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Abstract: Machine learning-based source range estimation is a promising method for enhancing the
performance of tracking both the dynamic and static positions of targets in the underwater acoustic
environment using extensive training data. This study constructed a machine learning model for
source range estimation using ship-radiated noise recorded by two vertical line arrays (VLAs) during
the Shallow-water Acoustic Variability Experiment (SAVEX-15), employing the Sample Covariance
Matrix (SCM) and the Generalized Cross Correlation (GCC) as input features. A feed-forward
neural network (FNN) was used to train the model on the acoustic characteristics of the source at
various distances, and the range estimation results indicated that the SCM outperformed the GCC
with lower error rates. Additionally, array tilt correction using the array invariant-based method
improved range estimation accuracy. The impact of the training data composition corresponding
to the bottom depth variation between the source and receivers on range estimation performance
was also discussed. Furthermore, the estimated ranges from the two VLA locations were applied
to localization using trilateration. Our results confirm that the SCM is the more appropriate feature
for the FNN-based source range estimation model compared with the GCC and imply that ocean
environment variability should be considered in developing a general-purpose machine learning
model for underwater acoustics.

Keywords: machine learning; feed-forward neural network; source range estimation; sample covari-
ance matrix; generalized cross correlation; array tilt; bottom depth; ocean environment variability;
source localization

1. Introduction

Various underwater source localization methods use a vertical line array (VLA), such
as matched field processing (MFP), array invariant, and machine learning-based approaches.
MFP, which can also be applied with a single receiver, estimates a source location by compar-
ing a measured acoustic field with repeated simulations using varying input variables [1–5].
Bartlett MFP, a fundamental form of MFP, and Minimum Variance MFP, which reduces
the ambiguity of side lobes, have been used to find the source location from the receiving
array [1,2]. Multiple Constraints MFP [3,4] and Frequency-Difference MFP [5] have been
proposed to mitigate the impact of mismatches between simulated and real environments.
Array invariant utilizes the invariant property of beam-time migration data obtained from
beamforming in shallow waveguides to estimate the source range [6–8]. This method does
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not require prior knowledge of the environment, operates independently of acoustic propa-
gation modeling, and demands low computational resources. Kim et al. (2021) [7] applied
acoustic intensity, which is a three-axis vector quantity, to the array invariant method for
source localization. However, the array invariant method assumes the waveguide invariant
as 1, which can cause range estimation errors due to variations in the bottom slope and
spatio-temporal variations in sound speed profile [9]. Byun et al. (2020) [10] proposed an
adaptive array invariant considering the propagation angle dependency of the waveguide
invariant. The machine learning-based method learns labeled source location information
from massive measured or simulated data, and then it can estimate the source range when
new data without location information are input [11–13]. In recent years, machine learning
has been applied for acoustic source localization in the underwater environment [14–32].
Some studies have demonstrated that machine learning-based methods perform better
than Bartlett MFP [14–16,18–20].

Many input features of the machine learning model have been used, such as the
Sample Covariance Matrix (SCM) [14–21], Generalized Cross Correlation (GCC) [22], cep-
strogram [22–24], frequency-domain pressure [25,26], pressure magnitude [27,28], time-
frequency spectrogram [29,30] and time-domain waveform [31,32]. Except for the SCM and
the GCC, the features are source-dependent, meaning that models trained by these features
cannot be applied to another source not used in training data. On the other hand, the SCM
and the GCC are source-independent in a linear time-invariant system by eliminating the
magnitude and phase of the source. The model trained by the SCM has been proven to
localize unknown sources in the underwater environment [14].

Underwater sound propagation varies with environmental conditions and their vari-
abilities. Therefore, datasets based on measurements or simulations under various con-
ditions are necessary. However, collecting sufficient datasets that reflect environmental
variability such as bottom depth and the sound speed profile is challenging in field mea-
surements. Therefore, there are efforts to supplement data through simulations [30,32] and
approaches to decrease dependency on large datasets [21,26]. Moreover, array tilt induced
by ocean currents leads to unexpected arrival time differences among receivers, which
directly causes errors in labeling training data and range estimation performance [18]. Liu
et al. (2020) [18] evaluated the environmental sensitivity of a multi-task learning convo-
lutional neural network (CNN) using simulation data. They found that the array tilt of
VLA was the most sensitive factor, followed by the bottom depth. Chen et al. (2021) [19]
investigated the sensitivity of a CNN model to the sound speed profile and bottom depth
and demonstrated that these factors degrade the range estimation performance.

In this paper, we applied ship-radiated noise, in the form of continuous waves trans-
mitted through varying acoustic channels received by two VLAs, to train a machine
learning-based range estimation model using two source-independent features. We in-
vestigated the effects of environmental variability and the tilt of the receiver array on
underwater sound propagation and, consequently, on the accuracy of source range and lo-
cation estimation. The results demonstrate the differences in range estimation performance
due to the physical characteristics of the two input features and how the performance of a
single model can be improved by correcting for systematic and environmental factors. This
approach is crucial for enhancing the robustness of machine learning models in underwater
acoustics, and it contributes to the selection, design, optimization, and interpretation of
models for underwater target detection, identification, and localization. Section 2 intro-
duces the experimental data, input features, the structure of the machine learning model
and learning parameters, and the method of array tilt correction. The source range estima-
tion and localization results are presented in Section 3, and Section 4 discusses the factors
affecting the performance. Finally, the conclusion is given in Section 5.
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2. Methods
2.1. Acoustic Data Collection

As the experimental data, we used the ship radiated noise from the research vessel
Onnuri (R/V Onnuri), which was considered as a target to estimate the range. This noise
was received by two VLAs moored apart during the Shallow-water Acoustic Variability
Experiment (SAVEX-15), which was conducted in the shallow water environment with
a bottom depth of approximately 100 m in the northeastern China Sea, approximately
100 km southwest of Jeju Island, Republic of Korea, from 14 to 28 May 2015. The experi-
ment aimed to acquire acoustic data and environmental data for research on underwater
communication, acoustics, and oceanography. To acquire the acoustic data, two VLAs,
consisting of 16 elements with 3.75 m spacing (from 24 to 80 m depth), were deployed
approximately 5.5 km apart. The experimental area consists of a sandy bottom with the
following geoacoustic properties: density ρb = 1.97 g/cm3, sound speed cb = 1800 m/s,
and attenuation coefficient αb = 0.94 dB/λ [33]. The bathymetry was measured using a
Multibeam Echosounder (MBES), as shown in Figure 1a.
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Figure 1. (a) Bathymetry of the experimental area and ship track of the R/V Onnuri. Range variations
in the R/V Onnuri (b) from VLA1 and (c) from VLA2 as a function of time. The black dotted line
represents the ship track and range variations used for the training and validation data, the black solid
line corresponds to the test data, and the black dashed lines in the range variations represent other
ships. The red box represents the ship track corresponding to the acoustic data analyzed in Figure 2.

During the experiment, although active sonar pings were sporadically transmitted
from towed or moored projectors, we selected the period when the ship’s radiated noise
was not affected by these transmitted signals. The ship track surrounding the two VLAs,
which reflects relatively large variations in bottom depth between the source and receivers,
was chosen (Figure 1a). For model training and validation, we used the data received
by two VLAs from 11:33 to 22:03 UTC on 25 May 2015, spanning 630 min. The data
corresponding to the periods when other ships were closer than the R/V Onnuri, based on
the Automatic Identification System (AIS) data and Global Positioning System (GPS) data,
were excluded (Figure 1b,c). For the validation, 10% of the training and validation data was
randomly selected. The data from 22:03 to 23:13, spanning 70 min, was used for the test.

Figure 2 shows the acoustic characteristics of ship-radiated noise measured from VLA1
at a hydrophone depth of 25 m, which is the closet to the sea surface, as represented in the
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spectrogram and spectrum level. These data are part of the training and validation sets
and include sections where the R/V Onnuri approaches and then moves away. Generally,
ship-radiated noise exhibits narrow band tonal components around 1 kHz and shows
an increase in broadband energy due to amplitude modulation signals caused by the
cavitation [34]. Particularly, when the ship approaches the receiver, passes the closest
point of approach (CPA), and then moves away, this noise makes the symmetrical striation
pattern in a spectrogram because of the interference with boundary reflected paths [35].
This pattern was clearly observed in our data. The median spectrum level, which represents
the spectrum that lasted during the measurement period, was estimated from the spectral
probability density with intensity average spectrum level in Figure 2b [36]. The narrow
band tonal components of 985, 1322, and 1455 Hz were observed in the spectrum level, but
the source of this feature was not evident. We selected the frequency range from 200 Hz to
1000 Hz to characterize the R/V Onnuri.
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Figure 2. (a) Spectrogram of acoustic data measured from VLA1 at a depth of 25 m from May 25
21:35 to 21:59 UTC. The black thick dashed line represents the time of the closest point of approach
(21:48 UTC). (b) The spectral probability density of acoustic data for 24 min. Thick magenta lines
represents the average values of the mean intensity level (dashed) and the median spectrum level
corresponding to the 50th percentile (solid).

2.2. Feature Extraction

In range-independent shallow water environments where the influence of environ-
mental variability can be ignored, the underwater acoustic channel can be assumed to
be a linear time-invariant system [1,37]. This implies ideal conditions without noise and
temporal variations caused by sea surface fluctuations, varying sound speed profiles, or
the movements of the source and receiver. The Fourier transform of the received signal at
the jth element of the VLA and frequency f is given by [14]

Rj( f ) = G
(→

r j,
→
r s, f

)
S( f ) = G

(→
r j,

→
r s, f

)
|S( f )|eiθs( f ) (1)

where S( f ) is the source spectrum, θs( f ) is the source phase in frequency domain, and
G
(→

r j,
→
r s, f

)
is Green’s function corresponding to the source position

→
r s and the jth

receiver position
→
r j.

To calculate the SCM, the Rj( f ) are normalized by the Euclidean norm to eliminate
the source magnitude [14].

∼
Rj( f ) =

Rj( f )√
∑N

n=1|Rn( f )|2
=

G
(→

r j,
→
r s, f

)
√

∑N
n=1

∣∣∣G(→
r n,

→
r s, f

)∣∣∣2 eiθs( f ) (2)

The correlation between the
∼
Rj( f ) and the

∼
Rk( f )—the normalized Fourier transform

of the received signal at the kth receiver of the VLA—is calculated to eliminate the source
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phase [14]. The asterisk in Equation (3) denotes the conjugate transpose operator. As a
result, the SCM preserves the magnitude and phase term of Green’s function.

CSCM
j,k ( f ) =

∼
Rj( f )

∼
R

*

k( f ) =
G
(→

r j,
→
r s, f

)
G*

(→
r k,

→
r s, f

)
∑N

n=1

∣∣∣G(→
r n,

→
r s, f

)∣∣∣2 (3)

To calculate the GCC, the correlation between the Rj( f ) and the Rk( f ) is multiplied by
the weighting function W( f ), called the phase transform, which eliminates the source mag-
nitude and phase [38]. As a result, the GCC preserves the phase term of Green’s function.

CGCC
j,k ( f ) = W( f )Rj( f )R*

k( f ) =
Rj( f )R*

k( f )∣∣Rj( f )R*
k( f )

∣∣ = G
(→

r j,
→
r s, f

)
G*

(→
r k,

→
r s, f

)
∣∣∣G(→

r j,
→
r s, f

)
G*

(→
r k,

→
r s, f

)∣∣∣ (4)

The SCM and the GCC were calculated using the acoustic data with a 1 s rectangular
window every 10 s from the 16 elements of the two VLAs in a frequency range from
200 Hz to 1000 Hz with a 10 Hz interval, which is the dominant frequency band of the
ship-radiated noise. The diagonal and upper triangular part of the 16 × 16 SCM and the
16 × 16 GCC were taken, divided into their real and imaginary parts, and concatenated
into a one-dimensional vector for the model input. The concatenated size of each SCM and
the GCC is 22,032, which is the product of 136 (the size of the diagonal and upper triangular
matrix), 81 (the number of frequency components), and 2 (the real and imaginary parts).

2.3. Feed-Forward Neural Network

There is a nonlinear relationship between the input feature and the source range
because of the varying underwater acoustic channel with environmental variability and
multipath effects. A feed-forward neural network (FNN), a fundamental model widely
used in machine learning applications, was used to model this nonlinear relationship.
This model is a traditional neural network based on the universal approximation theorem,
which demonstrates that a sufficiently deep and nonlinear neural network can approximate
any continuous function on a compact domain with arbitrary precision [39]. The machine
learning-based range estimation problem was treated as a classification problem in this
study [14,15,17,19]. The range of the R/V Onnuri from the two VLAs was classified into
801 classes at 10 m intervals from 1 to 9 km. The input layer, corresponding to the size of
the input feature, had 22,032 units [14]. Each of the two hidden layers had 5000 units, and
the Exponential Linear Unit (ELU) was used for the activation function. The output layer
had 801 units with softmax to represent the probability of each range class.

The network was trained for 100 epochs with a mini-batch size of 100. The learning rate
was set to 10−5. As a learning strategy, early stopping was employed to prevent overfitting
with patience value of 5. Categorical cross-entropy was used as the loss function [40],
optimized with the Adam optimizer [41]. The training process was accelerated using a
NVIDIA RTX A6000. The network was implemented using Tensorflow.

2.4. Correction for the Array Tilt Effect

The array tilt of VLA was influenced by tidal currents during SAVEX-15 [42]. Therefore,
we conducted the simulations using a numerical acoustic propagation model with the sound
speed profile and bathymetry measured in SAVEX-15 to evaluate the impact of array tilt on
the range estimation errors with all other variables fixed (Appendix A). The Mean Absolute
Percentage Error (MAPE), which is a widely used metric that measures the accuracy of a
model by calculating the average absolute percentage difference between estimated and
true values, was used to evaluate the range estimation error. The MAPE is defined as

MAPE ≡ 100
N

N

∑
i=1

∣∣∣∣Xi − X̂i
Xi

∣∣∣∣ (5)
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where Xi is the true target range based on GPS data, X̂i is the estimated target range, and
N is the number of the samples. When the input feature was the SCM, the MAPE increased
by over 10% as the absolute value of the array tilt angle exceeded ±3◦, and when the input
feature was the GCC, the MAPE increased by over 50% as the angle exceeded ±2◦.

In this paper, the array tilt angle of two VLAs was estimated every minute using the
array invariant method [8]. The array invariant method characterizes sound propagation
in the multipath-dominant shallow water waveguide, and the array invariant parameter χ
is defined as [6]

χ ≡ d
dt
(cos(θ)) (6)

where θ is the beam angle and t is the arrival time of each path. χ can be numerically
estimated by fitting to the beam-time migration data (separated by the beam angle and
the arrival time) with the least-squares approach. We applied an arbitrary tilt angle θc to
Equation (6) to compensate for the array tilt (Equation (7)).

χ′ ≡ d
dt
(cos(θ − θc)) (7)

By varying θc to find the fitting value that minimizes the error with the beam-time
migration data, the estimated θc was used to correct the arrival time by applying a time
delay dsin(θc)/c for each receiver. Here, d denotes the distance from the anchor to the
receiver and c represents the sound speed in water. We assumed that the source was
far from the VLA and the array tilted in the direction of the source. From the array tilt
angle estimated every minute, the outliers that occurred because of fitting failure were
removed using a median filter with a window size of 10 (Figure 3). Consequently, the
same time difference correction was applied to the six feature vectors extracted within each
1 min interval.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 6 of 19 
 

 

increased by over 10% as the absolute value of the array tilt angle exceeded ±3°, and when 

the input feature was the GCC, the MAPE increased by over 50% as the angle exceeded 

±2°. 

In this paper, the array tilt angle of two VLAs was estimated every minute using the 

array invariant method [8]. The array invariant method characterizes sound propagation 

in the multipath-dominant shallow water waveguide, and the array invariant parameter 

χ is defined as [6] 

χ ≡
𝑑

𝑑𝑡
(cos (𝜃)) (6) 

where 𝜃 is the beam angle and 𝑡 is the arrival time of each path. χ can be numerically 

estimated by fitting to the beam-time migration data (separated by the beam angle and 

the arrival time) with the least-squares approach. We applied an arbitrary tilt angle 𝜃𝑐 to 

Equation 6 to compensate for the array tilt (Equation 7). 

χ′ ≡
𝑑

𝑑𝑡
(cos (𝜃 − 𝜃𝑐)) (7) 

By varying 𝜃𝑐 to find the fitting value that minimizes the error with the beam-time 

migration data, the estimated 𝜃𝑐 was used to correct the arrival time by applying a time 

delay 𝑑𝑠𝑖𝑛(𝜃𝑐)/𝑐 for each receiver. Here, 𝑑 denotes the distance from the anchor to the 

receiver and 𝑐 represents the sound speed in water. We assumed that the source was far 

from the VLA and the array tilted in the direction of the source. From the array tilt angle 

estimated every minute, the outliers that occurred because of fitting failure were removed 

using a median filter with a window size of 10 (Figure 3). Consequently, the same time 

difference correction was applied to the six feature vectors extracted within each 1 min 

interval. 

 

Figure 3. The estimated array tilt angle of the two VLAs, calculated every minute before (blue 

crosses) and after (orange circles) removing the outliers using a median filter with a window size of 

10. (a) VLA1 and (b) VLA2. 

3. Results 

The source ranges were estimated using the FNN model with the SCM and the GCC 

as input features and compared to the ranges based on the GPS data. We expressed the 

range estimation results before and after correcting for the tilt effect and further catego-

rized the performance into three groups based on the combination of VLA data used in 

the training data. First, the same VLA test was conducted, where the training and test data 

were from the same VLA (either VLA1 or VLA2) (Figure 4). Second, a different VLA test 

was conducted, where the training data were from one VLA (either VLA1 or VLA2) and the 

test was on the other (either VLA2 or VLA1) (Figure 5). Third, a large training data test was 

conducted, where the training data were from both VLAs, and the test was on either VLA1 

or VLA2 (Figure 6). In addition, trilateration was used to localize source positions in two-

dimensions (longitude and latitude) using the two estimated ranges for each case. The 

source position was determined at the intersection of two concentric circles centered at the 

two VLAs. This intersection resulted in two symmetric estimated positions, but only the 

position in the direction of the true bearing was used to analyze the error. If the circles did 

Figure 3. The estimated array tilt angle of the two VLAs, calculated every minute before (blue
crosses) and after (orange circles) removing the outliers using a median filter with a window size of
10. (a) VLA1 and (b) VLA2.

3. Results

The source ranges were estimated using the FNN model with the SCM and the GCC
as input features and compared to the ranges based on the GPS data. We expressed the
range estimation results before and after correcting for the tilt effect and further categorized
the performance into three groups based on the combination of VLA data used in the
training data. First, the same VLA test was conducted, where the training and test data
were from the same VLA (either VLA1 or VLA2) (Figure 4). Second, a different VLA test
was conducted, where the training data were from one VLA (either VLA1 or VLA2) and
the test was on the other (either VLA2 or VLA1) (Figure 5). Third, a large training data test
was conducted, where the training data were from both VLAs, and the test was on either
VLA1 or VLA2 (Figure 6). In addition, trilateration was used to localize source positions in
two-dimensions (longitude and latitude) using the two estimated ranges for each case. The
source position was determined at the intersection of two concentric circles centered at the
two VLAs. This intersection resulted in two symmetric estimated positions, but only the
position in the direction of the true bearing was used to analyze the error. If the circles did
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not intersect, the source position could not be estimated. The errors in the range estimation
and localization for the three tests, excluding instances of localization failure, are listed in
Tables 1 and 2, respectively.
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Figure 4. Source–receiver range estimation and localization results of the same VLA test. Range
estimation results are shown for (a) the VLA1 test using the SCM, (b) the VLA2 test using the SCM,
(d) the VLA1 test using the GCC, and (e) the VLA2 test using the GCC. Estimated ranges before and
after tilt correction are represented by blue crosses and orange circles, respectively. Source localization
results after tilt correction are represented by the purple circles in (c) when using the SCM and in
(f) when using the GCC. The black solid line represents the ship track and range variations used for
the test data. The black dashed line represents another ship during the test time.
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Figure 5. Source–receiver range estimation and localization results of the different VLA tests. Range
estimation results are shown for (a) the VLA1 test using the SCM, (b) the VLA2 test using the SCM,
(d) the VLA1 test using the GCC, and (e) the VLA2 test using the GCC. Estimated ranges before and
after tilt correction are represented by blue crosses and orange circles, respectively. Source localization
results after tilt correction are represented by the purple circles in (c) when using the SCM and in
(f) when using the GCC. The black solid line represents the ship track and range variations used for
the test data. The black dashed line represents another ship during the test time.
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Figure 6. Source–receiver range estimation and localization results of the large training data test.
Range estimation results are shown for (a) the VLA1 test using the SCM, (b) the VLA2 test using
the SCM, (d) the VLA1 test using the GCC, and (e) the VLA2 test using the GCC. Estimated ranges
before and after tilt correction are represented by blue crosses and orange circles, respectively. Source
localization results after tilt correction are represented by the purple circles in (c) when using the SCM
and in (f) when using the GCC. The black solid line represents the ship track and range variations
used for the test data. The black dashed line represents another ship during the test time.

Machine learning using the SCM performed better and showed more consistent range
estimation trends compared with using the GCC, with a minimum error reduction of 1.7%
(the VLA1 test after array tilt correction with large data training) and a maximum error
reduction of 31.3% (the VLA2 test before array tilt correction with VLA1 data training).
Source localization performance using the SCM was also better than that using the GCC,
with a minimum error reduction of 0.31 km (after array tilt correction in the large data
training test) and a maximum error reduction of 1.36 km (before array tilt correction in
the different VLA test). The superior performance of the SCM compared with the GCC
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is attributed to the fact that the SCM includes both the magnitude and phase of Green’s
function, providing more comprehensive information about channel impulse response
(CIR) characteristics. In contrast, the GCC only incorporates phase information without the
magnitude, resulting in relatively less information and limiting its ability to capture the
characteristics of the CIR.

Table 1. MAPEs of estimated ranges before (in brackets) and after correction for the array tilt effect.

Same VLA Test Different VLA Test Large Training Data Test

Training VLA1 VLA2 VLA2 VLA1 VLA1&2

Test VLA1 VLA2 VLA1 VLA2 VLA1 VLA2

SCM 7.2
(11.8)

6.7
(29.1)

2.2
(20.7)

4.2
(5.0)

3.3
(7.0)

6.3
(13.2)

GCC 17.0
(27.9)

19.6
(38.3)

6.1
(32.4)

22.4
(36.3)

5.0
(13.8)

13.4
(25.7)

Table 2. Mean localization errors (km) before (in brackets) and after correction for the array tilt effect.

Same VLA Test Different VLA Test Large Training Data Test

SCM 0.42
(1.11)

0.16
(0.70)

0.28
(0.58)

GCC 1.12
(1.96)

0.95
(2.06)

0.59
(1.24)

Correcting for the array tilt effect contributed to performance improvement, especially
when other ship locations were identified from approximately 60 to 70 min in both the
VLA1 and VLA2 tests. In the case of the SCM, range estimation accuracy was improved by
a minimum of 0.8% and a maximum of 22.4%, and localization accuracy was improved by
0.51 km on average because of array tilt correction.

For the same VLA test results in Figure 4, the range was underestimated for both the
SCM and GCC when using VLA1 for the training and test data, but it was overestimated
when using VLA2 for the training and test data. For the different VLA test results in
Figure 5, the bias observed in the same VLA test was somewhat mitigated, especially for
VLA1. Notably, using the SCM as the feature for training with VLA2 and testing on VLA1
yielded the best performance across all tests. Conversely, using the GCC as the feature
for training with VLA1 and testing on VLA2 resulted in the worst performance. For the
large training data test results in Figure 6, biased range errors were still conspicuous in
the VLA 2 test. The bias between the true values and the estimations is presumed to be
due to the limited training data composition, which is discussed in the next section. The
range estimation accuracy from the different VLA tests was better than that from the same
VLA test, indicating that the machine learning model is robust to the sensor’s position. The
performance of the large training data test was better than the same VLA test but worse
than the different VLA test, indicating that larger data did not guarantee performance
improvement in this study. The reason why the performance was not the best despite using
the largest amount of training data is also discussed in the next section.

4. Discussion

We estimated the range from the two VLAs to the ship using a machine learning model
with two features, and the localization results directly reflected the range estimations. The
comparison of results from two features involved evaluating a model trained with both
magnitude and phase information (SCM) against a model trained with phase information
alone (GCC). While the SCM might be expected to perform better because of the additional
information it includes, our results quantitatively confirmed this expectation through
application to the experimental data. Furthermore, the results from the three tests (the same
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VLA test, a different VLA test, and a large training data test) indicated that the performance
of the VLA1 test in the different VLA test was better than the large training data test. This
is because the training data used in the VLA1 test had average bottom depths more similar
to those in the test data in the different VLA test (left in Figure 7b). Relative bottom depth
refers to the difference between the average depth of the source-receiver range in the test
data and that in the training data. Although the large training data test included more
datasets at various ranges, the average depth at those ranges differed significantly from the
test data, resulting in worse performance.
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Figure 7. Variations in the relative bottom depth and the percentage error of the range estimation as a
function of the time of the test data (feature: SCM after tilt correction). (a) The same VLA test, (b) the
different VLA test, and (c) the large training data test. Relative bottom depth and percentage error
are represented by blue crosses and orange circles, respectively.

Similar to the examination of the array tilt effects, the simulation conducted to identify
the bottom depth effect (Appendix B) shows that there is a negative relationship between
the percentage error of the estimated range and the relative bottom depth of the test data
compared with the training data at the same source range. The biased errors observed in
the experiment results (Figures 4–6) are also explained by this negative relationship because
of the effect of the relative bottom depth (Figure 7). This indicates that the quality of the
training data, reflecting ocean environmental variability, is more important than applying
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a large quantity of data that does not account for this variability. The bias in the range
estimation is even observed in the results using MFP [43].

As mentioned above, the bottom depth at the same source range causes biased range
estimation from the ground truth range, so we applied data resampling to improve the
range estimation performance. In the training data used for the large training data test,
there was a greater amount of data with relatively deep bottom depths compared with data
with relatively shallow bottom depths, as shown in the distribution of the average bottom
depth and the source range (Figure 8a). Data resampling (over-sampling when the amount
of data is under 10 and under-sampling when the amount of data is over 10) was applied
to mitigate the error by the bottom depth difference with or without the tilt correction
(Figure 8b). The MAPE exhibited a decreasing trend by the data resampling when the input
feature was the SCM (Table 3), and we confirmed that resampling with 10 and 20 samples
showed similar levels of improvement in the range estimations. It is necessary to obtain
the training data (simulation or measurement) corresponding to missing source ranges and
bottom depths to construct a model that exhibits better range estimation performance on
the test data with previously unidentified source ranges and bottom depths.
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Figure 8. The training data distribution as a function of the average bottom depth and the source
range obtained from VLA1 and VLA2: (a) before data resampling and (b) after data resampling.

Table 3. MAPEs of the estimated ranges before and after data resampling when the input feature is
the SCM. Brackets denote before correction for the array tilt effect.

Training VLA1&2 Resampling
VLA1&2

Test VLA1 VLA2 VLA1 VLA2

SCM 3.3
(7.0)

6.3
(13.2)

3.7
(6.7)

4.9
(11.8)

The array tilt was estimated using the array invariant method, and range estimation
and localization results were improved by correcting the arrival time difference. Although
we considered the relative bottom depth effect, many environmental variables remain
in underwater acoustic propagation. The sound speed profile exhibits spatio-temporal
variability, and the bottom depth and the geoacoustic parameters exhibit spatial variability.
Therefore, sufficient data collection to encompass environmental variations is necessary
to construct an adaptive range estimation model, as the features labeled by range are
derived from received signals transmitted through this environment. Yoon et al. [44]
proposed OceanPINN, which predicts the acoustic pressure field in the ocean based on
the measured data at a few sampled points, assuming a range-independent environment,
utilizing Physics-Informed Neural Networks (PINNs) [45]. PINNs predict unknown data
using a governing partial differential equation and limited training data, by discerning
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the underlying dynamics of the data, with the potential to be applied in underwater
acoustics [13].

As mentioned in Section 1, the two features used in this study are source-independent.
However, since Green’s function is frequency-dependent, our model is applicable within
the limited frequency bandwidth we used. While it may be possible to achieve some
level of performance in adjacent frequency bands, applications with significant frequency
differences may result in failed range estimation. Additionally, it is necessary to investigate
whether the model is applicable to narrowband signals within the used frequency band.
These limitations suggest that although the features are defined as source-independent,
the spectral characteristics of the training and test data can influence range estimation
performance, indicating that they cannot be considered perfectly independent. Although
the GCC performs worse than the SCM, the GCC could be used to estimate the direction
of arrival. Ferguson et al. [24] proposed using cepstrum-based features combined with
the GCC as the input feature for source localization, which performs better than the GCC
only. Moreover, features extracted from a 1 s time window of acoustic data received by
16 channels can cause variations in estimation performance. Therefore, the impact of the
time window length, the number of receivers, and their spacing needs to be studied.

We used an FNN as the machine learning model for range estimation and compared
input features that have a source independency in the linear time-invariant system (SCM
and GCC). Liu et al. (2021) [20] proposed a Gated Feedback Gated Recurrent Unit for
measuring range and depth of the source, performing better than a FNN in the mismatched
array tilt environment. Ge et al. (2022) [21] proposed label distribution-guided transfer
learning, which uses a limited amount of the measured data for training, supplemented
by pre-training the network with simulation data from a known environment. We applied
the Support Vector Machine (SVM) classifier with a hinge loss function, regularization
parameter C = 1, and a One-vs.-Rest scheme [46] for multiclass classification for range
estimation after tilt correction (Appendix C). The range estimation results using SVM had
relatively higher MAPEs compared with those using the FNN, and the trend that the SCM
is better than the GCC remained consistent. However, these results derived from the data,
features, and models should not be generalized to all cases. Moreover, it is possible that the
performance could be improved by optimizing the hyperparameters through algorithms
such as random search and grid search [47]. Other models, including widely used models
(CNN, Residual Network, and Recurrent Neural Network) and learning strategies can be
studied for adaptation to the varying underwater environment.

In this study, basic trilateration was conducted using the estimated ranges from two
points, which inherently has the limitation of ambiguity due to symmetrical positions.
To improve this, additional range estimations from at least one more point are necessary.
These localization results can be applied to advanced techniques such as extended Karman
filters and particle filters to improve target tracking performance [48–50].

5. Conclusions

We utilized a machine learning-based method to estimate the source range and loca-
tion using ship-radiated noise from two VLAs and compared the results of two source-
independent features including the SCM and the GCC. Our results showed that the SCM,
which includes both magnitude and phase information, outperformed the GCC, which only
incorporates phase information, with a maximum error reduction of 31.3% and 1.36 km
in the estimation of the source range and location, respectively. The error of the source
range and location estimation was reduced by up to 26.3% and 1.11 km, respectively, by
correcting for the array tilt effect. Despite these advancements, differences in average
bottom depth were identified as a factor causing bias between the measured and estimated
values, and the impact of average bottom depth discrepancies between the training and test
data on range estimation accuracy was verified by simulations. This study has meaningful
implications resulting from its direct comparison of SCM and GCC within a machine
learning framework for source range estimation in underwater acoustics. To mitigate
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the remaining biases and errors, future research should investigate additional models
and features that enhance robustness against environmental variability. Augmenting and
reconstructing training data to account for temporal and spatial variability is essential.
Furthermore, recent advancements in underwater target detection and identification have
employed multi-modal deep learning techniques using two or more features, which could
also be applied to the estimation of source range and localization [51]. Our findings can be
instrumental in selecting appropriate features for such applications, demonstrating the im-
portance of considering both magnitude and phase information for improved performance.
Additionally, the proposed method can be combined with Target Motion Analysis (TMA)
research to enhance underwater target tracking and management.
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Following abbreviations are used in this study.

VLA vertical line array
SAVEX-15 Shallow-water Acoustic Variability Experiment
SCM Sample Covariance Matrix
GCC Generalized Cross Correlation
MFP matched field processing
CNN convolutional neural network
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AIS Automatic Identification System
GPS Global Positioning System
CPA closest point of approach
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ELU Exponential Linear Unit
MAPE Mean Absolute Percentage Error
CIR channel impulse response
PINN Physics-Informed Neural Network
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Appendix A

We fixed the array tilt angle of the VLA as observed from the source in the training
data as 0◦ and varied the angle in the test data from −5◦ to 5◦ to observe the impact of the
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array tilt on the range estimation in the SAVEX-15 experimental environment. The other
variables referred to the SAVEX-15 experimental environment (Table A1). The source was
assumed to be a pure tone of 600 Hz, which is the median frequency of the R/V Onnuri
noise distribution band, and the source depth was set to 5 m to simulate the noise of a ship
at the sea surface [8]. For array tilt simulation, assuming the acoustic ray parallel to the
sea surface, a signal received by a sensor at a distance d from the seabed with an array tilt
angle θ and a sound speed c incurred a time delay of dsin(θ)/c. The sound speed c was set
to 1505 m/s, the average of the sound speed profile. We trained and tested the machine
learning model with the SCM and the GCC derived by ray-based acoustic transmission
modeling (BELLHOP). In total, 10% of the training and validation data were used as the
validation data. For the numerical evaluation, the MAPE of the estimated range according
to the array tilt change was solved (Figure A1).

Table A1. Simulation parameters for array tilt effect test.

Training and Validation Data Test Data

Source 600 Hz sinusoidal wave

Source depth (m) 5

Receiver depth (m) 23.5:3.75:79.75

Array tilt (◦) 0 −5:1:5

Source range (km) 1:0.01:7

Geoacoustic parameter ρb = 1.97 g/cm3, cb = 1800 m/s, αb = 0.94 dB/λ

Bottom depth (m) 100

Sound speed profile Measured by Conductivity–Temperature–Depth (CTD) cast at
the SAVEX-15 experimental site on 25 May 2015 at UTC 07:11
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Appendix B

We fixed the bottom depth from the source to the VLA in the training data as 100 m
and varied the bottom depth in the test data from 97 m to 103 m to observe the impact of
the bottom depth on the range estimation in the SAVEX-15 experimental environment. The
other variables referred to the SAVEX-15 experimental environment (Table A2). The array
tilt of the VLA was fixed at 0◦. We trained and tested the machine learning model with the
SCM and the GCC derived by BELLHOP. In total, 10% of the training and validation data
were used as the validation data. Figure A2 shows the estimated range when the relative



J. Mar. Sci. Eng. 2024, 12, 1665 16 of 19

bottom depths are −3 m, −2 m, −1 m, 1 m, 2 m, and 3 m. For the numerical evaluation, the
percentage errors of the estimated ranges as a function of the relative bottom depth were
solved (Figure A3).

Table A2. Simulation parameters for the bottom depth effect test.

Training and Validation Data Test Data

Source 600 Hz sinusoidal wave

Source depth (m) 5

Receiver depth (m) 23.5:3.75:79.75

Array tilt (◦ ) 0

Source range (km) 1:0.01:7

Geoacoustic parameter ρb = 1.97 g/cm3, cb = 1800 m/s, αb = 0.94 dB/λ

Bottom depth (m) 100 97:1:103

Sound speed profile Measured by Conductivity–Temperature–Depth (CTD) cast at
the SAVEX-15 experimental site on 25 May 2015 at UTC 07:11
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Figure A3. Box plot of percentage errors of the estimated ranges according to the relative bottom
depth when the input feature is (a) the SCM or (b) the GCC. Within each box, horizontal lines
denote median values; boxes extend from the 25th percentile to the 75th percentile of percentage
errors; vertical extending lines denote adjacent values (i.e., the most extreme values within the
1.5 interquartile range of the 25th and 75th percentiles of percentage errors); dots denote observations
outside the range of adjacent values. The orange line denotes the mean value.

Appendix C

Table A3. MAPE comparison of estimated ranges after array tilt correction using FNN and SVM,
respectively. Bold red denotes the best MAPE for each input features.

Same VLA Test Different VLA Test Large Training Data Test

Training VLA1 VLA2 VLA2 VLA1 VLA1&2

Test VLA1 VLA2 VLA1 VLA2 VLA1 VLA2

SCM 7.2/13.0 6.7/9.0 2.2/3.4 4.2/10.3 3.2/6.5 6.3/11.1

GCC 17.0/13.0 19.6/11.4 6.1/4.0 22.4/11.6 5.0/6.6 13.4/10.7
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