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Abstract: Due to the large number of parameters and high computational complexity
of current target detection models, it is challenging to perform fast and accurate target
detection in side-scan sonar images under the existing technical conditions, especially in
environments with limited computational resources. Moreover, since the original waterfall
map of side-scan sonar only consists of echo intensity information, which is usually of
a large size, it is difficult to fuse it with other multi-source information, which limits the
detection accuracy of models. To address these issues, we designed DBnet, a lightweight
target detector featuring two lightweight backbone networks (PP-LCNet and GhostNet)
and a streamlined neck structure for feature extraction and fusion. To solve the problem of
unbalanced aspect ratios in sonar data waterfall maps, DBnet employs the SAHI algorithm
with sliding-window slicing inference to improve small-target detection accuracy. Com-
pared with the baseline model, DBnet has 33% fewer parameters and 31% fewer GFLOPs
while maintaining accuracy. Tests performed on two datasets (SSUTD and SCTD) showed
that the mAP values improved by 2.3% and 6.6%.

Keywords: SSS; deep learning; lightweight network; DBnet

1. Introduction
The detection and identification of seafloor targets play an extremely important role in

underwater search and rescue, marine engineering construction, marine topography and
geomorphology measurements, marine resource investigation, etc. However, affected by
the complex marine environment, imaging conditions, and measurement means, accuracy
and efficiency are relatively low, which makes it difficult to meet the demand; so, improv-
ing these aspects has become a crucial research hotspot [1–6]. Side-scan sonar has gained
widespread application in seabed target detection due to its affordability, rapid coverage of
large areas, and its independence from underwater visibility, as it relies instead on acoustic
imaging. This technology is crucial to locate the remains of aircraft, ships, and individuals;
pinpoint underwater pipelines; and detect submerged reefs, ores, and mines [7–10]. Never-
theless, the current method of identifying underwater targets in side-scan sonar imagery
relies heavily on manual inspection, which is not only subjective and time-consuming but
also hinders broader adoption, particularly in scenarios requiring real-time detection, such
as those featuring autonomous underwater vehicles (AUVs) [11].

With the rapid advancement of computer vision technology and the development of
convolutional neural networks, deep learning approaches have become prevalent in the task
of seabed target recognition in side-scan sonar images, offering substantial improvements
in accuracy and efficiency over traditional methods [12–15]. Deep learning algorithms
for target detection are broadly categorized into two types: two-stage and one-stage
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models. However, in practice, because it is necessary to generate a regional suggestion
network of candidate target frames and then perform their classification and bounding
box regression to achieve target detection with the former, there are problems such as
complex structure, a significantly large computational volume, and long computation time;
therefore, these models are seldom used in practical engineering applications [16]. The
core advantage of single-stage target detection models is, firstly, their speed, which allows
for efficient and instantaneous detection on account of the simplification of the detection
process and a reduction in the consumption of computational resources, which makes
these models especially suitable for application scenarios with high real-time requirements.
Secondly, their structure is relatively simple and easy to implement and deploy, and the
number of hyperparameters that need to be adjusted is reduced, in turn reducing the
complexity of model tuning [17]. In terms of detection accuracy, single-stage models tend
to demonstrate superior performance in specific scenarios, such as small- and dense-target
detection. In addition, single-stage models demonstrate great adaptability and flexibility,
can be easily adapted to different task requirements, and are easy to integrate with other
image-processing systems or platforms.

Although generic target detection models have achieved certain results in the field of
natural or remote sensing imagery, target detection based on side-scan sonar images still
presents multiple challenges [18–20].

(1) Side-scan sonar usually relies on mobile platforms such as AUVs to implement
detection, and in current AUV seabed obstacle detection missions, traditional intelligent
detection models often present deployment difficulties, high power consumption, and
slow processing speed due to the large number of parameters and high computational
complexity [21,22]. These deficiencies limit the real-time performance and efficiency of
AUVs in complex marine environments and increase energy consumption, which affects
the operating time and stability of AUVs. Therefore, research on lightweight intelligent
detection models becomes particularly important.

(2) Although AUVs are equipped with various detection devices, such as forward-
looking sonar, side-scan sonar, and optical cameras [23,24], in some specific mission scenar-
ios, in order to perform detection over as large an area of the seafloor as possible in a short
period of time, side-scan sonar with a wide detection range is typically used, which means
that the poor features of sparse targets need to be extracted from side-scan sonar images to
perform seafloor target detection. Therefore, determining how to make full use of side-scan
sonar images to extract more feature information is the key to improving the accuracy of
undersea target detection models.

(3) Side-scan sonar continuously sends and receives acoustic signals during AUV
traveling, and the collected data are processed and superimposed to form a waterfall image,
which means that the original image of the side-scan sonar is usually large in size; a large
amount of fine-grained information is lost if the whole image is directly inputted into the
network, which also leads to high leakage of small undersea targets (targets with less than
50 pixels × 50 pixels in the image) [25]. Therefore, how to optimize the detection strategy
is also an important aspect in solving the problem of real-time undersea target detection
based on side-scan sonar.

Aiming at solving the above problems, in this study, we developed a new target
detection model, DBnet.

(1) We adopted two kinds of lightweight backbone networks and optimized the neck
part of the baseline model. By streamlining the structure, the model in this study presents
significantly fewer parameters and less computation while maintaining detection accuracy,
achieving a balance between the latter and speed, and meeting the needs of practical
engineering applications.
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(2) To address the challenge of feature extraction with less valid information in side-
scan sonar images, in this study, we developed a dual-backbone network structure. The
structure makes use of multiple feature extraction paths to simulate multimodal data fusion
so that even if only side-scan sonar images are used as input, an effect similar to that of
multimodal data fusion can be achieved, thus improving the diversity of feature extraction
and the performance of the detection model.

(3) In order to solve the problem of the large size of the original waterfall map in side-
scan sonar, in this study, we adopted the slice-assisted hyper-inference (SAHI) technique,
which splits large-size images into multiple small-size images, performs network inference
separately, and fuses the detection results of each slice.

2. Related Work
In the field of target detection in side-scan sonar images, the study of lightweight

target detection models has gradually become a hotspot. Li [26] significantly improved
detection speed and accuracy by replacing the backbone network of YOLO v8s with the
GhostNet structure. Moreover, the lightweight attention mechanism Triplet Attention was
introduced to optimize feature extraction, and the ECIoU loss function was employed
to improve the convergence and recognition accuracy of the model. Yu [11] proposed a
real-time automatic target recognition method (TR-YOLOv5s) combining the Transformer
module and YOLOv5s to address the problems of target-sparse and feature-poor side-scan
sonar images. By introducing an attention mechanism, the focus on target features is
enhanced, which improves detection accuracy and efficiency. Zhang et al. [27] combined
the Swin Transformer with the YOLO framework for marine target detection. This method
allows for the extraction of discriminative features under ocean clutter interference, a
reduction in computational complexity, and an improvement in target detection accuracy.
Huang [28] employed the Dual Segmented Attention (DSA) mechanism, which efficiently
extracts target features through the parallel processing of channel and spatial attention and
enhances the ability to extract features with weak boundaries. Li [29] combined Spatial
Pyramid Pooling (SPP) and Online Dataset Preprocessing (ODP) for underwater target
detection in side-scan sonar images. The method overcomes the input image size limitation
and improves the feature extraction capability with SPP, while the diversity and complexity
of the dataset is enhanced with ODP, thus improving detection accuracy and efficiency.
Ji et al. [30] introduced YOLO-TLA, a lightweight model which includes an extra layer
specifically designed for detecting small targets and incorporates the C3CrossCovn module
with a global attention mechanism in its backbone network. This design reduces technical
complexity and parameter count while enhancing the focus on relevant object attributes
and filtering out unnecessary information. Zhang [31] and others applied a combination of
the lightweight backbone network Mobile v2 and deep separable convolution on top of
the YOLOv4 algorithm, which significantly reduces the number of model parameters, and
introduced an attention mechanism in the FPN to learn richer features of small targets. Tang
et al. [32] presented a multi-scale sensory field convolutional block attention mechanism,
known as AMMRF, which leverages feature map position information to precisely capture
inter-channel relationships and enhance the learning of ship–background interactions.
In their YOLO-SARSI model, they integrated the AMMRF module within the backbone
network for feature fusion, simplifying the baseline model’s complex components. This
approach effectively decreased the number of parameters and computational load. The
intricate feature fusion component of the baseline model was omitted, resulting in a
significant reduction in both parameter count and computational complexity.
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3. Materials and Methods
The operation flow chart, including an AUV carrying side-scan sonar and the proposed

algorithm for the actual measurement process, is shown in Figure 1, and mainly includes
the data acquisition and collation part and the use of our algorithm for real-time target
detection, performed in two steps. The side-scan sonar data collected by the AUV are
spliced into a map; then, the image is sliced and processed with SAHI and inputted into
DBnet for the detection of undersea obstacles. Once the AUV detection mission is over,
DBnet can be retrained by using the database constructed from the detected target data and
the existing data, expanding the sample size in order to improve the detection accuracy of
the model.
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3.1. DBnet

The DBnet detector presented here is implemented within the YOLOv8 network archi-
tecture. The YOLOv8 model consists of four primary components, i.e., input, backbone,
neck, and output, each incorporating various modules, such as the Conv module, the
C2f module, and the SPPF module [33]. One of the innovations in YOLOv8 is the intro-
duction of the C2f structure, which is pivotal for residual feature learning and allows for
the efficient capture of gradient flow information. The backbone, comprising five Conv
modules, four C2f structures, and one SPPF structure, is responsible for extracting generic
target features. The SPPF structure, located in the final layer of the backbone, collects
information from sensory fields of different sizes (5, 9, and 13) through a series of consec-
utive 5 × 5 convolutional kernel max-pooling operations. These feature layers are then
combined with their unprocessed counterparts to integrate multi-scale feature information
and enhance model performance. The neck segment, positioned between the backbone and
the prediction component, is designed to diversify features and bolster model robustness. It
incorporates four C2f modules, two Conv modules, and two Upsample operations. Finally,
the prediction component serves as the output end of the model and is responsible for
delivering the final target detection results. In essence, the neck enriches feature diversity
and improves model robustness by incorporating various modules, while the prediction
component is responsible for the output of the detection results.

In this study, we developed the DBnet model to address the problems of existing
models, including the difficulty in extracting effective information from feature-poor and
target-sparse side-scan sonar images, the challenging deployment of these models on
mobile platforms with limited computing power such as AUVs, low detection efficiency,
significant target leakage, etc. For our model, we designed a parallel lightweight two-
branch backbone structure, streamlined the original neck part to achieve high efficiency
with a simple structure, and developed the SAHI algorithm for the characteristics of the
original waterfall map of side-scan sonar, which greatly improves the accuracy of small
target detection, as well as the efficiency. The network structure is shown in Figure 2.
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Firstly, we chose PP-LCNet and GhostNet to form the dual backbone of the proposed
model, which enables it to fuse the feature information extracted from different backbone
networks in the case of the availability of only one data mode. Generally speaking, using dif-
ferent backbone networks allows for the extraction of complementary feature information,
and by fusing these features, more comprehensive target information can be captured, thus
improving the detection accuracy of the model. Data from a single source are susceptible
to noise, occlusion, etc.; the fusion of similar multimodal data can enhance the robustness
of the model based on the redundant information among features extracted from different
backbones. When the data extracted from one backbone are subject to disturbance, the data
from the other backbone can still provide effective information support; in addition, by
extracting features through the dual-backbone network, the model can learn more general-
ized feature representations, which can lead to better performance in different background
environments. Specifically, as the first feature extraction backbone, we used GhostNet,
which is constructed based on the Ghost module and consists of 6 layers of GhostConv and
4 layers of C3Ghost with SPPF modules. Then, we adopted Depth-Separable Convolution
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(DepthSepConv), which is composed of consecutive six layers of 3 × 3 DepthSepConv and
three layers of 5 × 5 DepthSepConv.

In the neck segment, the original structure’s multiple upsampling steps often introduce
adverse effects, such as noise amplification. Therefore, we refrained from using upsampling
in the standard YOLOv8 model to merge small-scale high-level convolutional features with
large-scale low-level ones. Instead, we optimized the neck part by leveraging sufficiently
rich feature maps from dual-stem feature extraction for fusion. This approach reduces the
model’s computational load, simplifies its complexity, and contributes to a lighter model.
After feature extraction, the 5th, 7th and 10th layers of each trunk are extracted for their
input into the neck section. In the neck part, the feature maps extracted from each layer
are simply fused. It is worth mentioning that we not only streamlined the structure but
also used C3Ghost, instead of the C2f module in the original YOLOv8 network, to further
reduce the parameters and computation of the model.

To enhance robustness against inference, we employed the SAHI algorithm, which
augments the feature information of small targets by leveraging data from image slices.
This capability makes SAHI highly adept at detecting small targets, which often occupy a
limited number of pixels in an image and lack the necessary detail for traditional detection
methods to function effectively. SAHI effectively boosts the feature representation of small
targets with slicing and weighted fusion techniques, leading to enhanced detection accu-
racy. The SAHI algorithm slices the waterfall map formed based on side-scan sonar data
acquisition into multiple slices, on which it performs target detection independently. This
parallel processing can significantly improve detection efficiency, especially when process-
ing side-scan sonar images or in scenarios with high computational resource requirements.
Moreover, by focusing on smaller slices, the SAHI algorithm can reduce the consumption
of memory and computational resources. This is especially important for devices with
limited computational resources or real-time detection systems.

3.2. SAHI

Distinct from the real-time segmentation methods referenced in [34], target detection
necessitates detailed attributes such as the size, shape, and spatial positioning of underwater
targets for their precise location and identification. To ensure an underwater target is not
divided between images, overlapping coverage between adjacent samples is crucial. For
real-time detection, this entails intensive sampling along the track. Each sample undergoes
processing with a d × d pixel sliding window, which creates sections of the same size as it
moves horizontally along the track intersection. To achieve precise contours and positions
through image segmentation or subsequent processing, adjacent blocks (such as P1 and
P2 in Figure 3) share a common coverage area. However, an excessively high overlap rate
increases the slice count and prolongs inference time, while too low an overlap may result
in incomplete target representation. Setting the overlap rate to 20%, meaning the shared
area is 20% of the slice size, ensures that the target remains intact and fulfills real-time
processing demands. Although using this method can improve accuracy in small-target
detection, there is also a need to balance model accuracy and inference time to determine
the scale of the sliding slices.

The specific principle is shown in Figure 4, where the original image, I (blue box), is
first cut into M × N slices (red box) with a certain overlap, denoted by P1, P2. . .. . .PX; then,
each slice is resized while maintaining the aspect ratio. Afterwards, the content in each slice
is predicted. As the slice size becomes smaller, the model’s detection performance on larger
targets decreases. Therefore, in order to detect the latter more accurately, NMS combines
the prediction results of the slices and the FI results of the original image, bringing them
back to the original size; in the NMS process, the frames with an IoU ratio higher than the



J. Mar. Sci. Eng. 2025, 13, 155 7 of 20

pre-set matching threshold (Tm) are matched, and the probability of detection for each
match below Td is removed.
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3.3. PP-LCNet

PP-LCNet is a lightweight convolutional neural network model with the advantages
of high efficiency, low latency, and low computational cost [35]. It outperforms other
lightweight models in multiple tasks and enhances detection accuracy while working with
the fast speed of the MobileNet [36,37] network, which is more suitable for embedded
devices and mobile application scenarios.

The YOLOv8 network architecture includes a Darknet-53 backbone module with a
deeper structure, enhancing the model’s capacity to represent image features. However,
this depth leads to increased computational complexity, resulting in longer durations for
both model training and inference. The overall structure of PP-LCNet is shown in Figure 5.
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Within the module, the stem component employs 3 × 3 standard convolution for feature
extraction, primarily targeting the extraction of low-level features from the input image.
The depth-separable convolution operations, comprising depth-wise (DW) and point-wise
(PW) convolution operations, serve to decrease the number of model parameters and
reduce network computation. PP-LCNet, which utilizes locally connected blocks to build
an efficient deep neural network, employs DepthSepConv, proposed in MobileNetV1 [14],
as the basic module to reduce the computational complexity and improve the generalization
ability of the network. This module lacks operations such as shortcuts, thereby eliminating
the need for additional operations, such as concatenation or element-wise addition, which
hinder the model’s inference speed without enhancing accuracy, particularly in smaller
models. Furthermore, prior research has indicated that mixing convolutional kernel sizes
within the same network layer slows down inference. Therefore, we utilized a uniform
kernel size per layer, opting for a larger kernel that balances low latency with high accuracy.
Notably, it was discovered that substituting the 3 × 3 kernel with a 5 × 5 kernel only in
the network’s tail achieved nearly equivalent benefits as replacing kernels throughout
the entire network, prompting this substitution only in the tail section. Moreover, the SE
module was added to the module at the tail of the network; it dynamically adjusts the
importance of different channels in the network by introducing an attention mechanism to
increase the model’s attention to important features, thus enhancing the salient features,
suppressing unimportant features, and improving the discriminative ability. In order to
improve the inference speed of the network, the activation function in the convolution
module adopts Hard-Swish, an approximation of the Swish function, while the Sigmoid
function in the SE module is replaced with the Hard-Sigmoid function, which is less
computationally intensive, in order to avoid a large number of exponential operations to
improve the computational speed.
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3.4. GhostNet

The GhostNet network [38] employs a streamlined design centered around multiple
Ghost bottlenecks. Each Ghost bottleneck is constructed by using the Ghost module,
which hinges on dividing the convolution operation into two stages. The first stage
involves performing a limited number of standard convolution operations. The second
stage generates “ghost” feature maps by applying cheap linear convolution operations to
the feature maps obtained from the first stage. The first part is a small number of ordinary
convolution operations; the second part is a chunked linear convolution operation of the
feature maps obtained in the first part, which generates “phantom” feature maps at a
small cost. Compared with a normal convolutional neural network, the total number of
parameters required and the computational complexity of the Ghost module are reduced,
while the output feature maps are of the same size.

The core idea of the Ghost module is to utilize ordinary linear variations to obtain
redundant feature maps as a way to improve the computational efficiency of the network.
Figure 6a shows the traditional convolutional structure, while the phantom convolution
uses depth-wise convolution as a cheaper linear transformation, as shown in Figure 6b,
where ϕ denotes the linear transformation. This structure makes the current channel
feature relevant only to itself, simulating redundant features on the one hand, and sig-
nificantly reducing the number of parameters and computation on the other. In differs
from regular convolution, which directly produces all feature maps, as GhostConv first
executes a convolution operation that yields fewer feature maps. Subsequently, it applies a
convolution transformation to these initial feature maps to produce both constant mapping
and additional feature maps.
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This method efficiently decreases both the computational load and the number of
parameters, as illustrated by the following comparison with the standard approach.

Let us consider an input data tensor with dimensions C × H × W, which represent
the input channels, height, and width of the feature map, respectively. Once a convolution
operation is executed, the resulting data tensor features dimensions of N × H′ × W′, which
represent the number of output channels, and the height and width of the produced feature
map, respectively. Considering a typical convolutional kernel size of K and a linearly
transformed convolutional kernel size of D, after S transformations, rs in Equation (1) is
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the speedup ratio (here, the computational volume is used as an approximation instead of
speedup), which represents the ratio of the number of original convolution operations to the
number of computations of the Ghost module. rc in Equation (2) is the compression ratio,
representing the ratio of the number of parameters of the original convolution operation to
the number of parameters of the Ghost module:

rs = N·H′ ·W ′ ·C·K·K
N
S ·H′ ·W ′ ·C·K·K+(S−1)· N

S ·H′ ·W ′ ·D·D
= C·K·K

1
S ·C·K·K+

S−1
S ·D·D ≈ S·C

S+C−1 ≈ S
(1)

rc =
N · C · K · K

N
S · C · K · K + (S − 1) · N

S · D · D
≈ S · C

S + C − 1
≈ S (2)

Above, N/S is the output channel taught in the first transformation, and S − 1 is
included because constant mapping does not need to be computed but counts as part of
the second transformation. Therefore, the Ghost module saves computation.

Ghost bottlenecks are bottleneck structures that incorporate Ghost modules as shown
in Figure 7. Each Ghost bottleneck comprises two stacked Ghost modules: the first one
serves to expand the number of channels (known as the expansion layer), with the ratio
between the output and input channel counts defined as the expansion ratio. The sec-
ond Ghost module then decreases the channel count to align with the channels in the
shortcut branch.
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Figure 7. Ghost bottleneck.

To reduce the width and height of the feature layer, we configured the Ghost bottle-
necks with a stride of 2, indicating a step size of 2. In this scenario, additional convolu-
tional layers are included within the bottlenecks. Furthermore, in the main part of the
bottlenecks, both Ghost modules incorporate a depth-separable convolution operation
with a 2 × 2 stride to achieve significant compression in both the width and height of the
feature layer.

4. Results and Discussion
4.1. Implementation Details
4.1.1. Dataset

Two SSS datasets, SSUTD (Side-Scan Sonar Undersea Target Dataset) and Sonar Com-
mon Target Detection Dataset (SCTD), were collected for detector training and testing. The
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SSUTD was mainly constructed by various hydrographic departments and companies by
using mainstream side-scan sonar instrumentation, and a small portion of the data were
collected from the Internet, totaling 1584 images. The SCTD mainly contains side-scan
sonar images of airplane wrecks and shipwrecks. Some samples from the SSUTD (dataset
A) and SCTD are shown in Figure 8.
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Figure 8. Selected samples from SSUTD and SCTD, both of which contain side-scan sonar images of
airplane wrecks, shipwrecks, and drowned people.

The effectiveness of deep learning algorithms hinges on the quantity and distribution
of the training datasets. When training underwater target recognition models, two chal-
lenges arise, i.e., a scarcity of images and an imbalance in the number of various target
types, which can hinder the performance of deep learning algorithms. To address these
issues, data augmentation techniques were employed to produce more synthetic side-scan
sonar images with drowned people targets, of which there were limited instances. Com-
monly used data enhancement algorithms are Gaussian noise, brightness change, image
translation, image rotation, image flipping, image scaling, image cropping, etc. [13]. The
results obtained with different data enhancement algorithms are shown in Figure 9.
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Figure 9. (a) The original image; (b–f) the data enhancement results.

Dataset A consists of 980 images of shipwrecks, 36 images of drowned people and
568 images of airplane wrecks; the SCTD consists of 266 images of shipwrecks, 34 images
of drowned people, and 57 images of airplane wrecks; and dataset B consists of data
augmented with each drowned people image based on dataset A. The datasets were each
divided into three subsets, i.e., training, validation, and test sets, in the ratio of 8:1:1. The
detailed division is shown in Table 1.

Table 1. Division of datasets.

Target
Dataset Training Set Validation Set Test Set

A SCTD B A SCTD B A SCTD B

Boat 784 213 784 98 27 98 98 26 98

Human 29 27 173 4 4 22 3 3 21

Plane 454 46 454 57 6 57 57 5 57

4.1.2. Detector Training

During model training, we utilized the Adam optimizer, initiating it with a learning
rate of 0.001, which was progressively increased to 0.01. To expedite parameter update,
we assigned a momentum value of 0.937. Proper regularization was ensured through
the careful tuning of the weight decay to 0.0005, aimed at preventing both overfitting
and underfitting. The training protocol commenced with a warm-up phase consisting
of three rounds, followed by a total of 200 training rounds. All models were trained
from the beginning without relying on any pre-trained versions. Given the challenges
in obtaining side-scan sonar image data and the limited sample size, the dataset was
divided into a training set and a validation set in an 8:2 ratio, aiming to balance model
training effectiveness with training efficiency. To expedite the experimental process while
maintaining result accuracy, varying levels of data augmentation were applied depending
on the model size.

To gain a deeper understanding of the target characteristics within the datasets, we
conducted a statistical analysis of the targets’ positional distribution across the images.
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Additionally, we examined the aspect ratios of specific targets, such as sunken ships and
aircraft, in relation to the overall dimensions of the images. The shade of the color represents
the quantity, with a darker color indicating a greater quantity. The specific statistics are
presented as shown in Figure 10.
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4.1.3. Evaluation Metrics

To evaluate the performance of the proposed model, several commonly recognized
indicators in object detection tasks were selected, including IoU, P, R, and mAP, which are
used to measure the effectiveness of object detection models. Equation (3) shows the IoU
calculation formula, where Bpre represents the predicted frame and Bgt represents the real
frame. IoU indicates the degree of overlap between the predicted frame and the real frame,
i.e., the intersection ratio between the detection result and the actual labeled frame. With
this metric, an IoU (intersection over union) threshold is set, usually to 0.5, to determine
the accuracy of the predicted frame. Predictions exceeding this threshold are considered
correct, while predictions below this threshold are considered invalid.

IoU =
Bpre ∩ Bgt

Bpre ∪ Bgt
(3)

mAP (where the IoU is usually taken as 0.5 or 0.5–0.95) is used to assess the ability of
the algorithm to correctly detect the target and is the most important evaluation metric for
detection algorithms. According to the accuracy of the prediction frame, the assessment of
the target algorithm includes four samples: TP (true positive), where an aircraft wreckage
image is correctly predicted as aircraft wreckage; TN (true negative), where a non-aircraft
wreckage image is correctly predicted as non-aircraft wreckage; FP (false positive), where a
non-aircraft wreckage image is incorrectly predicted as aircraft wreckage; FN (false nega-
tive), where an aircraft wreckage image is incorrectly predicted as non-aircraft wreckage.
Moreover, from this, several other assessment metrics can be derived:

P =
TP

TP + FP
(4)

R =
TP

TP + FN
(5)

Average precision (AP) represents the geometric area enclosed by the Precision–Recall
(P-R) curve, as illustrated in Equation (6):

AP =
∫ 1

0
p(r)dr (6)
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Furthermore, Params and FLOPs are indicators of a model’s computational space
complexity and intensity, respectively, providing insights into the model’s complexity and
the impact of making the model lightweight. FLOPs, which stands for Floating-Point
Operations, denotes the count of floating-point calculations. For convolutional layers, the
formula to calculate FLOPs is given as follows:

FLOPs = 2 × H × W × (Cin × K2 + 1)× Cout (7)

4.2. Performance Evaluation

Figure 11 displays the confusion matrix for the proposed model. The horizontal
axis denotes the actual values, while the vertical axis indicates the predicted values. It is
evident from the matrix that a significant portion of the predictions align with the actual
values. Figure 12 compares the mAP@0.5 curves of the improved model, DBnet, against the
YOLOv8 model. Upon convergence, DBnet’s curve surpasses YOLOv8’s, demonstrating
faster and more stable convergence. The experimental data reveal that DBnet not only
converges more efficiently (faster and more stably) but also outperforms YOLOv8 in
detection quality and model complexity.
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The two detectors were tested on the test set and the comparison of mAP, GFLOPs,
and parameters is shown in Table 2.
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Table 2. Model performance evaluation.

Detector mAP@0.5 mAP@0.5-0.95 Parameters GFLOPs 1

YOLOv8n 88.2 61.9 3006233 8.1
DBnet 90.5 67.3 2010617 5.6

1 Giga Floating-Point Operations Per Second (GFLOPs), one billion floating-point operations per second.

A Precision–Recall curve plots precision on the vertical axis and recall on the horizontal
axis. Since there is often a trade-off between precision and recall, the P-R curve offers a
comprehensive assessment of a model’s performance. The P-R curves depicted in Figure 13
showcase the experimental outcomes of YOLOv8 and the proposed DBnet model under
identical conditions. These curves present the AP@0.5 values for individual categories
and the overall mAP@0.5. Notably, the proposed algorithm boosts mAP@0.5 from 88.2%
to 90.5%, marking a 2.3% improvement. It is worth mentioning that in YOLOv8’s results,
the AP value for the “human” category, characterized by small target sizes, was only
76.5%, but it increased to 82% with the proposed improvements. This particular category
saw significant enhancements compared with the baseline model. Despite the reduction
in AP for the detection of shipwreck targets, the enhancement in the detection of aircraft
wreckage is significant, and overall, there is a significant improvement in detection accuracy
compared with the YOLOv8 model.
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Figure 13. P-R curves of YOLOv8n and DBnet: (a) P-R curve of YOLOv8n detector; (b) P-R curve of
DBnet detector.

For inference, we used the SAHI algorithm, which utilizes the principle of sliding
slices to crop the large-size input map into multiple slices with a certain overlap rate before
inputting it into the detector in order to improve accuracy in detecting small targets, which
is implemented as shown in Figure 14.

It can be found that the shipwrecks in the image can be accurately identified after
using SAHI as in Figure 15b, which avoids the situation in Figure 15a, in which the terrain
undulation in the background is misjudged as a shipwreck. It can be seen that the use
of SAHI can effectively improve the detection accuracy of the model for small targets,
especially for large-size images such as side-scan sonar waterfall maps, as it prevents small
targets from being missed and large targets from being falsely detected due to the image
compression caused by the input network, thus optimizing overall model performance.
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4.3. Ablation Study

To verify the impact of different backbone network choices on model performance
and the generalization of the model on different datasets, we conducted comparative
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experiments. Firstly, in terms of the selection of backbone networks, the proposed dual-
backbone detector model compensates for the sparse characteristics of target features in side-
scan sonar images. At the same time, in order to achieve the lightweight implementation
of the model and facilitate engineering deployment, we chose the current mainstream
lightweight backbone network for the combination experiments. The experimental results
are shown in Table 3.

Table 3. Experimental results on different datasets. Bolded font indicates proposed method.

Backbone Params GFLOPs mAP@0.5 mAP@0.5-0.95 mAP@0.5 mAP@0.5-0.95 mAP@0.5 mAP@0.5-0.95

Dataset SSUTD SSUTD + Data Augmentation SCTD

Darknet-53
(YOLOv8) 3006233 8.1 88.2 64.5 98.3 77.6 73.8 48

MobileNetV3 2351771 5.7 80.1 58.5 96.7 73.6 62.4 45.9
PP-LCNet 1727461 5 84.2 56.3 96.9 72.4 62.9 45.8

EfficientNet 1907061 5.6 85.6 61.2 98.1 75.9 68.4 42.4
ShuffleNetv2 1710809 5 85.4 52.7 96.9 70 63.4 40.2

GhostNet 1714661 5 89.8 64.3 98.4 77.4 77.6 45
GhosNet +

ShuffleNetv2 2511993 7 89.6 65.7 98.2 76.5 74.8 50.9

PP-LCNet +
ShuffleNetv2 1439461 4.5 85.9 57.2 96.1 67.7 69.9 50

PP-LCNet +
GhostNet 2010617 5.6 90.5 67.3 98.5 76.8 80.4 55.1

From the table data, we can see that DBnet marks a significant improvement in the
mAP value compared with most of the single-backbone models considered. Although
the number of parameters and the GFLOPs of the proposed dual-backbone network are
not the smallest metrics, in the comprehensive detection performance index of mAP, the
proposed algorithm not only shows better detection performance but also has the great
advantage of the model’s lightweight degree compared with other networks, which can
meet the demand of real-time target detection in side-scan sonar images and lightweight
engineering deployment.

Since the proposed detector uses a dual-backbone network to extract features through
class multimodal data, which is very different from the baseline model (YOLOv8), we
streamlined the neck part of the baseline model. Specifically, we discarded the use of
upsampling in the original model to fuse small-size features from high-level convolution
with large-size ones from low-level convolution because upsampling often results in some
negative effects, such as noise amplification. Therefore, we simplified the neck part, and in
order to verify the results of the simplification, we performed the following experiment.
The experimental results are shown in Table 4.

Table 4. Results of simplified neck experiment.

Module mAP@0.5 (%) mAP@0.5-0.95 (%) Params GFLOPs

Original neck 90.2 68.1 2195129 5.8
Simplified neck 90.5 67.3 2010617 5.6

The experimental results show that using the original structure in the neck not only
results in redundant computation but also hardly contributes to the enhancement in the
model’s effectiveness. Therefore, we introduced the streamlined neck structure into the
model’s structure, which can adequately provide the fusion of the features extracted from
the dual feature extraction backbone and, at the same time, contribute to making the model
lightweight to a certain extent.
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5. Conclusions
Aiming at addressing the problems of existing target detection models with many

parameters, long computation time, and high computing requirements, we developed
DBnet, and in order to make it lightweight, we selected a lightweight backbone network;
at the same time, in order to solve the problem of accuracy loss caused by this choice, we
designed a two-branch structure, that is, we employed a dual-backbone network for target
feature extraction. This enables the model to mine more target feature information from the
image and realize efficient feature extraction and fusion even if the input consists of single-
mode data. In addition, on account of this two-branch structure, we only need to fuse the
corresponding feature layers in the neck to allow the model to better characterize the target.
While maintaining high detection accuracy, the number of parameters and computation
amount of the model are greatly reduced, achieving a balance between detection speed and
accuracy. Finally, for addressing the problem that original waterfall maps of side-scan sonar
are large in size and prone to the loss of detail information after their input into the network,
we adopted the slice-assisted hyper-inference (SAHI) technique, which splits large-size
images into multiple small-size images for inference, improving target detection accuracy
by fusing the detection results of each slice. Compared with the baseline model, DBnet
presents 33% fewer parameters and 31% less computation (GFLOPs) while maintaining
accuracy, which is especially important in resource-limited environments. The effectiveness
of DBnet is further confirmed by test results on the SSUTD and SCTD, with the mAP values
improving by 2.3% and 6.6%, respectively. In addition, the lightweight design of DBnet
makes it easier to deploy in engineering applications, especially in mission scenarios such
as AUV underwater target detection, that require real-time detection capabilities.
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