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Abstract: The development of Maritime Autonomous Surface Ships (MASS) has seen
significant advancements in recent years, yet there remains a lack of comprehensive studies
that holistically address the architecture of autonomous navigation systems and explain the
complexity of their individual elements. This paper aims to bridge this gap by conducting
a literature review that consolidates key research in the field and presents a detailed archi-
tecture of autonomous navigation systems. The results of this study identify several major
clusters essential to MASS navigation architecture, including (1) autonomous navigation
architecture, (2) decision-making and action-taking system, (3) situational awareness and
associated technologies, (4) sensor fusion technology, (5) collision avoidance subsystems,
(6) motion control and path following, and (7) mooring and unmooring. Each cluster is
further dissected into sub-clusters, highlighting the intricate and interdependent nature
of the components that facilitate autonomous navigation. The implications of this study
are vital for multiple stakeholders. Ship captains and seafarers must be prepared for new
navigation technologies, while managers and practitioners can use this architecture to
better understand and implement these systems. Researchers will find a foundation for
future investigations, particularly in filling knowledge gaps related to autonomous ship
operations. This study makes a substantial contribution by filling a critical gap in the
maritime literature, offering a detailed explanation of the elements within autonomous
navigation systems.

Keywords: MASS; autonomous navigation; situational awareness; sensor fusion; collision
avoidance; architecture

1. Introduction
Over the last two decades, bridge sittings for navigators have gone through various

changes, which explains the fast pace of new technologies [1]. In other words, the role of
navigators has transformed into a more supervisory (planning) role, and the monitoring,
execution and surveillance are taken by automated systems such as the autopilot and
ARPA (Automatic Radar Plotting Aid) [1]. As exhibited in the following Table 1, the
trend in maritime navigation technology significantly advanced over time and is still
revolutionising. Thus, a huge amount of data is generated by ship sensors (onboard),
databases and maritime services.

Recently, Maritime Autonomous Surface Ships (MASSs) arose to the surface and thus
are expected to conduct remote-controlled operations including autonomous navigation.
This topic has been widely addressed as a cornerstone in shipping automation, in both
large prototype projects, small-size autonomous surface vehicles, and various research
studies. MASSs have been largely investigated in academic peer-reviewed studies or in
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technical reports from industries and classification societies. Indeed, MASSs have gained
attention recently with predictions for eventual industry adoption [2,3]. It is argued that
a MASS has several benefits, for instance, it reduces human error, increases safety [4],
and improves environmental protection, such as reduction of fuel consumption and GHG
emissions, including air pollutants (through the advanced digitalisation and the ability to
utilise software that improves the energy efficiency, optimising routes and speeds using
advanced algorithms, reducing idling time, MASS can reduce GHG emissions, while
the engine can be electrified and the alternative fuels can be used due to larger spaces),
minimisation of waste, routes optimisation, and reducing oil spills or discharge [5–17],
enhances economic and supply chain efficiency [17,18], and reduces collision risks [19,20].
MASS also lowers operational costs and supports sustainability [8,21]. Other studies
indicated that MASS would also benefit ports in developing countries [22] and enhance
military applications [23]. Recently, Yara Birkeland and ReVolt are two notable projects
showcasing real-world applications of MASS. Yara Birkeland, developed by Yara and
Kongsberg, is the world’s first fully electric and autonomous container ship, designed to
reduce emissions and alleviate road traffic congestion by replacing truck journeys with
maritime transport. Similarly, ReVolt is a small-scale autonomous vessel used as a research
platform to test autonomy in coastal short sea shipping, focusing on energy efficiency and
safety in autonomous maritime operations [20].

Table 1. Trend in maritime navigation technologies and techniques.

Year Technologies

1190 European Magnetic Compass

1266 Portulan Charts

1342 Mariner’s Astrolabe, sandglass

1480 Mercator Nautical Chart

1570 Chip Log (Speed)

1646 Magnetic Variation

1722 Sextant

1798 Greenwich Mean Time

1874 National Almanac, Marine Chronometer

1950 LOP, LORAN-C, AIS

1958 Transit (Satellite Navigation)

1960 Radar, GPS

1980 Inertial Navigation, ARPA, OMEGA, echosounder, COLREG

1990 Global Navigation Satellite System (GNSS), Radio Wireless Telegraph, GMDSS

2010–2015 ECDIS, BNWAS, AIS, VTS

2016–2020 LIDAR, collision avoidance systems

2021–2025 Remote controlled and autonomous ships, advanced situational awareness
technologies, VR/AR

The International Maritime Organisation (IMO) launched regulatory scoping for
MASS conventions, highlighting gaps and suggesting a MASS code [24,25]. Projects such
as MUNIN, AAWA, and AUTOSHIP have explored MASS prototypes [26–28], while classi-
fication societies (e.g., Lloyd’s Register, DNV, CCS, Bureau Veritas) provided guidelines but
lacked focus on communication needs [29–35]. Research, on the other hand, covered adop-
tion factors [36], costs and benefits [37], Arctic competitiveness [38], navigator skills [39],
cybersecurity [40], and automation tasks [41]. Additionally, studies examined manoeu-
vring [41], ecosystem value [21], and success factors [42]. Furthermore, MASS-specific
functions and other issues were also addressed, e.g., control [43], risks [44], safety [45,46],
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technical challenges [47], autonomy [48], shore control centres [49], crew tasks [50], MASS
navigation [4,51,52], system architecture [53], and design [54]. Various reviews addressed
autonomy levels [5], collision avoidance [4], USV development [19,55,56], autonomous
navigation [57], sustainability [58] and road map for MASS technologies [3,16,59,60]. De-
spite these efforts, few studies have focused on autonomous navigation, and none have
developed a comprehensive architecture that serves as a one-stop resource, integrating and
unifying the fragmented literature.

Given the introduction, this study aims to review the literature and assess the architec-
ture of autonomous navigation systems in MASS, which are critical for their development
and integration into the maritime industry, i.e., the research question is “What are the
systems and subsystems that constitute the architecture MASS, and how do they function
together to enable autonomous navigation”.

This study contributes in two significant ways. First, it fills a gap in the literature by
providing a holistic architecture that integrates various elements of autonomous naviga-
tion, acting as a one-stop resource for understanding these systems. Second, the study
offers practical insights for stakeholders including researchers, shipowners, policymakers,
and maritime technologists, enabling them to better prepare for the implementation of
autonomous systems by understanding the complexities and interdependencies of the
required technologies. Overall, this architecture serves as a framework for understanding
how the autonomous navigation process works and its broader operational context.

The outline of this study is as follows. Section 1 provides the background and relevance
of this research, identifying gaps in the literature and defining the objectives. Section 2 is the
materials and methods, Section 3 is the result and discussion, which includes autonomous
navigation architecture, decision-making and action-taking system, situational awareness
and associated technologies reviews, sensor fusion technology, collision avoidance sub-
systems, database, motion control and path following, mooring and unmooring. Finally,
Section 4 presents the conclusions and implications of the study.

2. Materials and Methods
This study reviews the literature through a semi-systematic literature review approach.

First, sensitive search terms for titles and keywords were selected to collect a wide-ranging
pool of studies and facilitate comprehensive analysis. Two search iterations were conducted
to identify studies (i.e., academic peer-reviewed articles, conference proceedings, book
chapters, and technical and industrial reports). The first combination included search terms
related to MASS: (MASS OR “Maritime Autonomous Surface Ship” OR “Autonomous
Ship”). The second combination included search terms related to the core of the review:
“navigation”: (navigation OR situational awareness OR collision avoidance OR control
OR navigational sensors OR dynamic positioning OR COLREGs OR intelligent navigation
OR path planning). The third combination included search terms related to “autonomy
and automation”: (Autonomous OR architecture OR remote control OR automated OR
unmanned OR command OR algorithms OR artificial intelligence OR real-time). Scopus
(www.scopus.com (accessed on 10 January 2024)) was the main database used for the search,
in addition to Google (to search for technical reports). This ensured all-encompassing
consideration of an assortment of literature. The search resulted in 732 studies; however,
exclusion and inclusion criteria were established to minimise the number of studies. The
inclusion and exclusion criteria for this review on autonomous navigation systems for
MASS were defined as follows: The review includes articles published in English, covering
empirical studies, systematic reviews, chapters, proceedings, and technical reports with
clear and comprehensive data and methodologies. Only studies available in full text via
academic databases, institutional access, or open sources were considered. The focus
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is on works directly related to MASS and the core topic of “autonomous navigation”,
ensuring methodological rigour and alignment with the study’s purpose. Excluded are
non-English articles, studies without accessible full texts, those lacking methodological
rigour, generic MASS studies, irrelevant themes, and repetitive conference proceedings
covered by peer-reviewed articles. The final selection comprised 162 (105 peer-reviewed
articles, 18 reports, 23 conference proceedings, and 16 books or chapters) abridged studies
that directly addressed the study’s objectives. After collection of the included studies,
a qualitative analysis was conducted in order to establish various themes and build the
architecture in two stages: first, each author independently reviewed the studies; then, the
authors synthesised the findings and resolved conflicting themes to minimise potential
biases. On this basis, the authors constructed a comprehensive architecture for MASS
autonomous navigation system, incorporating all necessary subsystems that enable ships
to navigate and avoid obstacles autonomously or under the supervision of seafarers. The
key clusters and subsystems that comprise autonomous navigation were built to address
the complexity and fragmented nature of existing studies.

3. Results and Discussion
3.1. Autonomous Navigation Architecture

Autonomous navigation is achieved by training or programming the ship with the
stored data about the vessel’s behaviour in various sailing environments [61]. Different
studies designed the autonomous navigation differently. Navigation is divided into ob-
stacle detection and avoidance, navigation, guidance, and control (NGC), and motion
control [4,52]. The MASS autonomous navigation is dependent on onboard computers that
have software to make decisions in addition to sensor technologies that both enable situ-
ational awareness and collision avoidance systems [4,27,62–64]. Autonomous behaviour
(navigation) banks on intelligent analytics that depend on machine learning algorithms
in addition to the deep learning approach, which is, considering advances in machine
learning, becoming a powerful technique for autonomy [61]. Machine learning and deep
learning methods depend on advanced algorithms, which are an integral part of engineer-
ing applications. Deep learning (end-to-end learning) is predicted to shape the maritime
industry when considering the large amount of performance and operation data generated
by shipping [61].

In this scenario, the autonomous navigation architecture is rebuilt, and, in so doing,
all the subsystems required to let the ship navigate and avoid obstacles on its own or at
least under the supervision of seafarers are included. See the following Figure 1, which
illustrates the autonomous navigation architecture that enables the understanding of how
the autonomous navigation process works and its context.

The autonomous navigation system consists of decision-making and action-taking
systems, which depend heavily on the situational awareness subsystem sensors that feed
the obstacle detection and map representation and the local path planning as part of
collision avoidance. The actions, once decided, are passed to the control system to control
the motion of the ship and keep it on the designated path through the control of autopilot
(steering and rudder) and machinery (propulsion) while considering the vessel’s properties.
This step is based on the actuators’ reaction that executes the actions. The situational
awareness, collision avoidance and control subsystems data and information come from
different sensors. Data are large; therefore, they need to be fused through the sensor fusion
technology and then stored in the internal database. The following sections provide a
detailed presentation and explanation of the whole autonomous navigation subsystem.
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3.2. Decision-Making and Action-Taking System

The virtual captain onboard MASS requires localised decision-making modules; thus,
there are various agent-based systems with distributed intelligence strategies throughout
the vessel [51]. Decision-making and action-taking are in charge of defining the overall trip
(from origin to destination), considering long-term data, ship real-time data, and sharing
information from cooperative vessels [56,63]. Typically, the system involves navigation,
guidance, control, collision avoidance and motion planning [4,56].

This system is the brain for autonomous navigation and includes all the subsystems of
autonomous navigation. It is a computer with different software that obtains data from
situational awareness and collision avoidance subsystem sensors. Then, it calculates the
desired output that adapts to the best solution of algorithms [63]. After this, the output is
sent to motion control and path following or another module to keep the ship on a safe track
and maintain course and speed. The latter mainly counts on the actuators (e.g., steering
pumps, fuel valves, fire extinguishing systems, etc.) that control all shipboard processes
without the need for human intervention, see the process in Figure 1.

The decisions are made up and carried out based on artificial intelligence decision
algorithms. Artificial intelligence (AI) forms the core of decision-making capability to
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navigate MASS [65]. Artificial intelligence, i.e., machine learning and deep learning al-
gorithms, is an intelligent process created by machines where the computer is perceptive
and thinks and solves a problem on its own [66]. Machine learning is one of the most
evolving procedures that solves problems relating to the data by involving an algorithm
that appraises and separates data and develops logic [61]. Machine learning algorithms
are capable of undertaking intelligent decisions, but because it becomes complex when
dealing with unstructured data, deep learning can solve this challenge. Deep learning is a
subset of machine learning that utilises a hierarchical level of artificial neural networks to
perform machine learning in that the artificial deep neural networks (deep learning-based
framework) act as a human brain with a web of connected neuron nodes [61]. The deep
learning methods, for example, mimic helmsman behaviour, thereby being seen as a major
and promising method in developing autonomous ships. Thus, more advanced control
algorithms with more robustness and reliability are now under development in the ma-
rine sector [67]. AI and ML play a pivotal role in the autonomous functioning of MASS
by enabling real-time decision-making and reducing the need for human intervention.
Through machine and deep learning algorithms, these technologies process vast amounts
of data from sensors to ensure safe and efficient navigation while continuously monitoring
conditions to adapt to changes in the environment. AI systems are integrated with other
technologies, such as sensors for situational awareness and communication networks for
remote operation, to create a fully autonomous decision-making system that supports the
vessel’s operations.

3.3. The Situational Awareness (SA)

Situational awareness (SA) is crucial for conventional shipping operations and specifi-
cally for MASS. SA is seen as a sensory instrument to identify, monitor, and forecast (status
in the near future in a specific volume of space and time) threats and objects including their
specific characteristics and parameters. Thus, this enables other subsystems to deal with
such issues instantly, while ships can detect obstacles and avoid collision efficiently [68,69].

MASS operation is based on data and information from various sensors and equipment
about surroundings and the internal ship systems. While considering that lookout duties
in MASS might be removed, SA requires additional and redundant sensors compared
to conventional ships to ensure reliable and safe navigation [70]. An advanced sensor
module conducts the lookout duties onboard MASS [71]. Sensors provide the means for
the autonomous platform to perceive its environment [56], and SA sensors’ data support
onboard crew, VC, and Remote Control Centres (RCCs). Sensors provide vessel state
information (e.g., position, speed and heading), environmental information (e.g., wind
speed and direction, current velocity, and wave), and information about other ships (e.g.,
speed, heading, type, etc.) in this sense, studies reviewed the sensors for automobile [72]
and maritime applications [56]. The advanced sensor module supports the e-navigation
solution onboard manned conventional ships, which helps navigators and reduces the
information overload and conflicting information from various sensors, thereby providing
only what is needed to be performed (decision support systems) in accordance with
COLREGs [71]. Notably, sensor instruments used in SA technologies can be subject to errors
such as drift, noise, and calibration inaccuracies, which may affect data reliability. These
errors can impact the system’s ability to make accurate real-time decisions, highlighting
the need for robust error mitigation strategies. The SA technologies, see Figure 2 below, are
explained in the following subsections.
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3.3.1. Navigational Technologies (Sensors)

There exist commonly used sensors onboard conventional ships, which retrieve and
provide data from the surrounding environment and from the ship itself for safe navi-
gation [63]. These sensors are still required for MASS. The Autoship project suggested
that MASS sensors can be as well placed onshore for cost efficiency, which can feed many
MASSs and RCCs using robust communication links [73]. Key technologies include the
Global Navigation Satellite System (GNSS), which provides precise geo-spatial posi-
tioning through systems like GPS and DGPS, with the latter offering accuracy within
1–10 m [4,74]. The Inertial Measurement Unit (IMU) tracks vessel motion, aiding stabil-
ity and collision avoidance [75–78]. Radar detects objects and provides range data, with
long-range radars (S/X-bands) suited for open waters and short-range radars (KA/W-
bands) optimised for harbours [56]. The Automatic Identification System (AIS) facilitates
ship-to-ship and ship-to-shore communication, providing critical navigation and voyage
data [55,56,74,79]. Automatic Radar Plotting Aid (ARPA) enhances obstacle detection
and computes COLREGs-compliant manoeuvres, working in tandem with AIS to identify
potential risks [4,55,74]. Finally, the Electronic Chart Display and Information System
(ECDIS) integrates data from multiple sensors into real-time navigational charts, improving
situational awareness and safety [74,77]. While these technologies form the backbone of
MASS navigation, additional advancements are essential to ensure situational awareness
on par with human operators [50].

3.3.2. Situational Awareness Technologies
Day and Night Vision Cameras

Day and night vision cameras are essential for MASS and thus should enable contin-
uous vision 360◦ around the ship in four dimensions (x, y, z, time), in daylight and dark,
and in different weather conditions including heavy rain, snow and fog, at an accurate and
higher resolution than what a human could obtain [65]. The day vision cameras provide
colour information about surroundings (ships, obstacles and aids to navigations (ATONs))
with high resolution, which can be further interpreted by analytical algorithms to identify
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and determine objects’ characteristics and locations through the use of GNSS and ECDIS,
among others [65,80].

Such technology, day vision cameras, produces massive data for analysis and transmis-
sion; however, it cannot be used in dark environments or bad weather (e.g., fog, rain) [56].
Therefore, infrared (IR) and thermal cameras are best suited for night vision (dark), such
as the Long-Wave IR (LIWR) cameras that passively receive objects’ radiation (8–14 µm)
IR wavelength (i.e., sensitive). The Microbolometer-based LWIR camera, which is not a
high resolution, can be used and does not require cooling. Additionally, the Short-Wave
IR (SWIR) camera technology can be particularly used for short-range detection in humid
and foggy weather, but it comes with low spatial resolution [27,52,72]. Closed-circuit
television (CCTV) can be used to further improve vision [81]. Although the combination
of two monocular cameras can be used to produce stereo imaging (3D map), it is still
complex to analyse thousands of images and match them by control algorithms; therefore,
a combination of LIDAR and Radar data are used, in addition to the fusion of such data,
therefore providing robust full pictures and detailed maps of surroundings [27,56].

LIDAR and LADAR

Light Detection And Ranging (LIDAR) and Laser Detection And Ranging (LADAR) are
scanning sensor technology using IR laser beams for accurate distance measurement [56].
LIDAR gives 3D pictures, semantic and spatial, and the objects can be identified based on
artificial neural networks [82].

The LIDARs are not marine robust so far; thus, further adaptation in maritime applica-
tions is required [52]. In addition, LIDAR is based on rapidly moving mechanical elements
and functions in line of sight; hence, it is influenced by harsh weather and poor visibility
(fog, rain and snow), same as IR cameras [47,56]. Therefore, complementary sensors such as
sonar, cameras, and radar are still needed, for example, LIDAR data can be complemented
by fused data from video imagery to detect new variances.

Sound Detection Sensors

Sound signals (acoustic) are an essential technology in ship navigation. The roles of
ship signals are explained in COLREGs. Sound signal technologies are needed for MASS,
especially with the reduction of crew or elimination of lookouts, e.g., microphones [50,77].
These sensors pick up such sound signals (horns, whistles, bells, gongs, and guns) in fog,
distress signals, or regular sound such as those of the aids to navigation (ATONs), and in
the environment such as sound signals of waves crashing on rocks [65,82]. Other ships
may give away horns and whistles, showing their intentions for short-range traffic. Sound
sensors analyse and process signals, giving information on the source type and bearing, and
dependent on its strength, may give a range. There exist algorithms for MASS, applicable
for audio signal detection, classification, and localisation [82]. Such information can be
fused with other sensors for broad SA. For example, in fusion with video imagery, cameras,
RADARs, and LIDAR, the direction-of-arrival (DOA) of the target sound signal can be
defined in addition to the approximate target location in live video [72]. The incorporation
of sound sensors makes MASS compliant with COLLREG regulations [82].

Weather Sensors

The weather conditions in the water and atmosphere affect (manipulate) every side of
the ship’s navigation, thereby influencing ship safety (capsizing or sinking), particularly
when carrying out evasive manoeuvres in collision avoidance [55]. In MASS, required
global and local weather information can be obtained from weather centres through Navtex,
which is part of the GMDSS (Global Maritime Distress and Safety System). The information
supports weather routing by recommending routes prior to and during each voyage,
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considering several navigational constraints and global weather forecasts [51]. Additionally,
basic weather sensors can be integrated onboard MASS to provide real-time data on
wind (e.g., anemometer) and wave speed and direction, current, temperature, barometric
pressure, humidity and sea temperature, which can be utilised to compensate for the effects
of wind, currents and other phenomena throughout the voyage [65]. Various autonomous
collision avoidance, path planning, and energy efficiency algorithms consider data from
atmospheric, water, and weather monitoring instruments.

Underwater (Subsea) Sensors

Various ultrasonic sensors are needed for depth sensing (subsea), enabling constant
vigilance of water depth below the keel, such as the echosounder, high-resolution naviga-
tion sonar, side scan sonar, Unmanned Underwater Vehicle (UUV) [65,77,83]. These sensors
are necessary for underwater visibility ahead and around MASS, providing terrain tracking
capabilities and high-resolution bathymetry and imaging of seabed, which help in detection
and response to uncharted threats and thus avoid groundings and collisions [65]. The use
(UUV) MASS extends vision below the waterline, ahead of and in the local vicinity [65].

Virtual Reality (VR) and Augmented Reality (AR) Equipment

AR and VR equipment, e.g., headsets, tablets, interactive flat screen displays, and
cave and curved wall displays, can be used in the bridge by watch officers, enabling 3D
immersive display [47,65]. For example, the captain and watch officers can use the giant
screen display (VR/AR), which overlays the surrounding environment of the ship with
an augmented reality view supported by artificial intelligence tools that spot and label all
the moving and static objects around the ship [65]. In the case of fully autonomous MASS,
these technologies are used by RCC operators.

Drones

Drones, such as compact and vertical take-off unmanned aerial vehicles (UAVs), can be
used for environmental scanning as another approach to widen situational awareness [84].
Drones carry out scouting surveys in front of MASS using an array of different sensors [85].
Drones not only help in navigation but also detect security threats early.

E-Navigation

Another common expression in maritime digital communications is E-Navigation,
which is used as an approach to enhance the safety of navigation and operations of commer-
cial shipping. E-navigation solutions are intended for SOLAS-based ships (International
Convention for the Safety of Life at Sea). The International Maritime Organisation (IMO)
defines E-navigation as “the harmonised collection, integration, exchange, presentation
and analysis of marine information on board and ashore by electronic means to enhance
berth to berth navigation and related services for safety and security at sea and protection
of the marine environment” [86]. E-navigation minimises navigational errors, incidents
and accidents through the transmission and display of positional and navigational in-
formation in electronic formats, i.e., the IHO S-100 as the common Data Standard for
information exchange and its variants S-101 ENC, S-102, S-103, etc. The IMO E-navigation
Strategy Implementation Plan (SIP) was approved in 2014, which includes S1. Improved,
harmonised and user-friendly bridge design; S2. Means for standardised and automated
reporting; S3. Improved reliability, resilience and integrity of bridge equipment and navi-
gation information; S4. Integration and presentation of available information in graphical
displays received via communication equipment; and S5. Improved Communication of
VTS Service Portfolio.
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It is worth noting that the IMO established E-navigation with the intention of reducing
human and traditional machine errors and improving safety related to navigation, that
is, to better protect passengers, crew, maritime systems and the environment [87]. The E-
navigation organises data on ships and onshore and seamlessly enables data exchange and
communication between ships and the ship and shore [88]. Real-time data and information
are exchanged, such as weather, ice charts, the status of aids to navigation, water level
and rapid changes in port status, voyage information, passenger manifest, and pre-arrival
report [89]. This definitely assists the shipping industry in improving safety via accurate
decision-making that minimises errors and makes operations reliable.

E-navigation stimulated the growth of fully autonomous MASS projects in the last
decade [90]. The proposed digital high and very high-frequency radios as a communication
system, e.g., VHF Data Exchange System (VDES), will intertwine with e-navigation and the
S-100 messages [53]. Services of E-Navigation, e.g., route exchange, make ship intentions
more transparent, particularly in traffic separation schemes, thus, this facilitates future
encounters between manned ships and autonomous ships [91].

3.3.3. Effectiveness of the Technologies

SA technologies are widely used across various autonomous systems, with evidence
from both industry and research supporting their effectiveness. For instance, LIDAR
and cameras provide high-resolution environmental mapping, proven to enhance object
detection and tracking in both day and night operations. Weather sensors offer quantitative
insights into environmental conditions, which is critical for decision-making, while sound
detection sensors contribute to early threat identification, enhancing navigational safety.
Studies in autonomous navigation systems have shown that these technologies, when
integrated effectively, significantly improve situational awareness by providing reliable,
real-time data across various operational conditions. Although comprehensive quantitative
analysis specific to Maritime Autonomous Surface Ships (MASS) is limited, the performance
metrics observed in other autonomous applications support the applicability and potential
effectiveness of these SA technologies for MASS.

3.4. Sensor Fusion Technology

Although it is still necessary for conventional ships, the sensor fusion technology (data
processing technology) is the topmost important technology in the transition of MASS
to a higher level of autonomy. Considering that no single sensor technology can deliver
adequate information about different conditions, the input from multiple sensors can be
combined and analysed by the sensor fusion technology. Sensor fusion integrates inputs
from, for example, radar, LIDAR, sonar, GPS, and cameras, allowing the system to achieve
a reliable level of SA crucial for autonomous navigation. This approach mitigates the
limitations of individual sensors by merging their outputs and enhancing the accuracy of
object detection, tracking, and environmental mapping.

Sensor fusion is important because it increases data robustness and reliability, broadens
the sensing capability, and collects maximum information on surroundings [72]. The sensor
fusion system receives data and information from various sensors, i.e., the previously
explained navigational and situational awareness technologies. The technology extracts
and classifies features in the obtained data, thereby balancing sensors’ strengths and
weaknesses [72]. When data are processed, all inputs are considered, and attempts are
made to average redundant and conflicting data with their inherent errors to produce a
best-perceived truth of the surrounding environment [56]. This is achieved using artificial
intelligence algorithms for complex analysis, processing and image segmentation, e.g.,
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deep neural networks [82]. Different ways for sensor fusion and data processing concepts
are suggested, such as image segmentation and redundant data reduction [27].

The fused data can be mapped and processed to extract relevant information (e.g.,
ship state, environment, surroundings, etc.) and passed to situational awareness and colli-
sion avoidance subsystems (Figure 1). Thus, the fusion technology maintains an updated
detailed map, and, as such, optimal situational awareness is guaranteed in all conditions
and situations enabling safe navigation and collision avoidance. Further, sensor fusion de-
creases massive data and information gathered, which reduces the load of data transferred
externally to the RCC, for example. This sustains efficient ship communication [27,72].

3.5. Database

Thousands of sensors onboard the ship generate small and large sophisticated data
formats, which need to be stored in the internal ship database. An internal database is very
important for decision-making and action-taking systems onboard MASS or in RCC [81].
The data in the database can be retrieved anytime by sensor fusion technology. On the
other hand, the data stored enhances data engineering techniques (AI algorithms). The
data engineering converts the raw data into the desired format required for the processing,
enables data analytics, and generates the working models, which are used for path optimi-
sation and energy efficiency, among others [61]. The data collected could feed the so-called
Big Data platforms.

Similar to the database concept, the Voyage Data Recorders (VDR) is also used in
many ships. VDR is an electronic system that records all positional, navigational and
sensor information during a voyage (e.g., RADAR, ECDIS, GPS audio-visual data) [77].
VDR consists of a data aggregating unit and a storage unit, and if the ship is involved in
collisions, the VDR is consequently used by competent authorities for further investigation.

3.6. Collision Avoidance (CA) Subsystem

It is not enough that ships sail from origin to destination, how to sail and safely the
ship manoeuvres to avoid collisions, grounding and stranding is a critical problem. An
autonomous collision avoidance system is a key to MASS’s full autonomy, including its
being as a decision support system for the crew onboard [85]. Via the collision avoidance
subsystem, various solutions are used to plan the voyage, compute a global path to avoid
impediments, and detect and avoid all kinds of obstacles, i.e., dynamic (e.g., fishing vessel,
cargo vessel, pleasure yacht, small speed boats), or static (e.g., terrain feature, bank/shallow,
offshore structure, rocks) [47,63]. Close-range collision avoidance systems were frequently
reviewed [4,19,56].

Collision avoidance (CA) is responsible for safe navigation by assessing the risk of
collision with static and moving obstacles (ships), either at open sea or harbour and thus
navigating the ship to avoid such collision by providing the desired course and speed [4].
Collision avoidance by humans is subjective, thus errors may happen [61]. Generally, it
is estimated that human error contributes to 89– 96% of maritime collisions [4], whereas
56% of collisions are due to violation of the Convention on the International Regulations
for Preventing Collisions at Sea (COLREGs)

1
[92]. The IMO established COLREGs-1972

regulations, as guidelines procedures to avoid collisions and ensure safety for encountering
vessels at sea. COLREG scenarios such as crossing, head-on and overtaking, and potential
manoeuvres to avoid a collision are customarily applied by vessel crew; however, through
autonomous navigation, the system does that, and it has the potential to minimise errors
to zero [4,52]. While COLREGs were made for manned ships, their key elements should
be applicable by MASS CA subsystems, either manned or not [57,85]. Designing an au-
tonomous CA respecting COLREGs Part B was simulated in various studies, e.g., [4,56,93].
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Various ways were suggested to simplify interactions between MASS and conventional
ships, which include modifications in collision regulations (COLERGS), e-navigation and
traffic separation schemes [91].

The autonomous CA decides what actions the vessel takes dependent on artificial in-
telligence algorithms (machine learning and deep learning) that provide the right decisions
in light of information and data collected from the SA subsystems. Algorithms maintain
the real-time reaction (CA) capability while eliminating the non-linearity (computation
complexity) introduced by extreme endogenous and exogenous ship dynamics (naviga-
tion influencing factors) [55]. The decisions made by the CA (algorithms) account for the
environmental effects such as wind and ocean currents, waterways traffic density, ship
dynamics and manoeuvrability [88].

Autonomous CA consists of mainly two subsystems, i.e., obstacle detection and map
representation, and path planning (Figure 1). The path planning is either global path
planning or local path generation (reactive control) [4,52,71]. The CA system (computers)
carries out path planning and generates signals (commands) that feed the control subsystem
(motion and path following), which controls the motion actuators and hence maintains the
required course and speed to avoid collisions.

3.6.1. The Obstacle Detection and Map Representation

To avoid obstacles, an accurate representation of the environment is required, a full
external maritime picture [4,57]. The obstacle detection and map representation must
be defined in advance before performing the collision avoidance manoeuvres [57]. The
map representation is an essential part of the reactive path planning CA and is used to
make behavioural decisions [56,63]. A map of the current environment of the outer world
(Two-Dimensional (2D)/Three-Dimensional (3D) model) is maintained and represented.
This subsystem detects and integrates obstacles (e.g., harbours, ports, islands, and buoys,
which can be retrieved from nautical and terrain charts), including shipping lanes, coastal
terrains, and shoals [57]. Similarly, the dynamic obstacles (other vessels) are represented,
classified and tracked utilising SA sensors information, e.g., AIS, ARPA, ECDIS and other
sensors [1,4,52,62]. The retrieved obstacles’ classification, speed, and kinematic properties
are used to estimate their future position. Object recognition, identification and classifica-
tion are achieved through algorithms (deep learning methods, e.g., convolutional neural
network) for imagery, which improve Automatic Target Recognition (ATR) and Maritime
Domain Awareness (MDA) [61]. See various obstacle detection tools and purposes in
Table 2, noting that smart sensors (radar and vision) provide precise obstacle detection for
USVs but may be affected by environmental conditions. Stereo obstacle detection accounts
for pitch and roll but adds complexity. Integrated algorithms (Voronoi, visibility, Dijkstra)
offer thorough mapping but need high processing power.

Table 2. Obstacle detection tools.

Tool name/Algorithm Application Purpose Study

Smart sensors (radar and
vision technologies) USV Obstacle detection for

high-speed USV [94]

Stereo obstacle detection algorithm USV Integration of boat’s pitch and roll [78]

Integrated algorithm based on
Voronoi diagram, Visibility algorithm

and Dijkstra search algorithm
USV Obstacle detection and

map representation [95,96]

USV: unmanned surface ship.

The common approaches to represent maps are qualitative (topological maps), which
describe the spatial locations without numerical references (suitable for global path plan-
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ning), and quantitative (metric maps), which describe geometric representation based on
waypoints (suitable for local path planning). The geometric information of metric maps is
necessary to plan and execute the trajectory while avoiding collision by the utilisation of
optimisation algorithms for the optimum route. The popular metric maps are explained
in [4], e.g., meadow map, Voronoi diagrams, regular occupancy grid, and quadtree map-
ping [95,96]. Additionally, hybrid map representation methods to reduce data and fuzzy
modelling methods for dynamic environments and weak sensor precision have recently
been adopted [78,94].

3.6.2. The Path Planning

Path planning (Figure 1) is a software system divided into global (deliberate) and
local (reactive) path planning or a hybrid of the two [52,57,62,97]. Path planning accounts
for the statics and dynamic obstacles and dynamics of the specific vessel [4]. The path
planning technique replicates the real environment, utilising modern artificial intelligence
techniques such as machine learning and deep learning methods [61]. For example, path
planning for inland waterway autonomous vessels uses A*BG algorithms, which depict
the navigational system of autonomous ships [62]. In different studies, the COLREG
manoeuvres were integrated into global, local or hybrid path planning techniques where
additional constraints are put upon the generated paths to conform to the regulation.

The Global Path Planning

Global path planning is based on prior information, in other words, a geometrical
trajectory is made to avoid known obstacles from the mission origin to the destination.
Retrieved from the electronic chart, waypoints, and headings, in addition to factoring the
speed determined, path planning sets the whole voyage track to avoid static obstacles
(islands, shallow waters, buoys, etc.) [4,57]. The system has a lot of drawbacks, i.e., tasks
are carried out offline before the voyage starts, in addition to large computational memory
costs and unwanted sharp turns [4,62,63]. Global path planning is not sufficient as collision
with a dynamic obstacle may happen because its computationally intensive algorithms are
not designed to run in real-time.

Soft computing techniques, mathematical models, and linear programming algorithms
that simulate the ship dynamics are used to optimise the path. Algorithms can be utilised
to quickly find optimal paths, such as the following, derived from [4,19,27,52,55,64], that
are used in different studies:

i. Evolutionary algorithms (e.g., Genetic Algorithms (GA), strongly typed genetic pro-
gramming (GP), Ant Colony Optimisation (ACO), Particle Swarm Optimisation (PSO);

ii. Graph-based Heuristic Search Algorithms (e.g., A* and its extensions);
iii. Hybrid of evolutionary and heuristics (e.g., Genetic Algorithm-Manufactured Ma-

noeuvring, and Hierarchical Path-Finding A* Algorithm);
iv. Sampling-based methods (e.g., probabilistic roadmap PRM, and the rapidly exploring

random tree RRT).

The following Table 3 presents the popular tools used for global path planning, their
applications and their purpose. It is worth noting that evolutionary algorithms, neu-
ral networks, and fuzzy logic aid ASV collision avoidance, though complex. For USVs,
the Multi-layered Fast Marching method and Fast Marching Square algorithm optimise
paths and counter environmental impacts. GPU-based algorithms, A*, and Ant Colony
Optimisation enhance trajectory planning under uncertainty, while EEA* focuses on energy-
efficient paths.
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Table 3. Global path planning tools.

Tool name/Algorithm Application * Purpose Study

Evolutionary algorithms, fuzzy
logic, expert systems, and

neural networks
ASV Collision avoidance [55]

Multi-layered fast marching
(MFM) method USV

Minimise the negative effects
of environmental influences

(currents, wind)
[98]

Fast Marching
Square algorithm USV Optimal trajectory and

collision avoidance [99]

Rule-based Repairing A*,
Finite Angle A*, and

Smoothing A* algorithms
ASV, USV Optimal path [4,100–103]

Ant Colony
Optimisation (ACO) USV Trajectory planning [104–106]

Genetic algorithms USV Optimal path under
environmental loads [107]

GPU based algorithms USV
State transition model for
trajectory planning under

motion uncertainty
[108]

Experimental testing
path manager USV Execution of survey operations [109]

EEA* algorithm Con Energy efficient considering
environmental effects [110]

Con: conventional, MASS: maritime autonomous surface ships, ASV: autonomous surface ships, USV: unmanned
surface ship.

The Local Path Planning

The local path planning is reactive and dependent on sensor information. While
the ship is underway, it incorporates the reality of the environment based on repeated
perception–action processes [4,19,27,55,111]. Accurate reactive path planning obtains infor-
mation from sensors fusion system (if installed) or accumulates information from various
SA sensors about static (islands, coast, rigs) and moving obstacles (e.g., vessels, boats),
own vessel state (heading, speed, location) environmental data (e.g., wave, wind, sea
currents), and constraints (kinematic and dynamic)

2
[4,55,111]. Local path planning utilises

the Line of Site (LoS) method and algorithms such as Artificial Potential Fields (real-time
path planning). These methods are memoryless and effective in real-time with low com-
putational requirements, however, as a disadvantage, the system may become trapped in
local minima instead of achieving objectives [52]. Further advances in algorithms over-
come the local minima issues (e.g., Harmonic Potential Fields) [4,57]. Other reactive path
planning algorithms have been developed over the years, such as the velocity obstacle
methods [112] and dynamic window (DW) algorithms, which can include dynamic and
kinematic constraints of the vessel [97,113,114]. As can be seen in Figure 1, the local path
planning depends on the reception of the local map and current obstacle information
(map representation and obstacle detection subsystem), so once collision is detected, these
current maps are used as a base to create new waypoints and generate manoeuvring in-
formation (commands to be sent to the control subsystem). Table 4 presents the popular
tools used for local path planning, its application and purpose. Several algorithms ensure
USV and ASV compliance with COLREGs, such as Artificial Potential Fields (APF), model
predictive control (MPC), and velocity obstacles (VO). Optimisation methods, including
grey wolf optimisers and swarm optimisation, focus on energy-efficient path planning and
trajectory optimisation. Advanced algorithms like deep reinforcement learning (DRL) and
the observation–inference–prediction–decision (OIPD) model enhance real-time collision
avoidance and compliance with maritime regulations.
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Table 4. Local path planning tools.

Tool name/Algorithm Application Purpose Study

Local normal distribution-based trajectory
algorithm, grey wolf optimiser USV Path optimisation with minimal

energy consumption [115]

Artificial Potential Fields (APF) USV COLREGs compliance [116]

Optimal reciprocal collision avoidance algorithm USV COLREGs compliance [117]

Way-point guidance by line-of-sight coupled with
a manual biasing scheme algorithm USV COLREGs compliance [92]

Probabilistic timed automata (PTAs) algorithm USV COLREGs compliance [118]

A Multiobjective Optimisation
Approach algorithm USV COLREGs compliance [119]

Model-referenced trajectory planner USV COLREGs compliance [120]

A Balance-Artificial Potential Field Method in
confined areas USV Obstacle avoidance [121]

Artificial Potential Field algorithms USV Collision avoidance and COLREGs compliance [116]

Multi-objective swarm optimisation USV Trajectory planning [119,122]

Angular rate-constrained Theta * algorithm USV Real time collision avoidance considering both
angular rate (yaw rate) and heading angle [123]

Line-of-sight (LOS) guidance and velocity obstacle
(VO) algorithms USV COLREGs compliance (rule 13 to 17) [124]

Hierarchical multi-objective particle swarm
optimisation (H-MOPSO) algorithm (evolutionary) ASV COLREGs compliance [125]

Improved time-varying collision risk
(TCR) measure MASS

Collision avoidance that reflects the dangerous
level of the approaching ships and the

difficulty of avoiding collisions
[126]

Model predictive control (MPC) method ASV COLREGs compliance based on
AIS information [127]

Velocity obstacles (VO) method USV COLREGs compliance [112]

Field theory including the virtual spatial electric
field and velocity field USV Optimal collision avoidance strategy

considering the energy and other loss [128]

Modified Artificial Potential Field (APF) USV COLREGs compliance [129]

Path-Guided Hybrid Artificial Potential Field
(PGHAPF) method ASV COLREGs compliance [130]

Novel general obstacle avoidance
algorithm LROABRA USV Obstacle avoidance approach for

high-speed USVs [131]

Observation–inference–prediction–decision
(OIPD) model ASV COLREGs compliance [132]

Improved deep reinforcement learning
(DRL) algorithms MASS COLREGs compliance [133]

Recommended various quantification of
qualitative COLREGS. MASS COLREGs compliance [134]

MASS: maritime autonomous surface ships, ASV: autonomous surface ships, USV: unmanned surface ship.

Hybrid Path Planning

Hybrid path planning is a combination between the global and local path planning
approaches [19,52]. A combination of online and offline algorithms can be maintained, i.e.,
possible optimal paths are calculated, but if the system faces dynamic obstacles, online
ones are activated [27,55]. By doing so, the system increases the effectiveness of path
planning and safety. Hybrid planning uses local path planning to deviate from the pre-
defined waypoints, heading and speed to optimal paths (new heading and speed taking
into account constraints) but still uses the information from global path planning to reach
destination [52,57]. The following Table 5 presents the popular tools used for hybrid path
planning, including their application and purpose. These algorithms enhance USV and ASV
navigation by optimising path planning, ensuring COLREGs compliance, and enabling
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coordinated fleet control. However, heuristic and A* algorithms can be computationally
demanding, potentially slowing down real-time responses. Neural networks and evolution-
ary methods require extensive training data and resources, and multi-layered approaches
may struggle with rapidly changing environments. Balancing their precision and efficiency
is crucial for effective deployment in maritime settings.

Table 5. Hybrid path planning tools.

Tool Name/Algorithm Application * Purpose Study

Heuristic Rule-based Repairing
A* (R-RA*) algorithm USV COLREGs compliance [135]

Fast Marching Square algorithm USV COLREGs compliance [136]

Heuristic search algorithm based on Bandler and
Kohout’s fuzzy relational products USV COLREGs compliance and optimal path [137]

Avoidance algorithms for the C-enduro USV USV COLREGs compliance and optimal path [138]

Hybrid dynamic window (HDW) algorithm ASV Trajectory planning [97]

Evolutionary neural network algorithms ASV Anti-collision [139]

A* graph-search algorithm and GODZILA
(Game-Theoretic Optimal Deformable Zone with

Inertia and Local Approach)
ASV Obstacle avoidance [101]

Hybrid dynamic window (HDW) algorithm ASV Trajectory planning [97]

Evolutionary neural network algorithms ASV Anti-collision [139]

A* graph-search algorithm and GODZILA
(Game-Theoretic Optimal Deformable Zone with

Inertia and Local Approach)
ASV Obstacle avoidance [101]

Fusion algorithm USV Obstacle avoidance [140]

Fast marching (FM) method USV Deploy multiple USVs as a formation fleet [141]

Neural networks (NNs) backstepping and the
minimal learning parameter (MLP) algorithms ASV Leader–follower cooperative formation control [142]

Time-varying tan-type barrier Lyapunov
functions (BLFs) ASV LOS range and angle constraints for group ASV

leader–follower formation control [143]

Network-based incremental predictive
control scheme USV Networked USV formation systems under a

leader–follower structure [144]

Second order formation dynamic model,
multi-layer neural network and adaptive

robust techniques
ASV Formation controller for a number of

surface vessels [145]

Off-line and on-line optimisation methods USV Use of a team of USVs for the security of
civilian harbours [146]

Heuristic research algorithms (A*, A*ABG) ASV COLREGs compliance [62]

A* heuristic search algorithm for ASV Real-time path planning, incorporating COLREGs [4]

Fast Marching Square and velocity
obstacles methods MASS Find an optimal path considering the collision risk

and proximity from the obstacles [147]

Heuristic approach and deterministic
method algorithms Con Collision avoidance through

autonomous navigation [64]

DTW algorithm, least square support vector
machine method Con Autonomous path following [148]

Con: conventional, MASS: maritime autonomous surface ships, ASV: autonomous surface ships, USV: unmanned
surface ship.

Cooperative Path Planning and Platooning

Cooperative behaviour between vessels of the same and different types is suggested to
improve group CA response [4], which enables multiple MASSs to navigate in formations
to arrive at a destination or do a certain mission. In addition, MASS cooperative operation
yields efficient operations and greatly improves fault tolerance and adaptability [149]. From
cooperative COLREGs response perspectives, ships can follow formation control, swarm,
or platooning, i.e., fleet path planning and fleet formation control. A fleet of vessels can
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navigate together toward a destination and avoid obstacles together in popular geometric
formation patterns (e.g., Line, column, diamond and wedge) [4,56].

On the other hand, another MASS application is suggested where vessels can sail
in platooning (train concept) [58]. Multiple MASSs, thus, follow a conventional leader
vessel, and the vessel can establish wireless communication links, such as the concept in
the NOVIMAR project. The platooning can be applied within hub and feeder ports, i.e.,
small feeder services [58].

3.7. Motion Control and Path Following

Motion control planning (Figure 1) encompasses trajectory tracking, path following,
manoeuvring, steering, and heading controls [4,150]. It is more complex because it physi-
cally activates mechanical components [63]. In addition, the trajectory tracking and path
following are quite complex due to the strong non-linearity and uncertainties in environ-
mental conditions [151]. The motion control system keeps and monitors the trajectory
generated in path planning (i.e., path following) [63]. The autopilot performs an essential
role in controlling the heading with respect to time and surrounding obstacles, such as
other ships [62,63]. Various motion control approaches have been reviewed in [4].

Many techniques of automatic steering are available, which mimic a helmsman
and account for ship dynamics (via deep learning frameworks) [51], linearity and non-
linearity effects (rolling, pitching, yawing, etc.), and environmental impact (wave, current,
wind) [4,52]. The intelligent control techniques and methods are mature and adopted, e.g.,
adaptive fuzzy autopilot, Artificial Neural Networks (ANNs), Neurofuzzy methods, itera-
tive Lyapunov-based technique, model predictive control (MPC) and the optimal theory
methods [4,52,56,64,151–156]. Table 6 presents the popular tools used for motion control
and path following, their applications and their purpose. These algorithms significantly
enhance USV and ASV navigation by improving compliance with COLREGs, optimising
trajectory planning, and enhancing stability under disturbances. For example, model pre-
dictive control (MPC) and adaptive controllers handle dynamic conditions effectively, while
neural networks and genetic algorithms optimise control precision. However, many of
these methods, such as convolutional neural networks and sliding mode controllers, require
substantial computational resources and may struggle in complex or variable environments.
Balancing computational demand and real-time responsiveness is crucial for effective use,
especially in scenarios requiring high-speed or adaptive responses.

Importantly, it is worth noting that advanced guidance systems are indispensable
for ensuring accurate motion control and path following of MASS including the USVs
and ASVs. Technologies such as Line of Sight (LOS) guidance put the ship on the targeted
trajectories by calculating the right heading angle, taking into account the ship’s dynamics
and surrounding environment environmental disturbances such as currents and wind.
Vector Field Guidance, on the other hand, creates mathematical vector fields for robust
navigation in dynamic environments, advancing the ship’s ability in obstacle avoidance
and accurate dockage [148]. Furthermore, the Artificial Potential Fields are utilised for
collision avoidance via the generation of virtual forces [130]. Dynamic programming-based
path planning augments navigation by providing decision support that improves energy
efficiency and time, whereas hazards are being avoided [107]. Lastly, algorithms such as
Fast Marching deliver real-time pathfinding solutions, predominantly useful in dynamic
obstacle scenarios [107].



J. Mar. Sci. Eng. 2025, 13, 122 18 of 29

Table 6. Motion control and path following tools.

Tool Name/Algorithm Application * Purpose Study

A deep convolutional neural network
(Alexnet) algorithm USV COLREGs compliance [155]

Angle guidance fast marching square method USV Autopilot module [157]

Trajectory Unit Method USV Motion control for in a small range of scenarios [158]

Model predictive control (MPC) approach based
on adaptive line-of-sight (LOS) ASV Track reference paths with various disturbances [159]

Backstepping adaptive sliding mode
controller was USV Stabilisation problem of the trajectory tracking

error equation [160]

Jacobian Task Priority-based Approach USV Completion of a path following mission, and
vehicle velocity regulation [67]

Guidance motion control law USV Solve the guidance problem for
under-actuated systems [161]

Robust controller based on adaptive sliding mode
control in combination with the radial basis

function neural network (RBFNN)
ASV Suppress the effect of parameter variations and

external disturbances [152]

Discrete-Time Sliding Mode Control (DTSMC) USV Straight line following and regulation of linear and
angular speed [162]

Genetic algorithms (GA), fuzzy logic
controller (FLC) USV Optimise PID controllers (rudder angle) [151]

Local control network (LCN) techniques,
underway docking procedure USV A Local Control Network Autopilot [163,164]

Neural network-based approaches ASV Manoeuvring, steering and course control [153–156]

Angular velocity guidance algorithm USV Address the heading control problem caused by
dynamic linearisation [165]

Backstepping controller USV Minimise the effects of variable mass and drag [166]

Nonlinear proportional derivative, backstepping
and sliding mode feedback controllers USV station-keeping heading and position under wind

and current disturbance [167]

Line-of-sight guidance control laws ASV Leader–follower motion control of multiple ASV [168]

Safety distance constrained A* approach USV Coordinated and cooperative navigation of USVs
in a constrained maritime environment [169]

Closed-loop controller by applying Lyapunov
stability theory ASV Multiple USV automatic target tracking, obstacle

and collision avoidance [170]

Fisher information matrix (FIM) ASV Inter-vehicle collision avoidance and manoeuvring [171]

Various algorithms for autonomous navigation USV
Several different boats to perform significant

missions both by themselves and in
cooperative modes

[56]

Velocity Obstacle (VO) model using Dynamic
Programming (DP) method MASS Optimal motion planning for MASS with presence

of other conventional ships [172]

Port-Controlled Hamiltonian (PCH), Lyapunov’s
direct method and backstepping approaches USV Track keeping with energy optimisation [173]

MASS: maritime autonomous surface ships, ASV: autonomous surface ships, USV: unmanned surface ship.

Dynamic Positioning

Dynamic positioning (DP)
3

advances the motion control and path following sub-
system, and it supports the highest level of MASS degree of autonomy (DoA 4—total
autonomous ships). DP calculates where the ship can move, taking into consideration the
ship’s kinematic and dynamic constraints, and hence automatically enables the ship to hold
its position or heading by using its propellers, rudders, and thrusters [27,43,73,174]. DP is
linked to SA sensors, and it restricts areas of manoeuvre (waypoint boundaries). The AAWA
suggested the integration of navigational systems for complete autonomous navigation,
which consists of a dynamic positioning system (DP) connected with four interlinked mod-
ules, i.e., route planning (global path planning), situation awareness, collision avoidance
(reactive local path planning), and ship state definition (virtual captain) [27]. The ship state
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definition (SSD), or the virtual captain (VC), is the highest level in the ship and determines
the current status of the ship, the operation mode as remote controlled or autonomous, in
addition to the failsafe/fallback strategy. The VC activates the failsafe/fallback strategy
when MASS experiences an unexpected reduction in connectivity simultaneously with
an operational challenge, which would normally require RCC operator intervention. It
includes the sequential steps: asking the operator to take manual control, if failed, slow
down and proceed to the following waypoint, if failed, stop the vessel and stay in DP
mode, if failed, navigate to the previous waypoint, if failed, navigate back to pre-set safe
location [27].

3.8. Berthing and Unberthing

The MASS mooring and unmooring (docking and undocking) can be supported
by the DP. However, autonomous or remote mooring is one of the essential challenges
in ship control owing to many complexities, such as the non-linearity of the low-speed
manoeuvring model, danger of collision, wind speed, wind direction, current, and ship
dynamics [69]. Thus, until this issue is solved, MASS (DoA 3—remote-controlled ship that
has no seafarers onboard and 4—fully autonomous) would require the presence of a crew
to help in berthing. The MUNIN project described this crew as the onboard control team
(OCT), who will embark during the port approach and departure to carry out normal ship
crew duties [71]. Notably, port infrastructures need to be modified to facilitate mooring,
e.g., through automatic mooring systems, remote control piloting, etc., [175]. The AAWA
suggested that RCC operators may gain autonomous pilot licences [27].

4. Conclusions
Future ships will be highly digital and interconnected, integrating both onshore and

offshore stakeholders, along with advanced software and hardware systems. It is clear
that sustainable shipping is undergoing significant changes to incorporate automation and
digitalisation, both of which require robust and comprehensive autonomous navigation
systems. This study has provided valuable insights into the architecture of autonomous
navigation systems. The review highlighted the technologies crucial for future shipping,
particularly those relevant to MASS. The findings segmented the navigation system into
key subsystems that allow autonomous vessels to make informed decisions, including
situational awareness technologies, decision-making frameworks, and sensor fusion ca-
pabilities. Additionally, the architecture demonstrates how these systems integrate with
onboard decision-making and external data inputs.

This study not only offers a comprehensive framework for autonomous navigation
systems but also outlines how these technologies are applicable not just to MASS but also
to conventional ships. The architecture presented here can serve as a consolidated resource
for understanding the intricate components of autonomous navigation, positioning it as a
valuable reference for both current and future maritime operations.

Technology, particularly SA sensors and sensor fusion, and decision support algo-
rithms (artificial intelligence) for collision avoidance and path following make MASS a
reality. However, the challenge is to amalgamate sensors reliably and cost-effectively. With
regard to MASS, the autonomous navigation architecture built in this scenario achieves the
four levels of autonomy, i.e., whether the ship is supervised by seafarers, remote controlled
by RCC or fully autonomous. This study suggests that the technologies are mostly available
and have been used in other automation sectors, e.g., aviation and land transport; however,
they are not yet highly adopted in conventional ships, and with respect to MASS, few
design projects and current large scale ship development adopted such technology, e.g.,
ReVolt [176], and YARA Birkeland [177]. This indicates the requirement for technology
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verification and adaptation in the maritime sector. Thus, the development will be a gradual
and iterative process and will be subject to extensive testing and simulation. In the same
fashion, standardisation (standardised digital interfaces) and interoperability

4
of technolo-

gies should not be neglected, as these factors are important for future technology uptake
and keys to future MASS digital pipelines [47]. Some SA technologies were used in land
transport (e.g., LiDAR, night vision cameras, etc.), however, using such technologies at sea
would require them to be resilient to harsh weather and sea saltness. Notably, technologies,
in general, are not only applicable to MASS but, by all means, applicable to conventional
ships. Hence, their adoption highly assists seafarers in decision support systems and in-
creases safety and efficiency during voyage navigation. For example, the use of situational
awareness technologies and artificial intelligence technologies (machine learning and deep
learning algorithms) minimises tedious calculations performed by seafarers.

This study identified different issues with respect to artificial intelligence (intelligent
algorithms) in addition to future requirements:

i. COLREG compliance is clearly challenging for MASS. For proper actions and de-
cisions, there is a need to integrate and quantify qualitative COLREG protocols to
be able to code collision avoidance algorithms [91] (a challenge for programmers).
Transcription and building of algorithms that simulate thousands of COLREG situa-
tions (encounter scenarios) is highly required considering the types of different ships
(container, cargo, tanker, general cargo, RoRo, passenger, etc.), differences in kinematic
and specification, and environmental conditions of sea and weather.

ii. Future studies need to prepare for the manned, unmanned, and autonomous ships
encounter, i.e., the human–machine interaction at sea. It has been suggested that
ship (manned and unmanned) encounters can be facilitated by following COLREG
regulations, e-navigation and traffic-separated route networks [91].

iii. There is a need to build algorithms that can handle emergency scenarios or unforeseen
circumstances thus being reactive and ensuring safety. Such tools would probably be
identified after the operation of MASS.

iv. Ships differ in operations and conditions, and even in reaction to commands. Although
the fundamentals of how different ships react autonomously to a variety of naviga-
tional conditions would follow the same assumptions; each vessel type (container,
cargo, tanker, general cargo, roro, passenger, etc.) would need its specific models of
intelligence command and control algorithms. This indicates the need to integrate
the dynamics and kinematics of these ship types. Technically, this also means that the
situational awareness system will have to be different as the reaction distance (time) of
a large vessel is considerably higher; thus, higher predictability levels are needed [27].

v. Some of the path planning algorithms are restrained in capability due to impractical
assumptions (i.e., open sea or only two ships encounter), thus ignoring environmental
conditions and COLREGS [19]. In addition, most algorithms have been tested in simu-
lations, but reliability is limited, thus, proving their validity in real-world scenarios
still has to be tested. Moreover, encoding COLREGs within path planning and collision
avoidance algorithms is particularly challenging in dynamic maritime environments,
where AI must interpret complex, context-dependent rules. Current algorithms often
assume simplified conditions, such as open seas or limited vessel interactions, and
struggle to account for real-world variability. This limitation underscores the need for
advanced AI approaches that can adapt to changing conditions and handle ambiguous
encounters, as well as for extensive testing of these algorithms in real-world maritime
settings to ensure safety and reliability.

vi. Studies widely addressed the ASV and USV, but very few addressed the oceangoing
vessels and MASS. Although the application of such algorithms is valid for the OGV
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(same fundamentals), investigation of applications of these algorithms in oceangoing
vessels is highly recommended.

vii. The literature dedicates large efforts being utilised in machine learning algorithms
(collision avoidance, obstacle detection, and motion control algorithms) separately. In-
formation about systems and subsystem integration is still not available [43], although
subsystem integration is essential for safety and interoperability. For example, algo-
rithms do not talk to each other, in other words, there are issues with communication
between algorithms, which may result in issues to avoid collisions [55]. This calls for
system integrators to be integrated in MASS [3].

viii. The certification of artificial intelligence and machine learning (AI/ML)-based systems
remains a significant challenge, particularly in the maritime domain, where safety-
critical subsystems are increasingly reliant on these technologies. Drawing parallels
with the aeronautic and railway industries, where certification processes are rigorous,
it becomes evident that developing a framework for certifying AI/ML in MASS is
essential to ensure reliability and safety. This represents an important avenue for
future research and industry collaboration

The novelty of this study lies in its comprehensive investigation of autonomous navi-
gation systems for Maritime Autonomous Surface Ships (MASS). Unlike previous research,
this study presents an overarching framework that integrates all necessary components,
including decision-making systems, situational awareness technologies, and sensor fusion,
while also addressing cybersecurity challenges. By filling existing gaps, this study serves as
a valuable resource for researchers and practitioners, guiding future research and prototype
development in autonomous navigation and conventional shipping systems. The insights
provided here can also help stakeholders prepare for the integration of autonomous nav-
igation technologies, fostering more informed decisions about investments, regulations,
and workforce development.

A key limitation of this study is the potential for subjective interpretation in the
qualitative analysis, despite efforts to minimise bias through independent reviews and
result comparison. Future studies should explore the skill requirements, environmental
impacts, and infrastructure adaptations necessary to support the widespread adoption
of autonomous navigation systems. While this study presents a unified architecture for
Maritime Autonomous Surface Ships (MASS), further research is encouraged to explore
and develop distinct, subsystem-specific architectures. Separate architectures for key
subsystems—such as navigation, communication, and energy management—could provide
deeper insights and allow for more specialised optimisations within each area. Given
the predominant focus of existing studies on ASVs and USVs, there is a clear need for
further research specifically addressing the unique challenges and requirements of Maritime
Autonomous Surface Ships (MASS).
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Notes
1 COLREGs is divided into three parts. Part A defines vessel and authority responsibilities, Part B regulates the conduct of vessels

in an encounter, and Part C establishes communication protocols. Rules contained in Part B are defined as Steering and Sailing
Rules, thus more important in CA [57].

2 Examples of kinematic constraints is vessel turning radius which limit the turning angel, and dynamic is the turning radius or
the stopping distance in conjunction with the speed.

3 Rolls Royce icon DP system model is operational and ready.
4 The ISO established a Working Group (WG10) on smart ships and marine technology, that is establish a common vocabulary and

data model for MASS interoperability.
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