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Abstract: This paper presents a fault-tolerant model predictive control approach for cross-
rudder autonomous underwater vehicles to achieve heading control, considering rudder
stuck faults and unknown disturbances. Specifically, additive faults in the rudders are
addressed, and an active fault-tolerant control strategy is employed. Fault models of
autonomous underwater vehicles have been established to develop the fault-tolerant
control method. In the controller design, the stuck faults of complete rudder failure are
incorporated to ensure the heading angle control of the autonomous underwater vehicle in
faulty conditions. Furthermore, the fault term is decoupled from the control input, and the
decoupled control input, along with corresponding constraints, is incorporated into the
model’s predictive controller design. This approach facilitates controller reconfiguration,
thereby enhancing and optimizing control performance. Simulation results demonstrate
that the proposed fault-tolerant model predictive control method can effectively achieve
stable navigation and heading adjustment under rudder fault conditions in autonomous
underwater vehicles.

Keywords: model predictive control; autonomous underwater vehicles; fault-tolerant control

1. Introduction
Autonomous underwater vehicles (AUVs) have become increasingly indispensable

in the realm of oceanic exploration and exploitation. The ability to operate independently
underwater has revolutionized the way we gather data and perform tasks in the depths of
the oceans. As the demand for more efficient and reliable AUVs grows, researchers and
engineers around the world are continuously striving to enhance their performance through
various means, such as optimizing their structural design, upgrading their hardware
components, and refining their software algorithms [1].

The development of fault-tolerant control (FTC) originated in the field of computer
system design and gradually introduced control systems, aiming to ensure the preservation
of system stability or to minimize the resultant performance degradation in the event
of system failure [2,3]. The fault-tolerant control technology for AUVs has improved
the reliability and stability of AUVs in complex underwater environments, ensuring that
AUVs can maintain high-precision positioning in the event of navigation sensor failures or
actuator malfunction, thereby successfully completing various deep-sea missions. Ref. [4]
proposes a region tracking fault-tolerant control method based on the backstepping method,
considering ocean current disturbance, modelling uncertainty, unknown thruster faults and
thruster amplitude, and rate saturation constraints. The dynamic model of the propulsion
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system of the fully-actuated AUV has been established in [5], thereby achieving fault-
tolerant control of the vehicle. In [6], fault models and fault-tolerant strategies are studied
to ensure that collision avoidance paths for unmanned surface vessel (USVs) are generated
and tracked in scenarios involving actuator failures. The problem of fault localization and
fault-tolerant control in AUVs was studied and verified through deep control simulation
of AUVs in [7]. In [8], a brief and robust fault-tolerant control method has been proposed,
which enables the AUV to navigate to a safe point even in the event of a serious failure of its
propulsion system. The simulation results show that when only a single thruster is working
normally, the designed controller drives the AUV to the target point in a spiral-like path.
Ref. [9] proposes a fuzzy fault-tolerant control strategy based on proposed possibilistic
fuzzy C-means fault diagnosis method, taking into account both ocean current interference
and thruster faults.

Recent advancements introduced model predictive control (MPC) for AUVs, enhanc-
ing fault tolerance by anticipating and mitigating faults [10]. MPC optimizes control
actions based on vehicle dynamics and future behavior, ensuring AUVs maintain course
and objectives despite adversity. Ref. [11] introduced a MPC approach utilizing quantum
particle swarm optimization and incorporated a pseudo-inverse fault-tolerant control strat-
egy during the control process, thereby empowering the unmanned underwater vehicle
(UUV) to manage a controllable fault in the thruster. Considering the driving saturation,
ocean current disturbance and thrusters failure, a cascaded dynamic tracking controller
is designed to achieve stable trajectory tracking for the human occupied vehicle (HOV)
in [12]. In response to the challenges of poor real-time performance and trajectory tracking
accuracy of AUVs in complex hydrological environments, earlier studies explored the use
of Laguerre functions to enhance the efficiency of multi-parametric predictive control, as
demonstrated in [13,14]. Building on these foundational contributions, Ref. [15] applied the
Laguerre function in the design of an MPC controller, significantly reducing computational
complexity. By designing a dual closed-loops robust MPC controller, the AUV achieved
trajectory tracking with uncertain model parameters and external random disturbances
in [16,17]. In [18], model-based reinforcement learning is utilized to address foreseeable and
unobservable disturbances, while a filtered probabilistic MPC method is proposed to itera-
tively learn the USV model and an MPC-based policy. Ref. [19] utilizes a quantum-behaved
particle swarm algorithm to solve MPC optimization problems, effectively handling the
speed jump problem.

In addition, research on other control methods such as visual serving control and
sliding model control (SMC) has also been conducted in the study of AUVs. Visual ser-
vice control is typically applied to the docking or retrieval tasks of AUVs, which is often
combined with neural networks [20–22]. This control method typically uses monocular or
binocular cameras to capture images of the underwater environment and extracts useful
visual information through image processing techniques. This information is used as a feed-
back signal to control the movement of the underwater vehicle, stabilizing it at the target
position or following a predetermined trajectory. Given its intrinsic robustness characteris-
tics, SMC has garnered extensive research attention for numerous FTC systems [23]. The
structure of the sliding model controller is reconfigured, thereby achieving fault-tolerant
control of the UAV in [24]. A propulsion FTC method is introduced for AUVs, grounded
in the sliding mode theory, aimed at mitigating the steady-state error induced by thruster
faults [25]. Ref. [26] proposes a fault-tolerant control approach utilizing a passive sliding
mode to ensure finite-time stability of the closed-loop system, accommodating actuator
faults, parametric uncertainties within the system, and unforeseen external disturbances.

The weight matrix is introduced into the design of the controller to represent the degree
of thruster failure in [11]. However, MPC is solely implemented at the UUV kinematic
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level, whereas the fault control of the thruster is realized via the application of sliding
mode control to the dynamic system. In [27], a robust control method has been proposed
to achieve the trajectory tracking of surface vessels. The fault-tolerant control method’s
stability has been proven and feasibility has been verified through simulation. Nevertheless,
bias faults are ignored in the design of MPC controllers. Motivated by the above studies,
a heading control fault-tolerant control for fully-actuated cross-rudder AUVs is studied.
The rudder stuck fault is transformed into a constraint for the MPC optimization problem,
while unknown disturbances are considered in the construction of the dynamic model. The
primary contributions presented in this paper are summarized as follows:

• A fully-actuated AUV fault model is established by considering the rudder stuck faults.
The auxiliary thrusters compensate for the imbalanced torque caused by the rudder
stuck faults, in order to ensure system stability.

• A fault-tolerant MPC method is proposed based on the rudder fault model and fault
analysis. Compared to the traditional fault-tolerant controllers, the proposed approach
decouples the fault terms by transforming the rudder faults as the system constraints,
in order to reduce the fault influences.

• The unknown disturbances are considered in the fault-tolerant controller to ensure
system robustness. The heading control of the AUV is effectively achieved in the
presence of the unknown disturbances and the rudder-stuck faults.

The rests of this paper are arranged as follows. Section 2 illustrates the kinematic
and dynamic models of the cross-rudder AUVs with consideration of the rudder fault
conditions. In Section 3, the constraints and control input changes caused by rudder faults
are analyzed and the fault-tolerant MPC (FTMPC) controller is designed. Sections 4 and 5
show the simulation results and conclusion, respectively.

2. Dynamic and Fault Model
In this study, the AUV’s heave, roll, and pitch have little impact on overall per-

formance. Instead, the horizontal plane position and heading changes are key to task
completion. Therefore, this research uses a 3-DOF AUV horizontal motion model to
simplify calculations.

The kinematic model and dynamic model of the cross-rudder AUVs with 3-DOF are
developed for the motion planner and controller design based on the AUV model proposed
in [28]. A fault model considering rudder stuck faults is established and analyzed.

2.1. Kinematic Model

The coordinate system selected in this paper is shown in Figure 1. Two Cartesian
reference frames are defined to describe the motion of AUVs: namely the earth-centered
inertial frame OE − xEyEzE and the body-fixed reference frame OB − xByBzB. In this study,
the horizontal motion of the AUV is described, which means that the vertical and roll
motions are ignored.



J. Mar. Sci. Eng. 2025, 13, 171 4 of 21
J. Mar. Sci. Eng. 2025, 13, 171 4 of 21 
 

 

 

Figure 1. Coordinate system of AUV. 

Considering the fixed-depth sailing scenario, the planner motion is studied in this 

paper, while the pitch motion and the roll motion are ignored in the motion planning and 

control. The horizontal motion of the AUV can be described using forward velocity u , 

lateral velocity v , and angular velocity r . The kinematic model is written as: 

( )η = J η v  (1) 

where the vector T 3[ ]x y = η  denotes the position and attitude of the AUV in the 

horizontal plane and the vector T 3[ ]u v r= v  denotes the velocity of the AUV. The 

conversion matrix ( )J η  can be described as: 

( )

cos sin 0

sin cos 0

0 0 1

 

 

− 
 

=
 
  

J η  (2) 

2.2. Dynamic Model 

The dynamic model is defined in the body-fixed reference frame that is moving and 

connected with the AUV. The frame chooses the center of buoyancy of the AUV as the 

origin BO . Bx  runs along the vertical axis of the AUV and points forward. Bz  lies in 

the plane of longitudinal symmetry of the AUV and perpendicular to the Bx  and points 

downward. By  is located in the lateral symmetry plane and is perpendicular to Bx  and 

Bz  , directing to the right from the tail. 

A schematic diagram of the AUV mentioned in this paper is shown in Figure 1. It is 

a fully-actuated underwater vehicle and is equipped with three thrusters in total: one 

main thruster for forward propulsion and two lateral thrusters for forces and torque in 

the horizontal plane. l   denotes the distances between the cross-section of the cross-

rudders and the center of gravity of the AUV, which plays a role as the yaw force arm in 

subsequent analysis. Considering the unknown disturbances d  , vehicle equations of 

motion in directional control can be expressed as follows: 

( ) ( )+ + = +Mv C v v D v v τ d  (3) 

where 

Figure 1. Coordinate system of AUV.

The origin OE of the earth-centered inertial frame is selected as a reference point on
the earth surface. xE points to an appropriate direction in the horizontal plane. yE lies in
the horizontal plane and perpendicular to the xEOEzE plane. Its orientation makes this
frame right-handed.

Considering the fixed-depth sailing scenario, the planner motion is studied in this
paper, while the pitch motion and the roll motion are ignored in the motion planning and
control. The horizontal motion of the AUV can be described using forward velocity u,
lateral velocity v, and angular velocity r. The kinematic model is written as:

.
η = J(η)v (1)

where the vector η = [x y ψ]
T ∈ R3 denotes the position and attitude of the AUV in the

horizontal plane and the vector v = [u v r]
T ∈ R3 denotes the velocity of the AUV. The

conversion matrix J(η) can be described as:

J(η) =

cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

 (2)

2.2. Dynamic Model

The dynamic model is defined in the body-fixed reference frame that is moving and
connected with the AUV. The frame chooses the center of buoyancy of the AUV as the origin
OB. xB runs along the vertical axis of the AUV and points forward. zB lies in the plane of
longitudinal symmetry of the AUV and perpendicular to the xB and points downward. yB

is located in the lateral symmetry plane and is perpendicular to xB and zB, directing to the
right from the tail.

A schematic diagram of the AUV mentioned in this paper is shown in Figure 1. It
is a fully-actuated underwater vehicle and is equipped with three thrusters in total: one
main thruster for forward propulsion and two lateral thrusters for forces and torque
in the horizontal plane. l denotes the distances between the cross-section of the cross-
rudders and the center of gravity of the AUV, which plays a role as the yaw force arm
in subsequent analysis. Considering the unknown disturbances d, vehicle equations of
motion in directional control can be expressed as follows:

M
.
v + C(v)v + D(v)v = τ + d (3)



J. Mar. Sci. Eng. 2025, 13, 171 5 of 21

where
M = diag

{
m − X .

u m − Y .
v Iz − N.

r

}
C(v) =

 0 0 −(m − Y .
v)v

0 0 (m − X .
u)u

(m − Y .
v)v −(m − X .

u)u 0


D(v) = −diag

{
Xu + X|u|u

∣∣∣u∣∣∣ Yv + Y|v|v

∣∣∣v∣∣∣ Nr + N|r|r

∣∣∣r∣∣∣}
M is the system inertial matrix, C(v) is the Coriolis-centripetal matrix, and D(v)

denotes the damping matrix. τ = [FX FY N]
T ∈ R3 denotes the total force and torque of

the control input. d = [dX dY dN ]
T

is the external disturbance vector, where we let there
be a positive number d > 0 satisfying ∥d∥ ≤ d.

According to the kinematic model Equation (1) and the dynamic model Equation (3),
the desired velocity is tracked by the velocity controller, and the force and moment used to
control the AUV are obtained using the dynamics model. The perturbation dynamic model
is obtained: .

η=J(η)v
.
v = M−1(τ + d − C(v)v − D(v)v)

(4)

2.3. Modeling and Analysis of Rudder Stuck Faults

The propulsion efficiency of lateral thrusters, which operate perpendicular to the
direction of motion, decreases as sailing speed increases, making them more suitable for
low-speed AUVs. In contrast, the lift force generated by control surfaces is proportional to
the square of the sailing speed and diminishes rapidly at lower speeds, rendering them
ideal for high-speed AUV motion control. By complementing each other, rudders and
thrusters create a redundant design. In the event of rudder malfunctions, auxiliary thrusters
serve as a backup mechanism to maintain the AUV’s heading control.

As shown in Figure 2, two auxiliary thrusters, one main thruster, and cross-rudders
provide the force and torque required for the AUV’s horizontal motion. In this study, the
thrust of the AUV is generated by the thrusters (#1–#3) to achieve the surge, sway, and yaw
motions, while the yaw moment can be jointly generated by the thrusters and rudders. Due
to the symmetrical installation of the cross-rudders, the origin O′ of the hull coordinate
system in Figure 2 coincides with the center of gravity of the AUV. Meanwhile, the upper
and lower surfaces of the vertical rudder are considered as one rudder.

J. Mar. Sci. Eng. 2025, 13, 171 5 of 21 
 

 

diag{ }u v z rm X m Y I N= − − −M  

( )

( )

( )

( ) ( )

0 0

0 0

0

v

u

v u

m Y v

m X u

m Y v m X u

− − 
 

= − 
 − − − 

C v  

| | | | | |( ) diag{ | | | | | |}u u u v v v r r rX X u Y Y v N N r= − + + +D v  

 

M  is the system inertial matrix, ( )C v  is the Coriolis-centripetal matrix, and ( )D v  

denotes the damping matrix. 3T[ ]X YF F N= τ  denotes the total force and torque 

of the control input. T[ ]X Y Nd d d=d  is the external disturbance vector, where we let 

there be a positive number 0d   satisfying dd . 

According to the kinematic model Equation (1) and the dynamic model Equation (3), 

the desired velocity is tracked by the velocity controller, and the force and moment used 

to control the AUV are obtained using the dynamics model. The perturbation dynamic 

model is obtained: 

( )

( )1 ( ) ( )−= + − −v M τ d C v v D v v

η = J η v
 (4) 

2.3. Modeling and Analysis of Rudder Stuck Faults 

The propulsion efficiency of lateral thrusters, which operate perpendicular to the 

direction of motion, decreases as sailing speed increases, making them more suitable for 

low-speed AUVs. In contrast, the lift force generated by control surfaces is proportional 

to the square of the sailing speed and diminishes rapidly at lower speeds, rendering them 

ideal for high-speed AUV motion control. By complementing each other, rudders and 

thrusters create a redundant design. In the event of rudder malfunctions, auxiliary 

thrusters serve as a backup mechanism to maintain the AUV’s heading control. 

As shown in Figure 2, two auxiliary thrusters, one main thruster, and cross-rudders 

provide the force and torque required for the AUV’s horizontal motion. In this study, the 

thrust of the AUV is generated by the thrusters (#1–#3) to achieve the surge, sway, and 

yaw motions, while the yaw moment can be jointly generated by the thrusters and 

rudders. Due to the symmetrical installation of the cross-rudders, the origin O  of the 

hull coordinate system in Figure 2 coincides with the center of gravity of the AUV. 

Meanwhile, the upper and lower surfaces of the vertical rudder are considered as one 

rudder. 

 

Figure 2. Thrusters and rudders configuration. 

Figure 2. Thrusters and rudders configuration.

The thrust of the auxiliary thrusters is defined by T1 and T2, respectively. Define
T3 as the thrust provided by the main thruster. The rudder angle of the vertical rudder
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is described by δR. The mapping relationship between actuator action vector and AUV
control force and torque can be described as

τ = BτΘ (5)

where Θ = [T1 T2 T3 δR]
T ∈ R4 is the actuator control action vector. Bτ is defined as

the control allocation matrix.
The rudder stuck faults are characterized by conditions where the rudder angle δR is

stuck at a particular fault angle α. The stuck fault condition is described as{
δR = α

δR,min ≤ α ≤ δR,max
(6)

where δR,min and δR,max denote the maximum and minimum rudder angles of the vertical
rudder. The rudder stuck fault model of the AUV actuator is transformed from Equation
(5) to

τ = τf + τc =
[

FX, f FY, f N f

]T
+

[
FX,c FY,c Nc

]T
(7)

where τf and τc are defined as the optimized term and the fault term, respectively. In this
study, we assume that the thrust of the main thruster is constant, T3 = Tm. Therefore, τc

is the control force generated by the main thruster and faulty rudder. The control force
generated by the auxiliary thrusters is denoted as τf .

The control force generated by the auxiliary thrusters is denoted as
FX, f = 0
FY, f = T1 + T2

N f = T1L1 − T2L2

(8)

where L1 and L2 denote the distances between the auxiliary thrusters and the center of
gravity of the AUV. The control forces generated by the main thruster and rudder stuck
faults in the fault term are described as follows

FX,c = Tm + XuuδR u2α

FY,c = YuuδR u2α

Nc = NuuδR u2α

(9)

where XuuδR ,YuuδR , and NuuδR denote the dimensional coefficients of the force and torque.
Therefore, the fault model is described as

τ = Bτ, f Θ f︸ ︷︷ ︸
τf

+ Bτ,cΘc︸ ︷︷ ︸
τc

(10)

where Θ f and Θc describe the fault term and optimized term and are defined as{
Θ f = [ T1 T2 ]

T ∈ R2

Θc = [ T3 δR ]
T ∈ R2

(11)

and the corresponding control allocation matrixes are derived as

Bτ, f =

 0 0
1 1
L1 −L2

 Bτ,c =

1 XuuδR u2

0 YuuδR u2

0 NuuδR u2

 (12)
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Considering the input saturation of the AUV actuators, the thrust force of each thruster
should meet as follows:

Ti =


Ti,min Ti ≤ Ti,min

Ti Ti,min ≤ Ti ≤ Ti,max

Ti,max Ti ≥ Ti,max

, (i = 1, 2, 3) (13)

where Ti is the thrust of the ith thruster. Ti,min and Ti,max denote the maximum and
minimum thrust values of the thrusters. The upper and lower bounds of the actuator action
vector are defined as Θ f ,max =

[
T1,max T2,max

]T

Θ f ,min =
[

T1,min T2,min

]T (14)

Then the constraint set of control efforts under rudder stuck faults is denoted as

Ξ f =
{

Θ f ∈ R2, Θ f ,min ≤ Θ f ≤ Θ f ,max

}
(15)

3. Fault Tolerant Control
This study focuses on an AUV equipped with three thrusters, enabling three degrees

of freedom in horizontal motion. In practical applications, thruster failures can arise due
to various factors, leading to changes in thrust vector alignment and input constraint sets.
By analyzing and assessing the force distribution and rudder dynamics, the proposed con-
troller addresses potential faults, optimizing the AUV’s propulsion and steering capabilities
to maintain robust operational performance.

In this section, the actuator faults are transformed into controller constraints and a
fault-tolerant MPC controller for the cross-rudder AUV is constructed as in Figure 3.
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3.1. MPC Controller Design

In this section, the MPC is developed for controller design of the AUV. In Section 2.2,
the 3-DOF dynamic model of a fully-actuated autonomous underwater vehicle is given by

M
.
v + C(v)v + D(v)v = τ + d
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The input constraint set is defined as U such that τ ∈ U. The discrete time dynamic
model with a sampling period T can be derived by using the Newton–Euler method as

vk+1 = vk + TM−1(−C(vk)vk − D(vk)vk + τk + dk)

= A(vk)vk + Bτk + wk
(16)

where A(vk) = I − TM−1(c(vk)+D(vk)) and B = TM−1. wk = TM−1dk denotes the
disturbance at time instant k, and it is bounded by the disturbance set W, i.e., wk ∈ W.
τk =Bτ(vk)Θk, and Θk is the action vector at time k.

The nominal velocity model is established as a solution without considering disturbance:

vk+1 = A(vk)vk + Bτk (17)

Let vd be the desired velocity vector and define ξk = vk − vd as the velocity tracking
error. τk = BτΘk is the nominal control input which is the solution to a nominal optimal
control problem to be designed later. Θk is contained within a limited set of actions, i.e.,
Θk ∈ Ξk, and Ξk will be defined later.

We assume that (A, B) is stabilizable, then there exists a feedback gain matrix K such
that AK = A + BK is Hurwitz. The actual feedback control law is designed as

τk = τk + Kek (18)

where ek = ξk − ξk is the difference between the actual and nominal tracking error, whose
state equation satisfies

ek+1 = AKek + wk (19)

Since AK is Hurwitz, ek will be constrained within a robust invariant set. The minimal
disturbance invariant set is given by

SK(∞) =
∞

∑
i=0

Ai
KW (20)

Here, ∑ denotes set addition. Therefore, the feedback control law ensures the actual
error state trajectory evolves in a tube centered on the nominal error state trajectory. If
the nominal error system (17) is asymptotically stable, then the actual tracking error will
be ultimately bounded, and the size of the residual set is determined by the minimal
disturbance invariant set.

In the following, the nominal control input uk is designed by formulating and solving a
receding horizon constrained optimization problem based on Equation (17). This approach
optimizes performance within the prediction horizon while ensuring compliance with
system constraints. To ensure robust satisfaction, the original input and state constraints
are tightened as follows

E = E − SK(∞)

U = U − KSK(∞)
(21)

where the original error set is defined as E.
A well-known result is first recalled.

Lemma 1. For the system (17), given two positive definite matrices Q and R, there exists a
constant ε > 0 such that:

1. The level set Ω(ε) ≜
{

ξ
∣∣∣Vf (ξ) ≤ ε2

}
⊂ E is a control invariant set with the control

law τk = K f ξk ∈ U;
2. For any ξk ∈ Ω(ε) the following equality holds
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Vf (AK f ξ)− Vf (ξ) = −1
2

ξ
T

QK f
ξ (22)

where K f = −
(
BTPB + R

)−1BTPA, P is the unique solution to the discrete algebraic
Riccati equation

P = AK f
TPAK f + QK f

(23)

and 
Vf (ξ) =

1
2 ξ

T
Pξ

AK f = A + BK f

QK f
= Q + K f

TRK f

To minimize tracking error, the cost function J of MPC controller is defined as follows

J =
N−1

∑
i=0

1
2

ξ
T
k+i|kQξk+i|k +

1
2

τT
k+i|kRτk+i|k +

1
2

ξ
T
k+N|kPξk+N|k (24)

where N is the prediction horizon, ξk+i|k and τk+i|k are the ith predicted state error and
input obtained at time instant k.

The constrained optimization problem is then formulated as follows:

vk+1 = A(vk)vk + Bτk 0 ≤ i ≤ N − 1
ξk|k = ξk

ξk+i|k ∈ E 0 ≤ i ≤ N − 1
τk+i|k ∈ U 0 ≤ i ≤ N − 1

ξk+N|k ∈ Ω(ε)

(25)

where Ω(ε) is the terminal error constraint set.

3.2. Constraints and Control Input Modification

Based on modeling and analysis of rudder stuck faults in Section 2.3 and the construc-
tion of the controller without faults in Section 3.1, the FTMPC controller is built in this
subsection. The fault term will be decoupled from the nominal vector, establishing the cost
function of the new controller. Meanwhile, the input constraint set is updated.

When there is faulty rudder at time k, nominal control effort vector is transformed
from Θk to Θk, f . The cost function Equation (24) is further derived as:

J =
N−1
∑

i=0

1
2

ξ
T
k+i|kQξk+i|k +

1
2

τT
k+i|kRτk+i|k +

1
2

ξ
T
k+N|kPξk+N|k

=
N−1
∑

i=0

1
2

ξ
T
k+i|kQξk+i|k +

1
2

(
τk+i|k, f + τk+i|k,c

)T
R
(

τk+i|k, f + τk+i|k,c

)
+

1
2

ξ
T
k+N|kPξk+N|k

=
N−1
∑

i=0

1
2

ξ
T
k+i|kQξk+i|k +

1
2

τT
k+i|k, f Rτk+i|k, f +

1
2

ξ
T
k+N|kPξk+N|k

+
1
2

τT
k+i|k,cRτk+i|k, f +

1
2

τT
k+i|k, f Rτk+i|k,c +

1
2

τT
k+i|k,cRτk+i|k,c

≥
N−1
∑

i=0

1
2

ξ
T
k+i|kQξk+i|k +

1
2

τT
k+i|k, f Rτk+i|k, f +

1
2

ξ
T
k+N|kPξk+N|k

(26)
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Minimizing the cost function J as defined in Equation (24) is equivalent to minimizing
J f , which can be expressed as follows:

J f =
N−1
∑

i=0

1
2

ξ
T
k+i|kQξk+i|k +

1
2

τT
k+i|k, f Rτk+i|k, f +

1
2

ξ
T
k+N|kPξk+N|k

=
N−1
∑

i=0

1
2

ξ
T
k+i|kQξk+i|k +

1
2

(
Bτ, f Θk+i|k, f

)T
R
(

Bτ, f Θk+i|k, f

)
+

1
2

ξ
T
k+N|kPξk+N|k

=
N−1
∑

i=0

1
2

ξ
T
k+i|kQξk+i|k +

1
2

Θ
T
k+i|k, f BT

τ, f RBτ, f Θk+i|k, f +
1
2

ξ
T
k+N|kPξk+N|k

=
N−1
∑

i=0

1
2

ξ
T
k+i|kQξk+i|k +

1
2

Θ
T
k+i|k, f RτΘk+i|k, f +

1
2

ξ
T
k+N|kPξk+N|k

(27)

where Rτ = BT
τ, f RBτ, f . The control input vector Θk, f = [T1,k T2,k]

T
when fault conditions

are satisfied is within the new fault constraint set of actions Ξ f .

Θk+i|k, f ∈ Ξ f (28)

Through the above fault analysis and constraint transformation, the FTMPC controller
of the AUV under rudder stuck faults is reconfigured as follows:

min
Θk:k+N−1|k, f

J f (29)

subject to:
vk+1 = A(vk)vk + Bτk 0 ≤ i ≤ N − 1

ξk|k = ξk
ξk+i|k ∈ E 0 ≤ i ≤ N − 1

Θk+i|k, f ∈ Ξ f 0 ≤ i ≤ N − 1
ξk+N|k ∈ Ω(ε)

(30)

where Ξ f is the constraint set of control efforts under rudder stuck faults, and other
variables are defined similarly to Equations (24) and (25).

3.3. Feasibility and Asymptotic Stability Analysis

Due to the repeated solution of the optimization problem given by Equation (29), we
need its feasibility at each time instant. Feasibility of the optimization problem means that
there exists at least one (not necessarily optimal) solution such that the input constraint,
state constraint, and terminal constraint are satisfied.

In order to show the recursive feasibility by using the induction principle, we assume
that for the system with state ξk at initial time k, the optimization problem in (29) has
a solution.

First, a feasible control trajectory candidate at time k + 1 is established by using the
optimal control input sequence at k as

Θk+1+i|k+1, f =

{
Θ

∗
k+i+1|k, f i = 0, 1, · · · , N − 2

B+
τ, f

(
K f ξ

∗
k+N|k − τc

)
i = N − 1

(31)

where B+
τ, f denotes the generalized inverse matrix of Bτ, f .

To prove it is a feasible solution of (29) at k + 1, we show it can accommodate the input
constraint, the state constraint, and the terminal constraint.

1. Θk+1+i|k+1, f ∈ Ξ f : it follows from the feasibility of Θ
∗

k+i+1|k, f ,i = 1, 2, · · · N − 1 and

the fact that K f ξ
∗
k+N|k ∈ Ξ f .
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2. ξk+1+i|k+1 ∈ E, i = 1, 2, · · · , N − 1: Since the optimization problem is feasi-

ble at k, we have ξ
∗
k+i|k ∈ E, i = 0, 2, · · · , N − 1. Due to the expression of

Θk+1+i|k+1, f , i = 0,1, · · · N − 1 in (31), there is ξk+1+i|k+1 = ξ
∗
k+i+1|k, i = 0, 2, · · · , N −

1. Therefore, the state constraint is satisfied.
3. ξk+1+N|k+1∈Ω(ε): Since the optimization problem is feasible at k, we know that

ξk+N|k+1 = ξ
∗
k+N|k∈Ω(ε). By using Lemma 1 (1), it is noted that the terminal set

is a control invariant set under the feedback control law τk = K f ξk. Therefore, by

employing Θk+1+i|k+1, f = B+
τ, f

(
K f ξ

∗
k+N|k − τc

)
= B+

τ, f

(
K f ξk+N|k+1 − τc

)
, it can be

ensured that ξk+1+N|k+1 ∈ Ω(ε) is satisfied.

By combining the above 1–3, we have proved that (30) is a feasible solution of (29) at
k + 1. By deduction, if the optimization problem is feasible at 0. It will be feasible at every
time instant, which is referred to as the recursive feasibility.

The asymptotic stability of the nominal tracking error system will be proved by
showing that the optimal value function is decreasing.

To begin with, for time instant k, the optimal value function is given by

V0
k =

N−1

∑
i=0

1
2

ξ
∗
k+i|k

T
Qξ

∗
k+i|k +

1
2

Θ
∗
k+1|k, f

T
RτΘ

∗
k+1|k, f +

1
2

ξ
∗
k+N|k

T
Pξ

∗
k+N|k (32)

Additionally, for time instant k + 1, the objective function by using the candidate
control input sequence (31) is calculated as

Vk+1 =
N−1
∑

i=0

1
2

ξ
T
k+1+i|k+1Qξk+1+i|k+1 +

1
2

Θ
T
k+1+i|k+1, f RτΘk+1+i|k+1, f +

1
2

ξ
T
k+1+N|k+1Pξk+1+N|k+1

=
N−1
∑

i=1

1
2

ξ
∗
k+i|k

T
Qξ

∗
k+i|k +

1
2

Θ
T
k+i|k, f RτΘk+i|k, f +

1
2

ξ
∗
k+N|k

T
Qξ

∗
k+N|k

+
1
2

(
B+

τ, f

(
K f ξ

∗
k+N|k − τc

))T
Rτ

(
B+

τ, f

(
K f ξ

∗
k+N|k − τc

))
+

1
2
(AKf ξ

∗
k+N|k)

T
P(AKf ξ

∗
k+N|k)

≤
N−1
∑

i=1

1
2

ξ
∗
k+i|k

T
Qξ

∗
k+i|k +

1
2

Θ
T
k+i|k, f RτΘk+i|k, f +

1
2

ξ
∗
k+N|k

T
Qξ

∗
k+N|k

+
1
2

(
K f ξ

∗
k+N|k

)T
R
(

K f ξ
∗
k+N|k

)
+

1
2
(AKf ξ

∗
k+N|k)

T
P(AKf ξ

∗
k+N|k)

(33)

Further, Ṽk+1 is defined as follows

Ṽk+1 =
N−1
∑

i=1

1
2

ξ
∗
k+i|k

T
Qξ

∗
k+i|k +

1
2

Θ
T
k+i|k, f RτΘk+i|k, f +

1
2

ξ
∗
k+N|k

T
Qξ

∗
k+N|k

+
1
2

(
K f ξ

∗
k+N|k

)T
R
(

K f ξ
∗
k+N|k

)
+

1
2
(AKf ξ

∗
k+N|k)

T
P(AKf ξ

∗
k+N|k)

(34)

Therefore, we have

Ṽk+1 − V0
k

= Vf (AKf ξ
∗
k+N|k)− Vf (ξ

∗
k+N|k) +

1
2 ξ

∗
k+N|k

T
QK f

ξ
∗
k+N|k − 1

2 ξk|k
T

Qξk|k − Θ
∗
k|k

T
RτΘ

∗
k|k

(35)

Then by using Lemma 1 (2), we can further obtain

Ṽk+1 − V0
k = −1

2
ξk|k

T
Qξk|k −

1
2

Θ
∗
k|k

T
RτΘ

∗
k|k ≤ 0 (36)
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Because (31) is not necessarily the optimal solution for (29) at k + 1, the optimal value
function at k + 1 satisfies

V0
k+1 − V0

k ≤ Vk+1 − V0
k ≤ Ṽk+1 − V0

k ≤ 0 (37)

Therefore, the optimal value function is decreasing. Equation (32) can serve as a
Lyapunov function, and the nominal error system is asymptotic stability.

Finally, by combing the convergence results of ξk and ek, it is confirmed that the actual
tracking error ξk is ultimately bounded.

4. Simulation Validation
Simulation and analysis are conducted by the CasADi framework in this section. Three

simulation scenarios are conducted to validate the effectiveness of the proposed method in
achieving AUV heading control. Meanwhile, the fault of the AUV rudder is considered
in simulation verification to validate the effectiveness of the designed FTMPC controller.
In addition, the simulation results were compared with traditional MPC methods. To
improve visualization and facilitate interpretation in certain plots, the angular values in the
simulation results have been converted from radians to degrees.

The fully-actuated AUV model in this study is based on the public REMUS AUV
model [29], and the detailed parameters of the AUV model are listed in Table 1.

Table 1. Main parameters of the AUV model.

Parameter Value Unit Parameter Value Unit

m 30.5 kg Nr|r| −131 Kg m2/rad2

X .
u −0.93 kg L1 0.67 m

Y .
v −35.5 kg L2 0.67 m

N.
r −4.88 kg m2 T1,2,max 50 N

Xu −7.8 kg/s T1,2,min −50 N
Yv −262 kg/s T3,max 150 N
Nr −188 kg m2/(rad s) T3,min 0 N

Xu|u| −3.9 kg/m δR,max π/6 Rad
Yv|v| −131 kg/m δR,min −π/6 Rad

4.1. Simulation Results of Fixed Heading Control

In this simulation scenario, the main simulation parameters are set: initial state of

the AUV is η0 = [0 0 0]
T

and v0 = [0 0 0]
T

, T = 0.01 s denotes the sampling period;
N = 10 is the prediction horizon of MPC; the target heading angle is ψ = 0◦; the auxiliary
thrust of the thrusters is limited within a certain range as Equation (13); the rudder angle
is constrained as in Equation (6); the thrust force of the main thruster is set to a constant,
Tm = 50 N. In order to simulate the underwater environment of the AUV motion more
accurately, we included undefined disturbance factors in Equation (3) as

dX = 0.5 sin(0.25πt)
dY = 0.3 cos(0.2πt)
dN = 0.5 sin(0.5πt)

(38)

Set the fault condition to a rudder stuck fault where the rudder is stuck at 15 degrees
at the 1.5th second during the driving process, i.e., α = 15◦.

The motion trajectory of AUVs using different control strategies is shown in Figure 4a.
Figure 4b shows the variation of heading angles. Figure 5 shows the variations of position
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error and heading angle error. Meanwhile, the variation of control inputs, including two
auxiliary thrusters, one main thruster, and rudder angle, is demonstrated in Figure 6.
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Figure 6. Control efforts in the first case include thrust forces of the auxiliary thrusters (#1 and #2)
and vertical rudder angle. The rudder stuck fault occurs around 1.5 s.

Based on the motion path under fault-free conditions, the effect of FTMPC is observed.
In this simulation, the rudder stuck fault occurs at 1.5 s, and the AUV using FTMPC is
adjusted promptly after a small deviation from the target heading angle. However, the
AUV trajectory using traditional MPC deviates from the normal heading angle.

As shown in Figure 4b, under fault-free conditions, the AUV with MPC achieves a
heading control of 0◦. The heading angle of the AUV using FTMPC is quickly deflected
after the rudder fault occurs and reaches its maximum value of 8◦ around 2.7 s. Meanwhile,
the heading angle of the AUV using traditional MPC also deviates and rapidly diverges.
On the contrary, under the control of FTMPC, the heading angle of the AUV is adjusted
and ultimately converges to 0◦.

Figure 5 illustrates the variations in position error and heading angle error between
the actual trajectory and the reference trajectory of the AUV. At approximately 1.5 s, a
fault occurs, leading to a maximum deviation of 0.4 m in the y-position for the AUV
employing the proposed method, alongside a corresponding change in the heading angle.
Despite this, the proposed control method adjusts the AUV to the desired heading angle
within approximately 3 s. In contrast, AUV utilizing conventional MPC exhibits significant
divergence in its global y-position and heading following the malfunction.

According to the variations of the control effort in Figure 6, when the fault occurs,
the auxiliary thruster is required to continuously provide thrust to compensate for the
torque changes caused by rudder faults. For the proposed controller, auxiliary thruster
#1 reaches its maximum thrust of 50 N in the third second and stabilizes at around 20 N
in the fifth second. The thrust of auxiliary thruster #2 continuously adjusts from the 2nd
to the 4th second, reaches its peak at the 3.5th second, and then begins to decrease before
gradually stabilizing.

4.2. Simulation Results of Heading Change Control

For heading change control of the AUV, the initial state is set as η0 = [0, 0, 0]T and
v0 = [0, 0, 0]T . T = 0.01 s denotes the sampling period; the prediction horizon of controller
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is set to N = 20; the thrust force of the main thruster is Tm = 70 N; the target heading
angle is

ψd =

{
0◦ x ≤ 55

−90◦ x > 55
(39)

In this case, set the fault condition to the rudder stuck at −10 degrees at the 9.5th
second, i.e., α = −10◦. In addition, the disturbance factors are designed in Equation (3) as

dX = 0.3 sin(0.3πt)
dY = 0.3 cos(0.3πt)
dN = 0.2 sin(0.3πt)

(40)

The simulation results of heading change control are shown in Figure 7. In accordance
with the data presented in the results, it is evident that when the rudder fault occurs,
the deviation in both the position and the heading angle of the AUV which is operating
under traditional MPC will experience further expansion. At the same time, it is also
notable that the convergence speed of the AUV when employing the proposed controller
has been reduced.
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Figure 7. Heading change control simulation results in the second case: (a) Motion trajectory;
(b) variation of heading angle.

Figure 7a shows the global motion trajectory of the AUV. AUVs using both methods
can smoothly achieve heading control before the rudder fault occurs. After changing the
reference heading angle, the AUV using the proposed method performs a turning action
at approximately 45 m to achieve fault tolerant control. At approximately y = −25 m,
tracking of position and heading is achieved using an AUV with FTMPC. After a fault
occurs, the yaw angle deviation of the AUV using traditional MPC is generated starting
from x = 45 m.

As shown in Figure 7b, the heading angle of the AUV using the proposed method
converges to the reference heading angle within approximately 7 s after the fault. Starting
from the 9th second, both AUVs begin to move with a reference heading of −90◦as the
target. Due to the presence of faults, the heading angle of the traditional MPC AUV is
−100◦ in the 12th second and continued to diverge thereafter. The heading angle of the
AUV using the proposed method is −83◦ at the 14th second and converges to −90◦ around
the 17th second.



J. Mar. Sci. Eng. 2025, 13, 171 16 of 21

According to Figure 8, within the first 9 s, the maximum heading angle error is −1.5◦

at around 8.5 s. From around the 12th second, the position error of the AUV using FTMPC
is approximately 2 m, after which the error gradually decreases and eventually converges
to 0. The position error converges to 0 around the 17th second.
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Figure 8. Position and heading angle error in the second case. The position error e represents the
Euclidean distance between the actual position and the reference position. The heading error eψ

represents the difference between the actual heading angle and the reference heading angle.

In Figure 9, the variations of the control input value are shown. Initially, the control
input differences between the two controllers are minimal. However, between the 8th
and 10th seconds, the AUV’s vertical rudder becomes stuck at a fault angle of −10◦. The
traditional MPC lacks a fault response strategy, preventing it from leveraging auxiliary
thrusters to adjust the AUV’s heading angle.
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4.3. Simulation Results of Z-Shaped Tracking and Heading Change Control

This subsection introduces a simulation study to evaluate the effectiveness of the
proposed fault-tolerant MPC method under a Z-shaped trajectory tracking scenario. The
aim is to verify its performance in managing sharp heading changes and ensuring stability
in the presence of faults. The backstepping fault-tolerant control (BFTC) method detailed
in Ref. [4] will be incorporated into the simulations to facilitate a comparative evaluation.

The primary simulation parameters are configured as follows: η0 = [0, 0,−π/2]T and
v0 = [0, 0, 0]T ; the thrust force of the main thruster is Tm = 90 N; the prediction horizon
of controller is set to N = 30; the disturbance settings are identical to those in case 2. The
rudder stuck fault occurs at the 20th second and α = 10◦.

The simulation results of Z-shaped tracking and heading change control are shown in
Figures 10–12.
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100 iterations.

The motion trajectories and heading angle variations of the AUV under stuck rudder
faults with different control methods are depicted in Figure 10. The conventional MPC
demonstrates limited effectiveness in handling the stuck rudder fault, failing to maintain
stable control of the AUV. In contrast, both the BFTC and the proposed fault-tolerant control
method enable effective fault compensation. Notably, the AUV using the proposed FTMPC
achieves faster convergence and reduced tracking errors compared to the BFTC.

As illustrated in Figure 11, the conventional MPC does not achieve convergence of
the position and heading errors under fault conditions. In contrast, the fault-tolerant
method demonstrates better fault handling capabilities, despite a slower convergence rate
due to abrupt heading changes. Notably, the maximum position error observed with the
FTMPC method is −9.8 m, compared to 16.7 m for the BFTC method, indicating a marked
improvement in trajectory accuracy.

Additionally, the optimization time of the MPC is analyzed, as depicted in Figure 12,
which presents the stem plots of computation times for the different methods. Table 2
provides a summary of the performance indicators, including the average computation
time and the MPC cost function for various fault-tolerant control strategies under rudder
fault conditions. The results indicate that the computation times for MPC and FTMPC are
comparable, while BFTC demonstrates superior computational efficiency.

Table 2. Performance indicators of different methods.

Indicators MPC FTMPC BFTC

Average iteration time (ms) 34.26 30.30 8.35
Average cost value 3.19 × 105 2.45 × 105 -

5. Conclusions
This study presents a fault-tolerant model predictive control framework designed

for fully-actuated AUVs. The proposed controller addresses the challenges related to
rudder stuck faults while effectively managing actuator input saturation. By conducting a
comprehensive analysis of the allocation mechanisms of thrusters and ruddeOKrs, fault
models are developed and integrated into the control design as specific constraint sets. This
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methodological integration ensures robust fault management and enhances the overall
resilience of the AUV control system. In simulation scenarios, the AUV equipped with
the proposed controller demonstrates markedly enhanced performance compared to con-
ventional MPC. Specifically, the controller effectively compensates for torque imbalances
caused by rudder stuck faults by modulating the auxiliary thruster, thereby ensuring stable
and reliable operation. Simulation results validate the effectiveness of the proposed ap-
proach, demonstrating that the controller can handle rudder stuck faults, maintaining fault
tolerance and system stability.

However, the computational intensity of MPC remains a limitation, potentially im-
pacting real-time performance in complex operational environments. Despite this, the
proposed approach provides critical technical support for AUVs in underwater missions,
enabling stable operation during rudder stuck faults and reducing the risk of task failures,
thus advancing the practical implementation of fault-tolerant control systems.

Future research efforts will concentrate on multiple crucial aspects.

1. We aim to incorporate a more diverse array of fault scenarios related to AUV actu-
ators. Extensive simulations will be conducted to rigorously validate the proposed
methodologies.

2. To improve the real-time performance of MPC, which is currently limited, we will
explore model reduction and parallel computing. Model reduction will simplify
the AUV model without losing critical accuracy, reducing computational load. Ad-
ditionally, parallel computing will distribute MPC’s complex tasks across multiple
processors or cores.

3. We are committed to integrating the fault-tolerant MPC strategies into real-world
AUV control systems. This step is crucial for facilitating the practical validation of
their performance and robustness under actual operational conditions.
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