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Abstract: This paper proposes an innovative algorithm for forecasting the motion response
of floating offshore wind turbines by employing force-to-motion transfer functions and
state-space models. Traditional numerical integration techniques, such as the Newmark-β
method, frequently struggle with inefficiencies due to the heavy computational demands
of convolution integrals in the Cummins equation. Our new method tackles these chal-
lenges by converting the problem into a system output calculation, thereby eliminating
convolutions and potentially enhancing computational efficiency. The procedure begins
with the estimation of force-to-motion transfer functions derived from the hydrostatic
and hydrodynamic characteristics of the wind turbine. These transfer functions are then
utilized to construct state-space models, which compactly represent the system dynam-
ics. Motion responses resulting from initial conditions and wave forces are calculated
using these state-space models, leveraging their poles and residues. We validated the pro-
posed method by comparing its calculated responses to those obtained via the Newmark-β
method. Initial tests on a single-degree-of-freedom (SDOF) system demonstrated that our
algorithm accurately predicts motion responses. Further validation involved a numerical
model of a spar-type floating offshore wind turbine, showing high accuracy in predicting
responses to both regular and irregular wave conditions, closely aligning with results
from conventional methods. Additionally, we assessed the efficiency of our algorithm
over various simulation durations, confirming its superior performance compared to tradi-
tional time-domain methods. This efficiency is particularly advantageous for long-duration
simulations. The proposed approach provides a robust and efficient alternative for predict-
ing motion responses in floating offshore wind turbines, combining high accuracy with
improved computational performance. It represents a promising tool for enhancing the
development and evaluation of offshore wind energy systems.
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1. Introduction
In recent years, renewable energy technologies have advanced significantly, with

wind power playing a pivotal role in global initiatives to lower carbon emissions and
shift towards sustainable energy sources. While conventional fixed-bottom offshore wind
turbines have been successfully deployed worldwide, their expansion faces challenges
in deeper waters and regions with challenging seabed conditions [1]. To overcome these
limitations, floating offshore wind turbines have become a compelling solution, providing
the ability to capture wind energy in deeper offshore environments where wind resources
are abundant and accessible [2]. Unlike fixed offshore wind turbines, the floating foundation
allows turbines to be positioned far from shore, opening vast new areas for offshore wind
energy development. However, the environment in deep and distant seas is more complex
and harsh, which necessitates greater attention to the service safety of floating offshore
wind turbines [3]. Good stability is essential for the safe operation of floating offshore wind
turbines, making motion response prediction crucial to ensure their safety and reliability.

Several methods are available for predicting the motion response of floating offshore
wind turbines, with the choice of method influenced by factors such as budget and time
constraints, desired accuracy, and the stage of the design cycle [2]. Faraggiana et al. [4]
have detailed the connections between fidelity, computational efficiency, and the various
design stages of motion response prediction algorithms for floating offshore wind turbines.
Among these methods, computational fluid dynamics (CFD) methods are high fidelity
approaches that can accurately simulate the aerodynamic and hydrodynamic behaviors of
offshore wind turbines [5]. The dynamic properties of offshore wind turbines vary with
operational and environmental conditions, such as changes in tower stiffness due to rotor
speed variations [6]. These factors can also be incorporated into the refined modeling of
CFD. Consequently, researchers frequently employ CFD methods to analyze the dynamic
performance of offshore wind turbines [7,8]. Li et al. [9] proposed a dynamic overset
grid technology to simulate the NREL phase VI wind turbine, using CFD methods to
determine aerodynamic parameters, including total power, thrust, sectional normal force,
and local pressure. Cai et al. [10] employed CFD method to analyze the aerodynamic
behavior of offshore wind turbines, highlighting the correlation between the drag force on
the tower and the phase of combined surge–pitch motion, as well as the rotor thrust and its
phase in relation to the combined surge–pitch motion. In addition to aerodynamics, the
hydrodynamics of offshore wind turbines are essential to dynamic analysis, as the coupling
of aerodynamic and hydrodynamic forces act on the turbines simultaneously. Dynamic
performance analysis of offshore wind turbines, accounting for both wave and wind effects,
can be conducted through fully coupled CFD simulations [11]. Tran and Kim [12] used
CFD to simulate the fluid–structure interaction of an offshore wind turbine, incorporating
the effects of aero-hydrodynamic coupling. Their results showed a strong correlation
between aerodynamic loads and the motion of the floating platform. Zhou et al. [13]
examined the influence of wave type and wave steepness on the hydro/aerodynamic
performance of the floating offshore wind turbines using CFD. Their findings indicated
that the aerodynamic performance of the turbine is minimally impacted by wave type
and wave steepness, and that reconstructed focused waves can be used to simulate the
hydrodynamic characteristics of extreme waves. Despite the high fidelity of CFD methods,
the computational complexity poses significant challenges. The large scale of the structures
leads to inefficient computation, making CFD methods less convenient for the improvement
of offshore wind turbine design [14,15].

Different from the CFD method, which solves Navier–Stokes equations, the potential
flow theory assumes that the fluid surrounding offshore wind turbines is inviscid, irro-
tational, and incompressible, simplifying the fundamental equations of fluid dynamics.
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Under these assumptions, the motion prediction of large-sized floating offshore wind
turbines using potential flow theory requires fewer computing resources. The first-order
potential theory is typically applied to calculate the motion of floating offshore platforms
subjected to wave force excitation [16,17]. The approach decomposes waves into single-
frequency components and calculates the corresponding response amplitude operators
(RAOs). The motion response can then be obtained by superposing these single-frequency
components [18]. This approach is convenient and efficient for predicting the motion
response of floating offshore wind turbines. However, RAOs are the quantities in frequency
domain, meaning only steady-state motions responses can be obtained [19]. To capture
the transient response of floating structures under the potential flow theory, Cummins [20]
introduced an equation to govern the motion of floating structures, known as the Cummins
equation, which utilizes a combination of added inertia force and a convolution integral
related to the hydrodynamic parameters of floating offshore wind turbines to represent the
radiation force. These hydrodynamic parameters can be determined using the frequency
domain Green’s function [21–23], making the Cummins equation an indirect time-domain
method. Based on these hydrodynamic parameters, the added mass and retardation func-
tion in the Cummins equation can be calculated [24], compensating for the inability of
transient response analysis. The Cummins equation combines the advantages of the fast
computation of hydrodynamic coefficients in the frequency domain with the ability to
perform transient analysis in the time domain, making it widely applied in the motion
response analysis of floating offshore wind turbines [25–27]. To obtain the motion response
of floating offshore wind turbines, numerical methods are commonly used to obtain the
solution to the Cummins equation. However, when solving the Cummins equation using
numerical integration methods, each step involves the time-consuming process of convolv-
ing the velocity at the current time step with the retardation function from previous time
steps [8], which also makes the development of standardized calculation packages more
difficult [28].

To address the computational challenges of the convolution integral and improve effi-
ciency, various studies have proposed solutions that can be categorized into two principal
types: frequency or Laplace domain methods and state-space methods. In the frequency or
Laplace domain, convolution terms are transformed into product terms, simplifying the
complex convolution integral. The motion response of floating offshore wind turbines can
subsequently be determined by employing the inverse Fourier or Laplace transform. Un-
like the vibrating equation of fixed offshore structures, the velocity coefficients of floating
offshore structures are frequency-dependent or relative to Laplace variable. To analytically
represent these coefficients, Liu et al. [29] used a complex exponential to represent the
retardation function and obtained an analytical solution of the retardation function in the
Laplace domain. Using the Laplace transform, the frequency response of floating struc-
tures is determined, eliminating the need for convolution term calculations. Lu et al. [19]
proposed an approach using poles and residues to analyze the floating structure response.
Through the application of the Laplace transform to the Cummins equation and the cal-
culation of transfer function poles and residues, they were able to accurately evaluate the
dynamic behavior of floating offshore wind turbines while avoiding the accumulative errors
associated with convolution integrals. On the other hand, statespace model-based methods
effectively handle convolution term calculations. Perez and Fossen [30] applied state-space
models to estimate the convolution terms, using frequency domain methods to deter-
mine the parameters from frequency-dependent hydrodynamic parameters. Taghipour
et al. [8] summarized methods for analyzing the dynamic response of floating structures
applying state-space approaches, including the transformation of convolution terms into
a state-space formulation and the use of a state-space model for the force-to-motion re-
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sponse. Although they presented three methods for estimating the state-space models
of convolution terms, they did not describe methods for estimating state-space models
associated with force-to-motion responses. Lu et al. [31] proposed a method to estimate the
state-space models corresponding to the force-to-motion response of floating structures,
applying it to the motion calculation of an offshore wind turbine. While these studies have
addressed the convolution integral problem, some deficiencies remain. For example, when
using Fourier or Laplace transform methods to determine the motion of floating offshore
wind turbines, transient responses cannot be obtained, or the excitation needs to be linear.
Additionally, methods using state-space models to substitute the force-to-motion response
cannot compute the response induced by the initial conditions, such as displacement and
velocity, in offshore wind turbines.

Unlike the methods mentioned above, the purpose of this research is to construct
state-space models corresponding to the force-to-motion transfer relationship and build a
computational framework for the transient response resulting from initial displacement
and velocity of floating offshore wind turbines. The goal of this approach is to assess the
motion response due to both the exciting force and initial conditions. Different from the
traditional time or frequency domain methods, the primary objective of the study is to
develop an efficient and accurate dynamic response calculation method that addresses the
limitations of time-domain methods, such as error accumulation and low computational
efficiency, as well as the frequency-domain methods, which can only compute steady-state
responses. The algorithm initially utilizes the Laplace transform for the Cummins equation,
obtaining the transfer functions for force-to-motion and initial conditions-to-motion. Next,
the coefficients of the rational fraction related to the transfer functions are determined via
a frequency domain fitting method. Based on the obtained coefficients, the state-space
models associated with the force-to-motion relationship are constructed, and the transient
motion responses resulting from initial conditions are expressed using a pole–residue
form. The proposed method uses state-space models to calculate the response induced
by external load and employ poles and residues to account for the response caused by
initial conditions, thereby avoiding convolution calculations and significantly improving
both computational efficiency and accuracy. The performance of the proposed method
was validated using two numerical models. The first case involves a simple single degree
of freedom (SDOF) system with an analytical solution, which was used to demonstrate
the process and validate the proposed algorithm. The second example features a spar-
type floating offshore wind turbine, employed to assess the accuracy and computational
efficiency of the proposed algorithm.

2. Materials and Methods
2.1. Preliminaries
2.1.1. Laplace Transform

Laplace transform is one of the most commonly used methods in the domain of
dynamic analysis. For a vibrating signal x(t), the corresponding Laplace transform can be
expressed as follows:

x̃(s) = L[x(t)] =
∫ ∞

0 x(t)e−stdt, t ≥ 0 (1)

where L[·] donates the Laplace transform, and s is the Laplace variable.
The motion governing equation of floating offshore wind turbines typically involves

the velocity and acceleration of floating foundation. The properties of Laplace transform
can be utilized to establish the connection as follows:

L
[ .
x(t)

]
= sx̃(s)− x(0) (2)
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L
[ ..
x(t)

]
= s2 x̃(s)− sx(0)− .

x(0) (3)

where
.
x(t) and

..
x(t) are the first and second derivative of displacement, respectively, and

x(0) and
.
x(0) are the initial conditions.

2.1.2. Parameter Estimation of Transfer Function Using Frequency-Domain Regression
Fitting Method

The motion of floating offshore wind turbines can be modeled as the output of a
system, with the transfer function describing the association between the system’s inputs
and outputs. In control theory, the transfer function can be represented using a rational
fraction as follows:

H(s) =
P(s)
Q(s)

=
pmsm + pm−1sm−1 + · · ·+ p0

sn + qn−1sn−1 + · · ·+ q1s + q0
(4)

where pm, pm−1, · · · , p0 and qn−1, qn−2, · · · , q0 are the polynomial coefficients in the
numerator and denominator of the rational fraction, respectively.

Generally, the discrete transfer function can be calculated using numerical method or
estimated through experimental methods. To represent the system as a rational fraction, it
is necessary to estimate the coefficients of the numerator and denominator polynomials.
These coefficients are typically unknown and can be represented using a function of discrete
transfer function as follows:

Ĥ(s) =
P(s, θ)

Q(s, θ)
=

p̂msm + p̂m−1sm−1 + · · ·+ p̂0

sn + q̂n−1sn−1 + · · ·+ q̂1s + q̂0
(5)

where
θ =

[
p̂m p̂m−1 · · · p̂0 q̂n−1 · · · q̂1 q̂0

]
(6)

The estimation of vector θ involves solving a nonlinear fitting problem. This requires
finding a series of coefficients that minimizes the discrepancy between the known discrete
transfer function and the values calculated using the rational fraction model. To simplifying
the fitting process, a weighted fitting method can be employed. This approach converts the
nonlinear least-squares problem into a quasi-linear regression issue. The fitting method
involves using iterative weighting coefficients to refine the estimate of θ as follows:

θ’ = min
θ

∑
l

sl,N−1|Q(iωl , θN)H(iωl)− P(iωl , θN)|2 (7)

in which
sl,N−1 =

1
Q(iωl , θN−1)

(8)

where sl,N−1 is the weighting coefficient, N is the iteration number, and l is the index for
discrete frequency. Since the initial Q(iωl , θN−1) is unknown, sl,0 is typically set to 1 to
operate the quasi-linear regression. After several iterations, the vector θ will converge to
values that minimize the discrepancy between the known discrete transfer function and the
rational fraction model. This iterative process results in the estimation of the polynomial
coefficients in the numerator and denominator.

2.2. Motion Prediction of Floating Offshore Wind Turbines Using State-Space Model
2.2.1. Motion Governing Equation of Floating Offshore Wind Turbines in Time and
Laplace Domain

In order to describe the motion of floating offshore wind turbine structure, potential
theory is applied to calculate the hydrodynamic, with the assumption of an ideal fluid. The
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motion behavior of floating offshore wind turbines can be represented by the Cummins
equation [32]:

(M + Ma)
..
x(t) +

∫ t

0
K(t − τ)

.
x(τ)dτ + Bx(t) + Cx(t) = f(t) (9)

where M is the mass matrix; Ma and K(t) are the added mass matrix and retardation
function matrix, which are associated with the radiation potential; B is the viscous damping
matrix; C is the restoring matrix; x(t),

.
x(t), and

..
x(t) are the displacement, velocity, and

acceleration of floating offshore wind turbines; and f(t) refers to the wave force related to
the incident and diffraction potential.

Equation (9) describes the motion dynamics of floating offshore wind turbines. How-
ever, the presence of the convolution term makes it inconvenient to solve the Cummins
equation using numerical methods, buildup reduced computational efficiency, and signif-
icant accumulated error [33]. In order to address these issues, the Laplace transform is
performed on Equation (9), obtaining the following formula in the Laplace domain:

(M + Ma)
[
s2~

x(s)− sx0 − v0

]
+

~
K(s)

[
s

~
x(s)− x0

]
+ sB

~
x(s) + C

~
x(s) =

~
f(s) (10)

where x0 and v0 are the initial conditions of floating offshore wind turbines,
~
x(s) and

~
f(s)

correspond to the Laplace transform of x(t) and f(t), respectively.
Rewriting Equation (10), the following expression can be obtained:

Z(s)
~
x(s) =

~
f(s) +

[
s(M + Ma) +

~
K(s)

]
x0 + (M + Ma)v0 + Bx0 (11)

where Z(s) is the impedance function, expressed as:

Z(s) = s2(M + Ma) + s
[ ~
K(s) + B

]
+ C (12)

Based on Equation (11), the motion of floating offshore wind turbines can be viewed
as resulting from wave force, initial displacement and velocity, respectively. The left part
of the equation is connected to the motion response and the system involving floating
offshore wind turbines and the surrounding fluid. The right part of the equation includes
contributions from the wave force, initial displacement and velocity. By separating these
contributions, one can analyze the effects of each component on the dynamic response of
the system.

To calculate the motion response, the Laplace transform of displacement is expressed
as the following:

~
x(s) = H1(s)

~
f(s) + H1(s)[(M + Ma)v0 + Bx0] + H2(s)(M + Ma)x0 + H3(s)x0 (13)

where
H1(s) =

1
Z(s)

(14)

H2(s) =
s

Z(s)
= sH1(s) (15)

H3(s) =
~
K(s)
Z(s)

=
~
K(s)H1(s) (16)

H1(s), H2(s), and H3(s) are the transfer functions, illustrating the relation between inputs
and outputs of the system. According to Equations (13)–(16), the motion response of
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floating offshore wind turbines can be obtained using transfer functions and system inputs,
which include wave force and initial displacement and velocity.

2.2.2. Cummins Equation in Frequency Domain and Transform Function Decoupling

To predict the dynamic motion of floating offshore wind turbines, obtaining the
transfer functions is essential. However, the irregularity of the wet surface on floating
offshore wind turbines makes it challenging to derive analytical expressions for these
transfer functions. Instead, the hydrodynamic parameters of floating offshore wind turbines
are typically calculated with numerical methods, which results in discrete values for
these parameters. To establish the connection between the transfer function and the
hydrodynamic parameters, the Fourier transform is applied to Equation (9). This leads to
the following expression for the Cummins equation in the frequency domain:

−ω2(M + Ma)
~
x(iω) + iω

~
K(iω)

~
x(iω) + iωB

~
x(iω) + C

~
x(iω) =

~
f(iω) (17)

where ω denotes the radian frequency of incident wave, i denotes the imaginary unit;
~
x(iω),

~
K(iω), and

~
f(iω) denote the Fourier transform of retardation function and wave

force, respectively.
The frequency domain representation allows for the transfer functions to be derived

from the hydrodynamic parameters, making it possible to calculate the motion response
efficiently using numerical methods. According to Euler’s formula, the relationship below
can be obtained:

~
K(iω) =

∫ ∞

−∞
K(t)e−iωtdt = KR(ω)− iKI(ω) (18)

in which
KR(ω) =

∫ ∞

−∞
K(t) cos ωtdt (19)

KI(ω) =
∫ ∞

−∞
K(t) sin ωtdt (20)

where KR(ω) and KI(ω) represent the real and imaginary part of
~
K(iω), respectively.

Substituting Equation (18) into Equation (17), the Cummins equation in the frequency
domain is represented as the following:

−ω2[M + A(ω)]
~
x(iω) + iω[B(ω) + B]

~
x(iω) + C

~
x(iω) =

~
f(iω) (21)

in which
A(ω) = Ma −

1
ω

KI(ω) = Ma −
1
ω

∫ ∞

−∞
K(t) sin ωtdt (22)

B(ω) = KR(ω) =
∫ ∞

−∞
K(t) cos ωtdt (23)

where A(ω) and B(ω) represent the added mass potential damping, which can be calcu-
lated using hydrodynamic software.

According to Equation (22), the added mass matrix can be obtained by frequency-
dependent added mass as follows:

Ma = lim
ω→∞

A(ω) = A(∞) (24)
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Substituting Equations (22)–(24) into Equation (18), the following expression represents
the Fourier transform of the retardation function using the hydrodynamic parameters of
floating offshore wind turbines:

~
K(iω) = B(ω)− iω[A(∞)− A(ω)] (25)

Similarly, the impedance function can also be represented using hydrodynamic parameters:

Z(iω) = −ω2[M + A(ω)] + iω[B(ω) + B] + C (26)

Substituting Equations (25) and (26) into Equations (14)–(16), the transfer functions
expressed using radian frequency are obtained as follows:

H1(iω) =
1

−ω2[M + A(ω)] + iω[B(ω) + B] + C
(27)

H2(iω) =
iω

−ω2[M + A(ω)] + iω[B(ω) + B] + C
(28)

H3(iω) =
B(ω)− iω[A(∞)− A(ω)]

−ω2[M + A(ω)] + iω[B(ω) + B] + C
(29)

With reference to the hydrodynamic parameters of floating offshore wind turbines,
the transfer functions that relate the inputs (wave force, initial displacement and velocity)
to the motion response can be derived. These transfer functions are essential for calculating
the motion response using state-space model.

It is evident that the transfer functions are coupled across different degrees of freedom,
making the estimation of the corresponding state-space models impractical. To address
this issue, it is necessary to implement decoupling processes for the transfer functions.
According to Equations (27) and (28), the transfer functions are determined by the hydrody-
namic parameters of floating offshore wind turbines. In practical hydrodynamic analysis,
numerical methods are commonly used to compute the discrete hydrodynamic parameters,
such as A(ωl) and B(ωl) for discrete frequencies ωl(l = 1, 2, · · · , L).

Substituting the discrete hydrodynamic parameters A(ωl) and B(ωl) into
Equations (27)–(29), the discrete transfer functions are obtained as follows:

H1(iωl) = [Z(iωl)]
−1 =


Z11(iωl) Z12(iωl) · · · Z16(iωl)

Z21(iωl) Z22(iωl) · · · Z26(iωl)
...

...
. . .

...
Z61(iωl) Z62(iωl) · · · Z66(iωl)


−1

(30)

H2(iωl) = [Z(iωl)]
−1 = iωl


Z11(iωl) Z12(iωl) · · · Z16(iωl)

Z21(iωl) Z22(iωl) · · · Z26(iωl)
...

...
. . .

...
Z61(iωl) Z62(iωl) · · · Z66(iωl)


−1

(31)

H3(iω) =
~
K(iω)[Z(iωl)]

−1 =
K̃11(iωl) K̃12(iωl) · · · K̃16(iωl)

K̃21(iωl) K̃22(iωl) · · · K̃26(iωl)
...

...
. . .

...
K̃61(iωl) K̃62(iωl) · · · K̃66(iωl)


−1

Z11(iωl) Z12(iωl) · · · Z16(iωl)

Z21(iωl) Z22(iωl) · · · Z26(iωl)
...

...
. . .

...
Z61(iωl) Z62(iωl) · · · Z66(iωl)


−1

(32)
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where Zjk(iωl) and K̃jk(iωl) j = 1, 2, · · · , 6; k = 1, 2, · · · , 6 are the element of Z(iωl) and
~
K(iω), respectively.

According to Equations (30)–(32), the discrete transfer functions have been calculated,
indicating that the transfer functions are decoupled. The next phase involves estimating
the corresponding state-space model from these discrete transfer functions.

2.2.3. Parameters of State-Space Model Estimation

According to Equation (13), the first component on the right-hand side denotes the
response caused by wave force, while the last three terms are corresponding to the response
due to initial displacement and velocity. Performing the inverse Laplace transform on
Equation (13) yields the motion response of offshore wind turbines, as shown below:

x(t) =
∫ t

0
h1(τ)f(t − τ)dτ + h1(t)[(M + Ma)v0 + Bx0] + h2(t)(M + Ma)x0 + h3(t)x0 (33)

where h1(t), h2(t), h3(t) are the inverse Laplace transform of H1(s), H2(s), H3(s), respec-
tively. These reflect the corresponding impulse response function.

According to the control theory, the impulse response function is represented in terms
of a state-space model, where the convolution term is treated as the system’s output. To
illustrate this, consider a single element from the first term of Equations (13) and (33) for
simplicity. The following expression represents the motion response caused by wave force:

x(t) =
∫ t

0
h1(τ) f (t − τ)dτ (34)

Here, x(t) is an element of x(t), h1(τ) is a component of h1(t), and f (t) is a component
of f(t) (the wave force input). This convolution integral provides the motion response due
to wave forces by combining the impulse response with the input force over time.

A system’s transfer function is given by the ratio of the Laplace transform of the output
to the Laplace transform of the input. It is given by the following equation:

H1(s) =
x̃(s)
f̃ (s)

=
pmsm + pm−1sm−1 + · · ·+ p0

sn + qn−1sn−1 + · · ·+ q1s + q0
(35)

where H1(s), x̃(s) and f̃ (s) are the element of H1(s),
~
x(s) and

~
f(s).

Because the highest order of the element of impedance function is second-order, the
transfer function of the system has a relative degree of 2, which implies that the order
n of the transfer function is m + 2. Based on Equations (5)–(8) and the discrete transfer
functions, the parameters of the numerator and denominator polynomials of the rational
fraction can be estimated. This process involves fitting the discrete data to determine the
coefficients of the transfer function.

According to Equation (35), the transfer function can be formulated in the following
pole-residue form:

H1(s) =
x̃(s)
f̃ (s)

=
n

∑
j=1

γj

s − λj
(36)

where λj and γj are the poles and residues of the transfer function. It is obviously that the
roots of sn + qn−1sn−1 + · · ·+ q1s + q0 = 0 are the poles, and the corresponding residues
are calculated using γj = lims→λj(s − λj)H1(s).
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Based on Equation (36), the Laplace transform of the system’s output is determined by
the poles and residues as follows:

x̃(s) =
n

∑
j=1

γj

s − λj
f̃ (s) =

n

∑
j=1

γjZj(s) (37)

and the Laplace transform of the input to the system is given by:

f̃ (s) = sZj(s)− λjZj(s) (38)

where Zj(s) is a auxiliary variable.
Implementing inverse Laplace transform to Equations (37) and (38), the following

expressions give the output and input of the system in the time domain:

x(t) =
n

∑
j=1

γjzj(t) (39)

f (t) =
.
zj(t)− λjzj(t) (40)

where zj(t) corresponds to the inverse Laplace transform of Zj(s).
To describe the connection between the output and input of the system in matrix form

using a state-space model, Equations (39) and (40) can be converted as follows:{ .
z(t) = Az(t) + B f (t)
x(t) = Cz(t)

(41)

where

z(t) =


z1(t)
z2(t)

...
zn(t)

,A =


λ1

λ2
. . .

λn

,B =


1
1
...
1

, C =
[
γ1 γ2 · · · γn

]
(42)

The matrices A, B, and C construct the state-space model corresponding to an element
of the transfer function H1(s). Utilizing the state-space model, the motion response of the
floating offshore wind turbine induced by wave force can be further determined.

2.2.4. Motion Response Calculation of Floating Offshore Wind Turbines

The motion response caused by wave force can be considered as the system’s output
based on the estimated state-space model. Meanwhile, the motion response of floating
offshore wind turbines due to initial displacement and velocity is also a part of the total
response. According to Equation (33), the motion due to initial conditions is related to
the impulse response functions of h2(t) and h3(t). To calculate the function of h2(t), the
element of H1(s) is substituted into Equation (15)

H2(s) = sH1(s) =
p̂msm+1 + p̂m−1sm + · · ·+ p̂0s
sn + q̂n−1sn−1 + · · ·+ q̂1s + q̂0

(43)

And then, the element of the transfer function H2(s) can be represented in pole-residue
form as shown below:

H2(s) =
n

∑
j=1

δj

s − λj
(44)

where δj is the residue, which is calculated by the limitation of δj = lims→λj(s − λj)H2(s).
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Unlike H2(s), the transfer function H3(s) is related to
~
K(s) and H1(s) based on

Equation (16).
~
K(s) can also be represented by a rational fraction with a relative degree of

1 [8]. Considering that the relative degree of the rational fraction of H1(s) is 2, the relative
degree of H3(s) is 3. Equations (5)–(8) are employed to determine the coefficients of the
rational fraction of H3(s), and the element of H3(s) can be further written in pols-residue
form as follows:

H3(s) =
ârsr + âr−1sr−1 + · · ·+ â0

sr+3 + b̂r+2sr+2 + · · ·+ b1s + b̂0
=

r+3

∑
j=1

µj

s − νj
(45)

where µj and νj are the pole and residue of H3(s).
Implementing inverse Laplace transform to Equations (36), (44), and (45), the impulse

response functions are obtained as follows:

h1(t) =
n

∑
j=1

γje
λjt (46)

h2(t) =
n

∑
j=1

δje
λjt (47)

h3(t) =
r+3

∑
j=1

µje
νjt (48)

Substituting Equations (41) and (46)–(48) into Equation (33), the state-space model
and impulse response functions can be used to determine the motion response of a floating
offshore wind turbine, considering both wave force and initial conditions.

2.3. Execution Steps of Proposed Algorithm

To execute the proposed algorithm of structural response prediction of floating offshore
wind turbines based on force-to-motion transfer functions and state-space models, the
following steps are employed:

(1) The Laplace transform is applied to the Cummins equation using Equation (9)
to obtain the impedance function of force-to-response, and the transfer functions of
Equations (14)–(16) are calculated further, which are used to express the motion response
in Laplace domain.

(2) Implementing inverse Laplace transform using Equation (33), the motion response
of offshore wind turbines can be expressed by impulse response functions, which displays
the relationship between wave force, initial conditions, and motion response.

(3) Applying Fourier transform to the Cummins equation and substituting the discrete
hydrodynamic parameters of A(ωl) and B(ωl), the decoupling transfer functions can be
obtained using Equations (30)–(32).

(4) Substituting the decoupling transfer functions into Equations (5)–(8), the corre-
sponding transfer functions can be expressed using rational fraction.

(5) Based on the parameters of the rational fraction, the state-space models can be
constructed using Equations (35)–(42), and the corresponding impulse response functions
are calculated applying Equations (43)–(48).

(6) Substituting the estimated state-space models and impulse response functions
into Equation (33), the motion responses induced by wave force and initial conditions
are calculated.

The flow diagram of the proposed algorithm is shown as Figure 1. According to the
procedures, the structural response of floating offshore wind turbines can be predicted.



J. Mar. Sci. Eng. 2025, 13, 160 12 of 35

J. Mar. Sci. Eng. 2025, 13, x FOR PEER REVIEW 12 of 35 
 

 

(3) Applying Fourier transform to the Cummins equation and substituting the dis-

crete hydrodynamic parameters of ( )lA  and ( )lB , the decoupling transfer functions 

can be obtained using Equations (30)–(32). 

(4) Substituting the decoupling transfer functions into Equations (5)–(8), the corre-

sponding transfer functions can be expressed using rational fraction. 

(5) Based on the parameters of the rational fraction, the state-space models can be 

constructed using Equations (35)–(42), and the corresponding impulse response functions 

are calculated applying Equations (43)–(48). 

(6) Substituting the estimated state-space models and impulse response functions 

into Equation (33), the motion responses induced by wave force and initial conditions are 

calculated. 

The flow diagram of the proposed algorithm is shown as Figure 1. According to the 

procedures, the structural response of floating offshore wind turbines can be predicted. 

 

Figure 1. Flow diagram of the proposed algorithm. 

3. Results 

Two test cases, an SDOF system and a numerical model of spar-type floating offshore 

wind turbine, are applied to the proposed method. The results are compared with that of 

Newmark-β method to demonstrate the performance of the proposed method. The soft-

ware MATLAB R2016b is utilized to implement the analysis process, including interme-

diate steps and motion response calculations. 

3.1. Test Case: Analytical SDOF Model 

To demonstrate the proposed algorithm, an analytical single degree of freedom 

(SDOF) model is applied initially. This model does not represent any practical system but 

symbolically signifies the uncoupled heave motion of floating offshore structures. The 

Figure 1. Flow diagram of the proposed algorithm.

3. Results
Two test cases, an SDOF system and a numerical model of spar-type floating offshore

wind turbine, are applied to the proposed method. The results are compared with that of
Newmark-β method to demonstrate the performance of the proposed method. The software
MATLAB R2016b is utilized to implement the analysis process, including intermediate
steps and motion response calculations.

3.1. Test Case: Analytical SDOF Model

To demonstrate the proposed algorithm, an analytical single degree of freedom (SDOF)
model is applied initially. This model does not represent any practical system but sym-
bolically signifies the uncoupled heave motion of floating offshore structures. The SDOF
model is analytical, and the theoretical values corresponding to hydrostatic and hydrody-
namic parameters are known. These theoretical values can be employed to validate the
proposed algorithm.

3.1.1. Parameters of SDOF System

The motion governing equation for the SDOF system is similar in form to the Cummins
equation and is given by the following:

(M + Ma)
..
x(t) +

∫ t

0
K(t − τ)

.
x(τ)dτ + B

.
x(t) + Cx(t) =

N

∑
i=1

Ai cos(2π fit + ϕi) (49)

where Ai, fi and ϕi are the amplitude, frequency, and phase of exciting force; M = 1,
B = 5.5, and C = 8.
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The added mass and damping are defined using following formula

A(ω) = δ +
(α2 + β2 − ω2)(β − 1)

(α2 + β2 − ω2)2 + 4α2ω2
(50)

B(ω) =
2α(β + 1)ω2

(α2 + β2 − ω2)2 + 4α2ω2
(51)

where α = 0.2, β = 2, and δ = 0.5.
According to Equations (24) and (25), the added mass of SDOF system is calculated

as follows:
Ma = lim

ω→∞
A(ω) = δ = 0.5 (52)

and the Fourier transfer of the retardation function is given by the following:

K̃(iω) =
3iω

−ω2 + 0.4iω + 4.04
(53)

Based on the connection s = iω, the corresponding Laplace transform is determined
as shown below:

K̃(s) =
3s

s2 + 0.4s + 4.04
(54)

Equations (49)–(54) provide all the necessary information for the SDOF system. Each
step of the proposed algorithm can be validated using the analytical solutions provided by
this model, thereby demonstrating the validity and effectiveness of the proposed algorithm.

3.1.2. Transfer Functions Estimation Based on Discrete Hydrodynamic Parameters

Based on the given parameters of the SDOF system, the analytical transfer func-
tions can be derived by employing Laplace transform to Equation (49) and substituting
Equation (54) into the equation in the Laplace domain:

H1(s) =
1

1.5s2 + sK̃(s) + 5.5s + 8
=

0.667s2 + 0.2667s + 2.6933
s4 + 0.7333s3 + 11.5067s2 + 3.48s + 21.5467

(55)

H2(s) =
s

1.5s2 + sK̃(s) + 5.5s + 8
=

0.667s3 + 0.2667s2 + 2.6933s
s4 + 0.7333s3 + 11.5067s2 + 3.48s + 21.5467

(56)

H3(s) =
K̃(s)

1.5s2 + sK̃(s) + 5.5s + 8
=

2s
s4 + 0.7333s3 + 11.5067s2 + 3.48s + 21.5467

(57)

In practical engineering calculations, only discrete hydrodynamic parameters are typi-
cally available due to limitations in experiments or numerical computations. For the SDOF
system, the discrete added mass and damping are obtained from Equations (50) and (51),
with a sampling interval frequency of ∆ω = 0.01 rad/s ranging from 0 to 20 rad/s. These
discrete hydrodynamic parameters are plotted in Figure 2, corresponding to the known
values used in the motion response analysis of the SDOF system.

To obtain the discrete transfer functions of the SDOF system, the discrete hydrody-
namic parameters are substituted into Equations (27)–(29). These transfer functions are
then represented as rational functions with polynomials in the numerator and denominator.
To estimate the coefficients of these polynomials, the frequency-domain regression fitting
method is applied. During this process, the discrete transfer functions are substituted
into Equations (5)–(8), and the row vector θ, which consists the coefficients of the rational
fraction, is calculated after several iterations.
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For the discrete transfer function H1(iω), the denominator order is set to 4, and

the estimated row vector of coefficients is
^
θ1 = [0.6667, 0.2667, 2.6933, 0.7333, 11.5067,

3.48, 21.5467]. Similarly, the coefficient vectors for H2(iω) and H3(iω) are estimated

as
^
θ2 = [0.6667, 0.2667, 2.6933, 0, 0.7333, 11.5067, 3.48, 21.5467] and

^
θ3 = [2.0000, 0, 0.7333,

11.5067, 3.48, 21.5467], respectively. It is evident that the coefficients estimated using the
proposed method perfectly align with the analytical values given in Equations (55)–(57),
confirming the accuracy of the rational fraction estimation for the transfer functions.

To visually represent the results of the regression fitting method for estimating coeffi-
cients, the comparison plots for H1(s), H2(s), and H3(s) have been created, as shown in
Figures 3–5. Firstly, the discrete added mass and damping are substituted into the expres-
sion of H1(s), H2(s), and H3(s) to calculate the corresponding discrete transfer functions,
yielding a series of complex transfer functions across varying frequencies. Secondly, the
regression fitting method is applied to this frequency series and corresponding complex
transfer functions to estimate the transfer functions expressed as rational fractions. Thirdly,
the frequency series are substituted into the estimated transfer functions, and the computed
transfer functions are compared against the analytical values. As the transfer functions
are complex, the comparison is plotted in the complex plane, with the horizontal x-axis
representing the real part and the vertical y-axis representing the imaginary part. Based on
Figures 3–5, the estimated transfer functions for H1(s), H2(s), and H3(s) closely match the
analytical values. To quantitatively estimate the differences between the rational fraction
and the theoretical transfer function, the root mean squared error (RMSE) of the real and
imaginary parts of H1(s), H2(s), and H3(s) are calculated and listed in Table 1. The RMSE
values approach zero, which means that the estimated transfer functions are accurate and
can be used for further calculation of the corresponding motion response.
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Table 1. RMSE values of real and imaginary parts of H1(s), H2(s), and H3(s).

Transfer Function Real Part Image Part

H1(s) 2.0179 × 10−14 2.0177 × 10−14

H2(s) 1.1549 × 10−12 1.1549 × 10−12

H3(s) 1.5132 × 10−15 1.5164 × 10−15

3.1.3. Calculation of the Motion Response for SDOF System

According to the regression fitting operation, the rational fraction of transfer functions
H1(s), H2(s), and H3(s) have been obtained. These transfer functions correspond to the
motion response of the SDOF model caused by initial conditions and wave force. The
findings confirm that the estimated transfer functions accurately represent the system’s
behavior, allowing for precise calculation of the motion response in the SDOF model.

Firstly, the effectiveness of the proposed algorithm in calculating the motion response
caused by initial conditions is evaluated. According to Equation (33), the impulse response
functions corresponding to H1(s), H2(s), and H3(s) need to be obtained to calculate the
motion response due to initial displacement and velocity. After estimating the coefficients of
the rational fractions for the transfer functions, the poles and residues are computed using
Equations (36), (44), and (45). Subsequently, the impulse response functions are determined
using Equations (46)–(48). The impulse functions of the SDOF system are depicted in
Figure 6. Using these functions, the motion response due to the initial conditions is readily
computed according to Equation (33).
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To evaluate the effectiveness of the proposed algorithm, a comparison is made using
the Newmark-β method. Unlike the proposed method, which relies on the transfer func-
tion approach, the Newmark-β method is a commonly used numerical technique form
time-domain integration. This requires the retardation function to be determined before-
hand. The retardation function can be calculated from the damping using the following
formula [34]:

K(t) =
∆ω

π

N−1

∑
n=1

2B(n∆ω) cos(n∆ωt) +
∆ω

π
[B(0) + B(N) cos(N∆ωt)] (58)

where ∆ω is the frequency sampling interval. By inserting Equation (51) into the equation,
the retardation function of the SDOF system is determined and shown as Figure 7. The
figure demonstrates that the retardation function is a damped cosine curve, which will be
involved in the convolution calculation within the Cummins equation.
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When analyzing the motion response caused by initial conditions, the initial conditions
of the SDOF system are set as x0 = 0.1 m and v0 = 0.15 m/s, respectively. Substituting these
initial conditions along with the calculated impulse response functions into Equation (33),
the motion response due to initial conditions is calculated. Similarly, the motion response is
computed using the Newmark-β method with consistent initial conditions. The process of
calculating the motion response of floating structures using the Newmark-β method can be
found in reference [35]. Figure 8 shows the comparison of responses obtained from the two
methods, which demonstrates that the response computed with the proposed algorithm
closely matches the response achieved with the Newmark-β method, indicating that the
proposed algorithm accurately computes the motion response due to initial conditions.
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posed algorithm.

To better evaluate the proposed method’s performance, the SDOF system’s motion
response is analyzed with both initial conditions and an applied exciting force. The initial
conditions are set as in the previous analysis, and the exciting force is simulated using the
formula on the right-hand side of Equation (49), with parameters provided in Table 2. The
exciting force is plotted in Figure 9, based on the parameters.

Table 2. Parameters related to exciting force in Equation (49).

l An ωl(rad/s) ϕl

1 0.1728 0.1 0.9280
2 0.1812 0.5 0.1733
3 0.0400 1.2 −0.6916
4 0.1719 0.3 −0.7230
5 0.1592 0.28 −0.5744
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For determining the motion response caused by the exciting force, the state-space
model associated with transfer function H1(s) should be constructed. Using the estimated
coefficients of the rational fraction, the poles and residues are determined via Equation (36),
which are then used to construct the corresponding state-space model. For this system,
the matrices are defined as follows: state matrix is A = diag[−0.2360 + 2.9883 I, −0.2360–
2.9883 I, −0.1307 + 1.5430 I, −0.1307–1.5430 i], input matrix is B = [1, 1, 1, 1]T, and output
matrix is C = [−0.0044–0.0837 I, −0.0044 + 0.0837 I, 0.0044–0.0537 I, 0.0044 + 0.0537 i].

The input to the state-space model is represented by the exciting force, which is then
inserted into Equation (41) to determine the motion response resulting from this force.
According to Equation (33), the total motion response is the sum of the response due to
the initial conditions and the response due to the exciting force. To validate the proposed
algorithm, comparison is carried out using the Newmark-β method. This method calculates
the total motion response of the SDOF system under the combined influence of initial
conditions and external loads. Figure 10 illustrates the comparison of responses obtained
from both methods. Additionally, to further examine the comparison, the time-domain
response is converted to the frequency domain, and the amplitude and phase comparison
are presented in Figure 11. These figures demonstrated that the motion response of the
SDOF system calculated using the proposed algorithm aligns well with the results from
the Newmark-β method, both in the time and frequency domain. This indicates that the
proposed algorithm can accurately compute the total motion response.
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3.2. Test Case: Floating Offshore Wind Turbine

A spar-type floating offshore wind turbine is utilized in this section to evaluate the pro-
posed algorithm, with the Newmark-β method implemented for verification. The spar-type
floating offshore wind turbine is a benchmark model developed by the National Renewable
Energy Laboratory (NREL), which comprises an upper cylinder, a lower cylinder, and a
conical frustum connecting them, with a draft of 120 m [36]. The tower, fixed atop the
spar-type foundation, is situated 10 m above the still water level (SWL) at its base and
extends to 87.6 m above the SWL. At the top of the tower, a 5 MW baseline wind turbine is
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deployed. Jonkman [36] provides detailed parameters for the spar-type floating offshore
wind turbine, whose structural model is shown in Figure 12a.
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Figure 12. Structural model of spar-type floating offshore wind turbine: (a) structural model;
(b) hydrodynamic model.

3.2.1. Hydrostatic and Hydrodynamic Parameters

To calculate the motion response of the floating offshore wind turbine, the hydrostatic
and hydrodynamic parameters need to be obtained at first. The hydrodynamic model is
established using commercial software, as shown in Figure 12b. The hydrostatic parameters
of the floating offshore wind turbine, including the mass and restoring matrices, are
calculated based on the center of buoyancy, center of gravity, and radius of gyration.

The hydrodynamic parameters for the added mass and potential damping of the
floating offshore wind turbine are extracted using hydrodynamic analysis module. Due to
the structural symmetry of the system, the hydrodynamic parameters exhibit the following
relationships: A11 = A22, A44 = A55, A15 = A51, and A24 = A42. Similarly, the potential
damping displays the same symmetry as the added mass. Consequently, both the added
mass and potential damping can be represented as the real and imaginary components of
the Fourier transform of the retardation function. The added mass and potential damping
are plotted in Figures 13 and 14, with the frequency varying from 0.01 rad/s to 4.985 rad/s,
with an interval of 0.015 rad/s.

The Newmark-β method is selected as the benchmark for assessing the proposed
algorithm. To apply the Newmark-β method to the motion prediction of the floating
offshore wind turbine, the retardation function needs to be determined, which is derived
from the discrete potential damping using Equation (58). The calculated retardation
function is plotted in Figure 15, illustrating its behavior over the specified frequency range.
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Figure 15. Time history of retardation function: (a) K11(t); (b) K15(t); (c) K24(t); (d) K33(t); (e) K44(t);
and (f) K66(t).

Apart from added mass and potential damping, additional damping is another crucial
hydrodynamic parameter that describes the fluid’s viscous effects. This damping is typically
determined through a decay test using CFD simulations or physical model experiment. For
this example, the linear additional damping values are adopted from Jonkman’s method
and can be expressed as follows [36]:

B =



100, 000 0 0 0 0 0
0 100, 000 0 0 0 0
0 0 130, 000 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 13, 000, 000


(59)

Based on the hydrostatic and hydrodynamic parameters, the spar-type floating off-
shore wind turbine’s motion response will be analyzed through the application of the
proposed algorithm. The effectiveness of the proposed method will be thoroughly eval-
uated through this application, assessing its accuracy and performance in predicting the
motion response under various conditions.

3.2.2. Transfer Function Coefficients Estimation of Floating Offshore Wind Turbine

The initial step to analyze the motion response of the spar-type floating offshore wind
turbine involves estimating the transfer functions in Equations (14)–(16). By substituting
the parameters including hydrostatic and hydrodynamic to Equations (30)–(32), the discrete
transfer functions are obtained and decoupled. Based on the discrete decoupled values
and the corresponding frequency, the coefficients of the transfer functions expressed by
rational fraction can be estimated by applying Equations (5)–(8). To assess the accuracy
of the estimated coefficients, the comparisons of the transfer functions are plotted in
Figures 16–18.
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Figure 16. Initial and estimated transfer function comparison of H1(s): (a) H1,11(s); (b) H1,15(s);
(c) H1,24(s); (d) H1,33(s); (e) H1,44(s); and (f) H1,66(s).
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(c) H2,24(s); (d) H2,33(s); (e) H2,44(s); and (f) H2,66(s).
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Figure 18. Initial and estimated transfer function comparison of H3(s): (a) H3,11(s); (b) H3,15(s);
(c) H3,24(s); (d) H3,33(s); (e) H3,44(s); and (f) H3,66(s).

The transfer functions are complex, encompassing both real and imaginary parts. To
evaluate their accuracy, the comparisons of the estimated rational fractions and the initial
discrete transfer functions are plotted on the complex plane. In Figures 16–18, it can be
observed that the points of the transfer function almost all lie on the curves reflecting
the estimated transfer function expressions. The alignment indicates that the estimated
rational fractions effectively represent the discrete transfer functions for calculating the
motion response of the floating offshore wind turbine. However, it is worth noting that the
estimated transfer function for H3,66(s) (shown in Figure 18f) does not match well with the
corresponding discrete values. The transfer function H3,66(s) is significantly smaller than
values at other positions, which suggests that the discrepancy may be due to calculation
errors associated with very small values. Despite this, the discrepancy in H3,66(s) is five
orders magnitude smaller compared to other values, indicating that the overall impact on
the motion response analysis can be considered negligible.

After obtaining the expression for the transfer functions, the corresponding impulse
response functions can be calculated through Equations (46)–(48). These impulse response
functions are essential for calculating the motion response due to initial conditions. The
impulse response functions are constructed using the poles and residues calculated via
Equations (36), (44), and (45), and plotted in Figures 19–21. The figures illustrate that
among the different response components, the impulse response functions for surge–surge
exhibit the longest decay period. This extended decay period implies that surge–surge
has the most prolonged and significant influence on the motion response caused by the
initial conditions.
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Figure 19. Impulse response function of h1(s): (a) h1,11(t); (b) h1,15(t); (c) h1,24(t); (d) h1,33(t);
(e) h1,44(t); and (f) h1,66(t).
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3.2.3. Transient Response Calculation of Floating Offshore Wind Turbine

This section applies the proposed method to evaluate the motion response of the
spar-type floating offshore wind turbine resulting from the initial conditions. To ensure
the generality of the analysis, the initial conditions are generated using random numbers,
which are plotted in Figure 22.
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Substituting the initial conditions into Equation (33), the motions response due to the
initial conditions is obtained through the superposition of impulse response functions. For
comparative analysis, the Newmark-β method is applied to determine the motion response
as well. The results obtained from the two methods are presented in Figure 23, which
show that the motion responses calculated by the proposed method closely match those
obtained using the Newmark-β method. Notably, only minor discrepancies are observed
in the surge degree of freedom. The energy attenuation in the surge degree of freedom
is relatively slow. With the integration time increasing, the presence of the convolution
term causes the numerical damping factor of the Newmark-β method to become more
pronounced, which is the primary factor contributing to the discrepancies.
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3.2.4. Motion Response Prediction of Floating Offshore Wind Turbine

The previous analysis confirms that the proposed algorithm accurately calculates the
motion response of the floating offshore wind turbine due to initial conditions. This section
is dedicated to assessing the performance of the proposed method in calculating motion
responses triggered by wave forces. With the incident wave direction set to 0 degrees, the
surge, heave, and pitch degree of freedom experience wave forces. The hydrodynamic
wave force per unit amplitude is applied to determine the wave force acting on the floating
foundation. The resulting wave forces are illustrated in Figure 24.
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The wave forces applied to the floating offshore wind turbine are determined by the
previously hydrodynamic wave force per unit amplitude, considering both regular and
irregular wave scenarios. In the case of regular wave, the wave height is set to 5 m, and the
wave period is 12 s. The Jonswap wave spectrum, featuring a significant wave height of
3.5 m and a period of 10 s, is employed for the regular wave scenario.

In the case of regular waves, the hydrodynamic wave force per unit amplitude is
referenced from Figure 24 according to the wave period. The amplitude of the wave force
is calculated by multiplying the wave height by the hydrodynamic wave force per unit
amplitude, while the phase of the wave force is taken from the phase of the hydrodynamic
wave force per unit amplitude. The resulting wave force for the regular wave is plotted in
Figure 25.
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According to Equation (42), the state-space model for transfer function Hs(s) is con-
structed based on the previously estimated poles and residues. In this model, the wave
forces are the input of the state-space model system, and the motion responses due to the
wave forces are the outputs. By employing this state-space model, the motion response
can be calculated with relative ease. The outcomes are compared with the results from the
Newmark-β method. The comparison figures are shown in Figure 26, demonstrating a
good match between the two methods, indicating the effectiveness of the proposed algo-
rithm in accurately computing the motion response of the floating offshore wind turbine
under wave forces.

J. Mar. Sci. Eng. 2025, 13, x FOR PEER REVIEW 30 of 35 
 

 

According to Equation (42), the state-space model for transfer function ( )s sH  is con-

structed based on the previously estimated poles and residues. In this model, the wave 

forces are the input of the state-space model system, and the motion responses due to the 

wave forces are the outputs. By employing this state-space model, the motion response 

can be calculated with relative ease. The outcomes are compared with the results from the 

Newmark-β method. The comparison figures are shown in Figure 26, demonstrating a 

good match between the two methods, indicating the effectiveness of the proposed algo-

rithm in accurately computing the motion response of the floating offshore wind turbine 

under wave forces. 

 

Figure 26. Calculated motion response exited by regular wave: (a) 1( )x t ; (b) 3 ( )x t ; and (c) 5 ( )x t . 

To conduct a more detailed examination of the proposed method, the floating off-

shore wind turbine is subjected to irregular wave conditions, with the significant wave 

height of 3.5 m and the peak period of 10 s. The corresponding Jonswap spectrum is used 

to simulate the irregular wave, as plotted in Figure 27. 

 

Figure 27. Jonswap spectrum to simulate irregular waves. 

Figure 26. Calculated motion response exited by regular wave: (a) x1(t); (b) x3(t); and (c) x5(t).

To conduct a more detailed examination of the proposed method, the floating offshore
wind turbine is subjected to irregular wave conditions, with the significant wave height of
3.5 m and the peak period of 10 s. The corresponding Jonswap spectrum is used to simulate
the irregular wave, as plotted in Figure 27.
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The Jonswap spectrum allows for the determination of the wave height of each com-
ponent of the irregular wave. The amplitudes of wave forces corresponding to each wave
component are determined by the hydrodynamic wave force per unit amplitude, and the
corresponding phases are generated using a series of random seeds. The wave force exerted
by the irregular wave on the floating offshore wind turbine is calculated by superimposing
each component, as plotted in Figure 28.
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The irregular wave force is also substituted into the calculated state-space model, and
the calculation of the motion response of the floating offshore wind turbine due to the
irregular wave force is performed in the same way. The result comparison between the
proposed and Newmark-β method is shown as Figure 29, demonstrating good agreement
between the two methods.
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3.2.5. Computational Efficiency Analysis of Proposed Method

The conventional time-domain technique involves solving the Cummins equation via
incremental integration, which can result in inefficient computations due to the convolution
integrals involved. In contrast, the proposed algorithm rephrases the problem of motion
prediction as a system output acquisition task, thereby eliminating the need for convolution
integrals and potentially enhancing computational efficiency.

To evaluate the computational efficiency of the proposed algorithm, simulations were
conducted over various durations—100 s, 200 s, 300 s, 400 s, 500 s, 600 s, 700 s, 800 s, 900 s,
and 1000 s—using irregular wave conditions. Both the proposed and Newmark-β method
were employed to estimate the motions responses of the spar-type floating offshore wind
turbine. The CPU times for the two methods were documented while executing MATLAB
code on a system featuring an Intel Core i7-8700 CPU and 16 GB of RAM.

The results, as shown in Figure 30, indicate that the proposed method significantly
outperforms the traditional time-domain method in terms of computational efficiency. This
improvement is especially notable for longer simulation durations, demonstrating that
the proposed algorithm offers a more efficient approach for motion response analysis in
floating offshore wind turbines.
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4. Conclusions
This paper presents an innovative approach for predicting the motion response of

floating offshore wind turbines, utilizing transfer functions and state-space models to
address the computational inefficiencies often encountered with traditional time-domain
methods. The proposed transforms the response calculation problem into a system output
problem, bypassing convolution integrals and thereby enhancing computational efficiency.
The method begins with the estimation of transfer functions from hydrostatic and hydro-
dynamic parameters, essential for accurate motion response prediction. These transfer
functions are then used to construct corresponding state-space models. Motion responses
due to initial conditions and wave forces are calculated using these models and the poles
and residues.

Validation of the proposed method was performed initially on an SDOF system.
Comparisons with the Newmark-β method demonstrated that the proposed approach
matches the accuracy of the traditional method. The method’s effectiveness was further
evaluated using an MDOF system represented by a spar-type floating offshore wind
turbine. Simulations involving regular and irregular waves demonstrated the method’s
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robustness. Regular wave simulations used a wave height of 5 m and a period of 12 s,
while irregular wave simulations were applied to the Jonswap spectrum with a significant
wave height of 3.5 m and a peak period of 10 s. The calculated wave forces were input into
the state-space model to determine the motion response. Comparison of results from the
proposed and Newmark-β method showed high accuracy and agreement. Moreover, the
computational efficiency of the proposed algorithm was rigorously tested across various
simulation durations, consistently showing significant reductions in computation times
compared to the traditional method, particularly in long-duration simulations.

In conclusion, the proposed method offers a robust and efficient alternative for pre-
dicting the motion response of floating offshore wind turbines. By avoiding convolution
integrals and employing state-space models, it achieves high accuracy and improved com-
putational efficiency. This method is poised to become a valuable tool in the design and
analysis of offshore wind energy systems, offering substantial benefits in terms of both
precision and speed. The convolution term in Cummins equation is the main factor limiting
the computational efficiency and accuracy of the motion response of floating structures.
For multi-body systems, as the degrees of freedom increase, the number of convolution
terms that need to be calculated also increases rapidly. Therefore, the proposed method
provides an alternative approach for motion response analysis of multi-body renewable
energy devices.
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