107. [Google Scholar] [CrossRef] [PubMed]
- Song, H.C.; Cho, C. Array Invariant-Based Source Localization in Shallow Water Using a Sparse Vertical Array. J. Acoust. Soc. Am. 2017, 141, 183–188. [Google Scholar] [CrossRef]
- Urick, R.J. Principles of Underwater Sound, 3rd ed.; MacGraw-Hill: New York, NY, USA, 1983. [Google Scholar]
- Brekhovskikh, L.M.; Lysanov, Y.P. Fundamentals of Ocean Acoustics; Springer: New York, NY, USA, 2003. [Google Scholar] [CrossRef]
- Merchant, N.D.; Barton, T.R.; Thompson, P.M.; Pirotta, E.; Dakin, D.T.; Dorocicz, J. Spectral probability density as a tool for ambient noise analysis. J. Acoust. Soc. Am. 2013, 133, EL262–EL267. [Google Scholar] [CrossRef] [PubMed]
- Bonnel, J.; Thode, A.; Wright, D.; Chapman, R. Nonlinear time-warping made simple: A step-by-step tutorial on underwater acoustic modal separation with a single hydrophone. J. Acoust. Soc. Am 2020, 147, 1897–1926. [Google Scholar] [CrossRef] [PubMed]
- Knapp, C.; Carter, G. The Generalized Correlation Method for Estimation of Time Delay. IEEE Trans. Acoust. Speech Signal Process. 1976, 24, 320–327. [Google Scholar] [CrossRef]
- Kidger, P.; Lyons, T. Universal Approximation with Deep Narrow Networks. In Proceedings of the Thirty Third Conference on Learning Theory, Graz, Austria, 9–12 July 2020; pp. 2306–2327. [Google Scholar]
- Ho, Y.; Wookey, S. The real-world-weight cross-entropy loss function: Modeling the costs of mislabeling. IEEE Access 2019, 8, 4806–4813. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Park, J.; Seong, W.; Yang, H.; Nam, S.; Lee, S.-W. Array Tilt Effect Induced by Tidal Currents in the Northeastern East China Sea. Ocean. Eng. 2019, 194, 106654. [Google Scholar] [CrossRef]
- D’spain, G.L.; Murray, J.J.; Hodgkiss, W.S.; Booth, N.O.; Schey, P.W. Mirages in Shallow Water Matched Field Processing. J. Acoust. Soc. Am. 1999, 105, 3245–3265. [Google Scholar] [CrossRef]
- Yoon, S.; Park, Y.; Gerstoft, P.; Seong, W. Predicting Ocean Pressure Field with a Physics-Informed Neural Network. J. Acoust. Soc. Am. 2024, 155, 2037–2049. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin, Germany, 2006. [Google Scholar]
- Bergstra, J.; Bengio, Y. Random Search for Hyper-Parameter Optimization. J. Mach. Learn. Res. 2012, 13, 281. [Google Scholar]
- Julier, S.J.; Uhlmann, J.K. Unscented Filtering and Nonlinear Estimation. Proc. IEEE 2004, 92, 401–422. [Google Scholar] [CrossRef]
- Del Moral, P. Nonlinear Filtering: Interacting Particle Resolution. Comptes Rendus l’Académie Sci.-Ser. I-Math. 1997, 325, 653–658. [Google Scholar] [CrossRef]
- Sul, H.; Jo, M.J.; Song, T.L.; Choi, J.W. Array Invariant-Based Range-Only Target Motion Analysis for Ship Noise Measured by Two Vertical Line Arrays in Shallow Water. J. Acoust. Soc. Am. 2023, 153, A300. [Google Scholar] [CrossRef]
- Ngiam, J.; Khosla, A.; Kim, M.; Nam, J.; Lee, H.; Ng, A.Y. Multimodal deep learning. In Proceedings of the 28th International Conference on Machine Learning (ICML-11), Bellevue, Washington, DC, USA, 28 June–2 July 2011; pp. 689–696. [Google Scholar]
Same VLA Test | Different VLA Test | Large Training Data Test | ||||
---|---|---|---|---|---|---|
Training | VLA1 | VLA2 | VLA2 | VLA1 | VLA1&2 | |
Test | VLA1 | VLA2 | VLA1 | VLA2 | VLA1 | VLA2 |
SCM | 7.2 (11.8) | 6.7 (29.1) | 2.2 (20.7) | 4.2 (5.0) | 3.3 (7.0) | 6.3 (13.2) |
GCC | 17.0 (27.9) | 19.6 (38.3) | 6.1 (32.4) | 22.4 (36.3) | 5.0 (13.8) | 13.4 (25.7) |
Same VLA Test | Different VLA Test | Large Training Data Test | |
---|---|---|---|
SCM | 0.42 (1.11) | 0.16 (0.70) | 0.28 (0.58) |
GCC | 1.12 (1.96) | 0.95 (2.06) | 0.59 (1.24) |
Training | VLA1&2 | Resampling VLA1&2 | ||
---|---|---|---|---|
Test | VLA1 | VLA2 | VLA1 | VLA2 |
SCM | 3.3 (7.0) | 6.3 (13.2) | 3.7 (6.7) | 4.9 (11.8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jo, M.J.; Choi, J.W.; Han, D.-G. Estimation of Source Range and Location Using Ship-Radiated Noise Measured by Two Vertical Line Arrays with a Feed-Forward Neural Network. J. Mar. Sci. Eng. 2024, 12, 1665. https://doi.org/10.3390/jmse12091665
Jo MJ, Choi JW, Han D-G. Estimation of Source Range and Location Using Ship-Radiated Noise Measured by Two Vertical Line Arrays with a Feed-Forward Neural Network. Journal of Marine Science and Engineering. 2024; 12(9):1665. https://doi.org/10.3390/jmse12091665
Chicago/Turabian StyleJo, Moon Ju, Jee Woong Choi, and Dong-Gyun Han. 2024. "Estimation of Source Range and Location Using Ship-Radiated Noise Measured by Two Vertical Line Arrays with a Feed-Forward Neural Network" Journal of Marine Science and Engineering 12, no. 9: 1665. https://doi.org/10.3390/jmse12091665
APA StyleJo, M. J., Choi, J. W., & Han, D. -G. (2024). Estimation of Source Range and Location Using Ship-Radiated Noise Measured by Two Vertical Line Arrays with a Feed-Forward Neural Network. Journal of Marine Science and Engineering, 12(9), 1665. https://doi.org/10.3390/jmse12091665