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Abstract: The nonlinear dynamics of the cable–buoy structure in marine engineering
present significant analytical challenges due to the complex motion of the buoy, which
impacts the system’s dynamic response. The drag force acting on the structure can be
categorized into the absolute velocity and relative velocity models, distinguished by their
reference frames. The absolute velocity model incorporates flow velocity coupling terms,
offering higher accuracy but at the expense of increased computational complexity. In
contrast, the relative velocity model is computationally simpler and therefore more widely
adopted. Nevertheless, the accuracy and applicability of these simplified models remain
open to further in-depth investigation. To address these challenges, this study derives
coupled differential equations for the cable–buoy structure based on the two drag force
models. Galerkin discretization is then employed to construct coupled systems that account
for nonlinear buoy motion, as well as decoupled systems assuming linear buoy motion.
The modulation equations for the system’s primary resonance response are derived using
the method of multiple scales. Numerical results indicate that changes in cable parameters
lead to complex modal coupling behaviors in the system. The flow velocity coupling
terms in the absolute velocity drag force model enhance the system’s damping effect,
and the relative velocity drag force model, which omits these coupling terms, results in
increased system response amplitudes. Although neglecting nonlinear buoy motion has
little impact on the cable’s dynamic response, it significantly reduces the amplitude of
the buoy’s dynamic motion. The relative velocity drag force model and the decoupled
system can serve as effective simplifications for analyzing the dynamic responses of cable–
buoy systems, providing a balance between computational efficiency and result accuracy.
Variations in system parameters cause both qualitative and quantitative changes in the
system’s nonlinear stiffness characteristics.

Keywords: cable–buoy structure; drag force model; modal coupling; resonance response;
nonlinear vibration

1. Introduction
Cable–buoy structures play a crucial role in marine engineering, supporting ocean ob-

servation, offshore energy development, and underwater infrastructure deployment [1,2].
These systems operate in highly dynamic marine environments, and are subjected to
complex forces such as ocean currents and nonlinear fluid–structure interactions. Accu-
rate nonlinear vibration analysis is essential for understanding their dynamic behavior,
optimizing design parameters, and improving system stability and reliability [3,4].
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An important aspect of analyzing the dynamic behavior of cable–buoy systems is the
accurate representation of drag forces in marine environments. The drag force acting on
these systems is typically modeled using the Morison equation, which can be formulated
in two ways based on the choice of reference frame: the absolute velocity model and the
relative velocity model. The absolute velocity drag force model, which adopts a stationary
reference frame, determines drag based on the relative velocity between the system and the
environmental flow. This model provides a comprehensive representation of fluid–structure
interactions [5], making it particularly suitable for dynamic analyses under complex marine
conditions, such as ocean currents and waves [6]. However, the absolute velocity drag
force model results in relatively complex equations of motion, which are typically analyzed
through numerical simulations implemented in finite element software [7,8]. To enhance
computational accuracy, correction factors, such as variations in cable length and diameter,
are incorporated [9]. Consequently, the absolute velocity model is widely employed to
investigate the effects of parameters like mooring tension, vertical displacement, and tilt
angle on the system’s dynamic response [10–14], offering valuable theoretical support for
structural optimization. However, the inherent complexity of this model often precludes
direct theoretical solutions.

To address the computational challenges associated with the absolute velocity model,
some researchers have modified the linear drag force model to improve its accuracy, mak-
ing it comparable to the absolute velocity drag force model in specific scenarios [15–17].
This modification typically introduces a correction factor, which, however, requires the
simulation of nonlinear drag forces to accurately calculate. In contrast, the relative velocity
drag force model offers a more computationally efficient alternative. By adopting the fluid
as the reference frame, this model calculates drag based solely on the system’s velocity,
eliminating the need for coupling terms with flow velocities [18–21]. This simplification
significantly reduces analytical complexity while maintaining reasonable accuracy for most
applications. The relative velocity model is particularly advantageous in frequency-domain
methods, where it facilitates the application of equivalent linearization and perturba-
tion techniques to obtain analytical solutions [22]. This approach enhances computa-
tional efficiency, enabling more comprehensive nonlinear dynamic analyses of submerged
cable systems.

The second challenge lies in the choice between coupled and decoupled system
modeling approaches. Under the influence of different types of wave forces, the buoy
exhibits distinct response characteristics, such as periodic harmonic response, symmetric
bifurcation, and non-periodic response [23–25]. Meanwhile, the streamwise motion of
the cable is more sensitive to variations in excitation amplitude. As excitation amplitude
increases, the streamwise motion exhibits more intense and chaotic behavior [26,27]. Given
these dynamic behaviors, the cable–buoy system can be modeled as a parametric system
to better analyze the response under varying excitation conditions [28–30]. However,
when excitation is applied only to the cable and not the buoy, the complexity of the
governing equations depends on whether the buoy’s nonlinear motion is considered. In
Galerkin discretization, considering the nonlinear motion of the buoy results in a coupled
system, while assuming linear motion leads to a decoupled system [31]. In the coupled
system, there are both linear and nonlinear coupling terms between the buoy and the cable,
which limit the perturbation accuracy in nonlinear vibration analysis [32]. In contrast, the
decoupled system adopts the analytical approach of linear vibration analysis [33], achieving
significantly improved perturbation accuracy in the multiscale method by neglecting only
the buoy’s nonlinear motion. However, neglecting the buoy’s nonlinear motion may impact
the accuracy of the system’s dynamic response. Therefore, a comprehensive comparison of
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the dynamic responses of the coupled and decoupled systems is necessary to assess the
trade-offs between computational efficiency and model accuracy.

In light of the above discussion, this paper presents a novel simplified model that
combines the relative velocity drag force model with a decoupled system to analyze the
nonlinear dynamic response of the cable–buoy system. The relative velocity drag force
model is particularly well suited for obtaining approximate solutions through perturbation
methods, while the decoupled system improves perturbation accuracy during the approx-
imation process. A comparison of the response errors between the relative velocity and
absolute velocity drag force models is made, alongside an evaluation of the applicability of
the decoupled system relative to the coupled system. The findings offer a new approach for
the simplified analysis of cable–buoy systems, characterized by the coupling of rigid and
flexible structures, and provide valuable insights for improving the accuracy and efficiency
of dynamic analyses in marine engineering applications.

2. Problem Formulation
2.1. Dynamic Equation

In this section, the coupled cable–buoy model is established. It consists of cables
anchored to the seabed at one end and attached to the buoy at the other, as illustrated in
Figure 1. Here, an O-xy coordinate system is introduced, where the displacement functions
u(s,t) and v(s,t) represent the displacements along the tangential direction t and the normal
direction n of the cable in the local coordinate system, respectively. Let V and ρf denote
the uniform fluid velocity and fluid density; E, L, D and ρc represent the Young’s modulus,
length, diameter and density of the cable; M and DM are the mass and diameter of the buoy.
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Figure 1. Simplified model of cable–buoy structure in marine environment.

Assuming the cable is a uniform, linearly elastic one-dimensional continuum, its
torsional stiffness, bending stiffness, and shear stiffness are neglected. Based on Hamilton’s
principle, the equations of motion for the system depicted in Figure 1 are written as
follows [33,34]:

..
u(1, t) +

cu

Ma

.
u(1, t) + ω2

1u(1, t) = ω2
1

∫ 1

0

(
κv − 1

2
v′2
)

ds +
HDT − Hi

DT
MaL

(1)

..
v +

cv

ma

.
v =

P
maL2 v′′ +

EA
maL2 u(1, t)v′′ −

[
EA

maL2

∫ 1
0

(
κv − 1

2
v′2
)

ds
]

v′′

+
κEA
maL2

[
u(1, t)−

∫ 1
0

(
κv − 1

2
v′2
)

ds
]
+

FDN − Fi
DN

maL
+

Fv(s, t)
maL

(2)
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with the boundary condition at s = 0 is v(0,t) = 0, and at s = 1, the boundary condition is

Ma

maL
..
v(1, t) =

HDN − Hi
DN

maL2 − P
maL2 v′(1, t)− EA

maL2

[
u(1, t)−

∫ 1

0

(
κv − 1

2
v′2
)

ds
]

v′(1, t) (3)

where the equation above uses the dimensionless variables s* = s/L, κ* = κL, u* = u/L and
v* = v/L, with the asterisks omitted for simplicity in the expressions. Ma = M + CaBρfVB

represents the buoy mass, including the added fluid mass, where CaB is the added-mass
coefficient of the buoy, and VB is the buoy’s volume. ma = (ρc + Cacρf)A represents the mass
per unit length of the cable, including the added fluid mass, where Cac is the added-mass
coefficient of the cable and A is the cross-sectional area of the cable. ω2

1 = EA/(MaL) is the
vibration frequency of the buoy modeled as a particle. cu and cv represent the damping
coefficients of the system. Fv(s,t) = fvcos(Ωt) represents the excitation transmitted to the
cable by ships, waves, or internal waves. P and κ represent the tension and curvature of the
cable, respectively, with the assumption that P(s) ∼= P(L) and κ(s) ∼= κ(L) in the subsequent
analysis [33]. For the sake of continuity in the subsequent analysis, it is assumed that the
external excitation does not affect the buoy. Finally, FDN, HDT, and HDN represent the drag
forces, where the superscript ( )i denotes the fluid forces at static equilibrium, and their
detailed expressions are as follows.

The drag force acting on the cable element in the underwater direction along the cable
normal is denoted as FDN, while HDT and HDN represent the drag forces acting on the
buoy in the underwater tangential and normal directions at the cable end, respectively. For
the absolute velocity drag force model, the dimensionless expression for the drag force is
given by

FDN = 1
2 ρ f CDD

(
−V sin θ − L

.
v
)∣∣−V sin θ − L

.
v
∣∣

HDT = 1
2 ρ f CDB AB

[
V cos θ1 − L

.
u(1, t)

]∣∣V cos θ1 − L
.
u(1, t)

∣∣
HDN = 1

2 ρ f CDB AB
[
−V sin θ1 − L

.
v(1, t)

]∣∣V sin θ1 − L
.
v(1, t)

∣∣ (4)

where θ1 represents the angle value at s = 1.
In the relative velocity drag force model, the total drag force consists of two com-

ponents: the fluid forces under static equilibrium and the drag force due to the relative
velocity. The dimensionless expression for the drag force is given by

FDN = Fi
DN − 1

2 ρ f CDD
(

L
.
v
∣∣L .

v
∣∣)

HDT = Hi
DT − 1

2 ρ f CDB AB
[
L

.
u(1, t)

∣∣L .
u(1, t)

∣∣]
HDN = Hi

DN − 1
2 ρ f CDB AB

[
L

.
v(1, t)

∣∣L .
v(1, t)

∣∣] (5)

where Fi
DN represents the fluid force acting on the cable along the normal direction in

static equilibrium, while Hi
DT and Hi

DN represent the fluid forces acting on the buoy along
the tangential and normal directions of the cable in static equilibrium, respectively. Their
expressions are as follows:

Fi
DN = −1

2
ρ f CDDV2 sin2 θ, Hi

DT =
1
2

ρ f CDB ABV2 cos2 θ1, Hi
DN = −1

2
ρ f CDB ABV2 sin2 θ1 (6)

2.2. Modal Approach

A modal approach is then employed in order to discretize the system dynamics
depicted in Equation (2). For the coupled system, the displacement field of the cable is
expanded as follows:

v(s, t) =
N

∑
n=1

ϕn(s)qn(t) (7)
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where ϕn(s) is the eigenshape function of the n-th linear mode associated with modal
coordinate qn(t), and N is the total number of modes that kept in the expansion. By taking
into account the complex boundary condition, the eigenshape functions together with the
eigenfrequencies are computed via

ϕn(s) = C1

(
cos ηns +

z1ηn cos ηn + sin ηn − z1ηn

cos ηn − z1ηn sin ηn
sin ηns − 1

)
(8)

[
−λ2 −

(
z1λ2 +

EA
P

)
η2

n + z1η4
n

]
sin ηn +

[(
λ2 − 2z1λ2 +

EA
z1P

)
ηn − η3

n

]
cos ηn + 2z1λ2ηn = 0 (9)

where z1 = Ma/(maL) represents the ratio of the buoy mass with added fluid mass to the
cable mass with added fluid mass; λ2 = κ2EA/P represents the Irvine parameter (cable
parameter); η2

n = ω2
nmaL2/P is the eigenvalue parameter used for solving the system’s

frequencies, where ωn is the n-th natural frequency of the system; C1 is a constant that can
be determined through modal normalization.

Moreover, owing to the system’s complex boundary conditions, the modal functions
are required to satisfy the following orthogonality relations during the Galerkin discretiza-
tion process: ∫ 1

0
ϕnϕkds +

Ma

maL
ϕn(1)ϕk(1) =

{
1, n = k
0, n ̸= k

(10)

Therefore, the system of ordinary differential equations for the coupled system can be
obtained as follows:

..
U + 2µ1

.
U + ω2

1U = κω2
1

N

∑
n=1

Anqn −
ω2

1
2

N

∑
i=1

N

∑
j=1

Pijqiqj +
HDT − Hi

DT
MaL

(11)

..
qk + 2µk

.
qk + ω2

vkqk =
κEA
maL2 AkU − EA

maL2

N
∑

n=1
PnkUqn +

κEA
2maL2

N
∑

i=1

N
∑

j=1

(
2Pik Aj + Pij Ak

)
qiqj

− EA
2maL2

N
∑

i=1

N
∑

j=1

N
∑

n=1
PijPnkqiqjqn +

∫ 1
0

FDN − Fi
DN

maL
ϕkds

+
HDN − Hi

DN
maL2 ϕk(1) +

Ak
maL

fv cos(Ωt)

(12)

where U(t) = u(1,t), and

An =
∫ 1

0
ϕnds, Pij =

∫ 1

0
ϕ′

iϕ
′
jds, µ1 =

cu

2Ma
, µk =

1
2ma

∫ 1

0
cvϕ2

kds, ω2
vk =

[
P

maL2 Pkk +
κ2EA
maL2 A2

k

]
(13)

It can be observed that the coupled cable–buoy system comprises both nonlinear
and linear coupling terms. The presence of linear coupling terms means that ω1 and ωvk

cannot directly represent the actual vibration frequencies of the system [32]. Consequently,
employing high-order perturbation methods for approximate solutions will significantly
increase computational complexity.

To enhance the analytical accuracy, the nonlinear terms associated with the buoy
are neglected based on the theory of linear vibration. Building upon the coupled system
framework, the displacement field of the buoy is expressed as follows:

U(t) =
N

∑
n=1

ξnqn(t) (14)
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where ξn represents the amplitude constant of the eigenshape function for the n-th linear
mode. Its relationship with the constant C1 is expressed as ξn = C1maL/(κMa).

Thus, substituting Equation (14) into Equation (12), the ordinary differential equations
for the decoupled system can be derived as follows:

..
qk + 2µk

.
qk + ω2

k qk =
κEA

2maL2

N
∑

i=1

N
∑

j=1

(
2Pik Aj + Pij Ak −

2
κ

Pikξ j

)
qiqj

− EA
2maL2

N
∑

i=1

N
∑

j=1

N
∑

n=1
PijPnkqiqjqn +

∫ 1
0

FDN − Fi
DN

maL
ϕkds

+
HDN − Hi

DN
maL2 ϕk(1) +

Ak
maL

fv cos(Ωt)

(15)

where

ω2
k =

[
P

maL2 Pkk +
κ2EA
maL2 A2

k −
κEA
maL2 ξk Ak

]
(16)

The coupled and decoupled systems obtained above will next be solved using pertur-
bation methods.

3. Multiple-Time-Scale Analysis
3.1. Coupled System

In the approximate analysis, only the k-th mode is considered, and the relative velocity
drag force model is adopted. Under this condition, Equations (11) and (12) can be simplified
as follows:

..
U + 2µ1

.
U + ω2

1U = c1qk + c2q2
k − c3Q1,k

.
U (17)

..
qk + 2µk

.
qk + ω2

vkqk = d1U + d2Uqk + d3q2
k + d4q3

k − d5Q2,k
.
qk + pv cos(Ωt) (18)

where the nonlinear drag force is linearized, and

c1 = κω2
1 Ak, c2 = −

ω2
1

2
Pkk, c3 =

ρ f CDB ABL
2Ma

, Q1,k =
∫ 2π

ωk
0

.
U

2∣∣∣ .
U
∣∣∣dt/

∫ 2π

ωk
0

.
U

2
dt

d1 =
κEA
maL2 Ak, d2 = − EA

maL2 Pkk, d3 =
3κEA
2maL2 Pkk Ak, d4 = − EA

2maL2 P2
kk, pv =

Ak
maL

fv

d5 =

[
ρ f CDDL

2ma

∫ 1
0 ϕ2

k |ϕk|ds +
ρ f CDB AB

2ma
ϕ2

k(1)|ϕk(1)|
]

, Q2,k =
∫ 2π

ωk
0

.
q2

k
∣∣ .
qk
∣∣dt/

∫ 2π

ωk
0

.
q2

kdt

(19)

Following the multiple scales method, the non-dimensional parameter ε is introduced
for bookkeeping purposes, and the solution of Equations (17) and (18) is assumed as
the following:

U(t, ε) =
2

∑
m=0

εmUm(T0, T1, T2), qk(t, ε) =
2

∑
m=0

εmqkm(T0, T1, T2) (20)

where Tm = εmt (m = 0, 1, 2) represents the multiple time scales.
In order to balance the damping, excitation, and nonlinear terms, µ1, Q1,k, µvk, Q2,k and

pv are replaced with ε2µ1, ε2Q1,k, ε2µvk, ε2Q1,k and ε3pv, respectively. Substituting Equation
(20) into Equations (17) and (18), equating the terms of like order in ε, yields the following:

ε0:
D2

0U0 + ω2
1U0 = c1qk0

D2
0qk0 + ω2

vkqk0 = d1U0
(21)
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ε1:
D2

0U1 + ω2
1U1 = −2D0D1U1 + c1qk1 + c2q2

k0
D2

0qk1 + ω2
vkqk1 = −2D0D1qk0 + d1U1 + d2U0qk0 + d3q2

k0
(22)

ε2:

D2
0U2 + ω2

1U2 = −2D0D1U1 − 2D0D2U0 − D2
1U0

−2µ1D0U0 − c3Q1,kD0U0 + c1qk2 + 2c2qk0qk1

D2
0qk2 + ω2

vkqk2 = −2D0D1qk1 − 2D0D2qk0 − D2
1qk0 − 2µkD0qk0 − d5Q2,kD0qk0 + d1U2

+d2U1qk0 + d2U0qk1 + 2d3qk0qk1 + d4q3
k0 + pv cos(Ωt)

(23)

where Dk = ∂/∂Tk and D2
k = ∂2/∂T2

k are differential operators.
The solutions to Equation (21) can be expressed as follows:

U0 = Bk(T1, T2)eiωkT0 + cc, qk0 = Ak(T1, T2)eiωkT0 + cc (24)

where Bk and Ak are complex-valued amplitudes of the modes, which will be determined
by imposing the solvability conditions. cc denotes the complex conjugate of the preced-
ing terms on the right-hand side. By substituting Equation (24) into Equation (22), the
relationship between Bk and Ak can be obtained:

Bk =
c1

ω2
1 − ω2

k
Ak

(
orBk =

ω2
vk − ω2

k
d1

Ak

)
(25)

As time goes on, the homogeneous solutions of Equation (22) will disappear, leaving
only the particular solutions. Substituting Equation (24) into Equation (22) yields

U1 = c2
ω2

1
Ak Ak − c2

4ω2
k−ω2

1
A2

ke2iT0ωk + cc

qk1 = d3
ω2

vk
Ak Ak +

d2
ω2

vk
AkBk − d2

4ω2
k−ω2

vk
AkBke2iT0ωk − d3

4ω2
k−ω2

vk
A2

ke2iT0ωk + cc
(26)

and eliminating the secular terms yields

D1 Ak = D1 Ak = D1Bk = D1Bk = 0 (27)

The detuning parameter σ1 is introduced to quantify the degree of proximity be-
tween the external excitation frequency and the system’s natural frequency, facilitating
the investigation of the detuning effect on the system’s dynamic behavior. It is defined as
Ω = ωk + ε2σ1. Substituting Equations (22) and (26) into Equation (23), and introducing
Equation (27), by eliminating the secular terms, one obtains

iωk

(
1
2 c3Q1,kBk + µ1Bk + D2Bk

)
= ∆4

2 A2
k Ak +

∆5
2 AkBk Ak +

c2d2
ω2

vk
A2

k Bk

iωk

(
1
2 d5Q2,k Ak + µk Ak + D2 Ak

)
= ∆1 A2

k Ak + ∆2 AkBk Ak + ∆3 A2
k Bk +

d2
2

ω2
vk

B2
k Ak

+
d2

2
ω2

vk
AkBkBk −

d2
2

4ω2
k−ω2

vk
AkBkBk +

1
2 pveiσ1T2

(28)

where

∆1 = − c2d2
4ω2

k−ω2
1
+ 2c2d2

ω2
1

− 2d2
3

4ω2
k−ω2

vk
+

4d2
3

ω2
vk
+ 3d4, ∆2 = 4d2d3

ω2
vk

− 2d2d3
4ω2

k−ω2
vk

∆3 = 2d2d3
ω2

vk
− d2d3

4ω2
k−ω2

vk
, ∆4 = 4c2d3

ω2
vk

− 2c2d3
4ω2

k−ω2
vk

, ∆5 = 2c2d2
ω2

vk
− 2c2d2

4ω2
k−ω2

vk

(29)
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The polar form of Ak(T1,T2) can be expressed as follows:

Ak(T1, T2) =
1
2

a(T1, T2)eiβ(T1,T2) (30)

where ak and βk are the amplitude and phase angle of Ak, respectively. By substituting
Equations (25) and (30) into Equation (28) and separating the real and imaginary parts, the
autonomous modulation equations in the polar form can be obtained as follows:

.
a = −1

2
d5Q2,ka − µka +

pv

2ωk
sin γ, a

.
γ = ∆6a3 + σ1a +

pv

2ωk
cos γ (31)

where γ = σ1t−β and

∆6 = − ∆1

8ωk
− c1(∆2 + ∆3)

8ωk
(
ω2

1 − ω2
k
) − c2

1d2
2

4ωk
(
ω2

1 − ω2
k
)2

ω2
vk

+
c2

1d2
2

8ωk
(
ω2

1 − ω2
k
)2(4ω2

k − ω2
vk
) (32)

The steady-state solutions can be found by sets
.
a = 0 and

.
γ = 0. Solving the Equation (31),

the frequency response equation is obtained:(
1
2

d5Q2,ka + µka
)2

+
(

∆6a3 + σ1a
)2

=

(
pv

2ωk

)2
(33)

Furthermore, small perturbations are introduced as a = a0 + δa and γ = γ0 + δγ to
analyze the stability of the steady-state solution. By substituting these expressions into
Equation (31), the stability is determined by the eigenvalues of the resulting coefficient
matrix. The steady-state solution is considered stable if and only if all eigenvalues have
real parts that are less than or equal to zero.

3.2. Decoupled System

Similar to the treatment of the coupled system, when applying the relative velocity
drag force model and considering the k-th mode, the nonlinear drag force is linearized.
Under these conditions, Equation (15) can be simplified as follows:

..
qk + 2µk

.
qk + ω2

k qk = c1q2
k + c2q3

k − c3Qk
.
qk + pv cos(Ωt) (34)

where

c1 =
κEA
maL2

(
3AkPkk −

2
κ

ξkPkk

)
, c2 = − EA

2maL2 P2
kk, Qk =

∫ 2π

ωk
0

.
q2

k
∣∣ .
qk
∣∣dt/

∫ 2π

ωk
0

.
q2

kdt

c3 =

[
ρ f CDDL

2ma

∫ 1
0 ϕ2

k |ϕk|ds +
ρ f CDB AB

2ma
ϕ2

k(1)|ϕk(1)|
] (35)

Since there is no coupling in this system, the accuracy of the approximate analysis can
be improved. The solution to Equation (34) is given by

qk(t, ε) =
4

∑
m=0

εmqkm(T0, T1, T2, T3, T4) (36)

To balance the damping, excitation, and nonlinear terms, µk, Qk, and pv are replaced
by ε2µk, ε2Qk, and ε3pv, respectively. Substituting Equation (36) into Equation (34) and
equating the terms of like order in ε yields

ε0:
D2

0qk0 + ω2
k qk0 = 0 (37)
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ε1:
D2

0qk1 + ω2
k qk1 = −2D0D1qk0 + c1q2

k0 (38)

ε2:
D2

0qk2 + ω2
k qk2 = −2D0D1qk1 − 2D0D2qk0 − D2

1qk0 + 2c1qk0qk1

+c2q3
k0 − 2µvD0qk0 − c3QkD0qk0 + pv cos(Ωt)

(39)

ε3:

D2
0qk3 + ω2

k qk3 = −2D0D1qk2 − 2D0D2qk1 − D2
1qk1 − 2D0D3qk0 − 2D1D2qk0 + 3c2q2

k0qk1

+c1
(
q2

k1 + 2qk0qk2
)
− 2µk(D0qk1 + D1qk0)− c3Qk(D0qk1 + D1qk0)

(40)

ε4:

D2
0qk4 + ω2

k qk4 = −2D0D1qk3 − 2D0D2qk2 − 2D0D3qk1 − 2D0D4qk0 − D2
1qk2 − 2D1D2qk1

−2D1D3qk0 − D2
2qk0 + 2c1(qk0qk3 + qk1qk2) + 3c2

(
q2

k0qk2 + qk0q2
k1

)
−(2µk + c3Qk)(D0qk2 + D1qk1 + D2qk0)

(41)

The solutions to Equation (37) can be expressed as follows:

qk0 = A(T1, T2, T3, T4)eiωkT0 + cc (42)

The subsequent solution process follows a similar approach to that presented in
Section 3.1. The detuning parameters σ1 and σ2 are defined such that Ω = ωk + ε2σ1 + ε4σ2.
Equations (38)–(41) are solved sequentially, and the secular terms are eliminated, yielding

D1 A = D1 A = D3 A = D3 A = 0 (43)

D2 A = − 1
2 c3Qk A − µk A −

(
5c2

1
3ω3

k
+ 3c2

2ωk

)
A2 Ai − pv

4ωk
ieiT2σ1+iT4σ2

D4 A =
2c3c2

1Qk
9ω4

k
A2 A +

4c2
1µk

9ω4
k

A2 A +

(
3c2

2
16ω3

k
− 335c4

1
108ω7

k
− 143c2c2

1
12ω5

k

)
A3 A2i

+ c3Qk
2ωk

iD2 A + µk
ωk

iD2 A + 1
2ωk

iD2
2 A +

2c2
1 pv

9ω5
k

iAAeiσ1T2+iσ2T4

(44)

The polar form of A(T1,T2,T3,T4) can be expressed as follows:

A(T1, T2, T3, T4) =
1
2

a(T1, T2)eiβ(T1,T2) (45)

where a and β are the amplitude and phase angle of A, respectively. We substitute Equation
(45) into Equation (44), and apply the method of reorganization dA(t,ε)/dt = ε2D2A + ε4D4A.
By separating the real and imaginary parts, the modulation equation is derived, from which
the corresponding frequency response equation can be obtained:(

1
2 c3Qka + µka

)2
+
(
σ1a + ∆1a3)2

=
(

pv
2ωk

)2(
pvc3
4ω2

k
Qk +

pvµk
2ω2

k

)2
+

(
pvc2

1
9ω5

k
a2
)2

=
(
∆2a3 + ∆3Qka3)2

+

(
∆4a5 + σ2a + σ2

1
2ωk

a + µ2
k

ωk
a + c3µk

ωk
Qka + c2

3
4ωk

Q2
k a
)2 (46)

where

∆1 =
5c2

1
12ω3

k
+

3c2

8ωk
, ∆2 =

c2
1µvk

9ω4
k

+
µvk∆1

ωk
, ∆3 =

c2
1c3

18ω4
k
+

c3∆1

2ωk
, ∆4 =

335c4
1

1728ω7
k
+

143c2
1c2

192ω5
k
−

3c2
2

256ω3
k

(47)

Finally, the stability analysis of the solution and the treatment of the coupled system
are approached in the same manner. The next section presents the numerical study analysis.
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4. Numerical Results and Discussion
In this section, the dynamic behaviors of the cable–buoy system are analyzed and

discussed, utilizing the governing equations of different models and their theoretical
solutions. A summary of the key parameters is provided in Table 1 [33].

Table 1. Key parameters of the cable–buoy system.

Object Parameters Value

Fluid
Velocity V 1 m/s
Density ρf 1025 kg/m3

Cable

Length L 40 m
Diameter D 0.0155 m
Density ρc 4104.52 kg/m3

Added-mass coefficient Cac 1.0
Drag coefficient CD 1.05

Buoy

Mass M 170 kg
Diameter DM 0.8 m

Added-mass coefficient CaB 0.5
Drag coefficient CDB 0.4

Under the above parameter conditions, the buoy mass parameter is calculated as
z1 ≈ 8. The relationship curve between the modal frequencies ω2/ωs and the Irvine
parameter λ/π for the first six modes of the cable–buoy system in the streamwise direction
is shown in Figure 2. Here, the modal frequencies ω2 are non-dimensionalized by the
first-order frequency ωs = 2.7164 rad/s, which corresponds to the fixed-end condition of the
anchor cable. The points labeled A, B, and C indicate the occurrence of veering phenomena
between modal frequencies for specific Irvine parameters.
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Figure 2. The relationship curve between the modal frequencies ω2/ωs and the Irvine parameter λ/π
for the first six modes of the cable–buoy system in the streamwise direction.

The veering point is a characteristic point where the modal frequency curve changes
direction, with two modal frequencies approaching each other before rapidly diverging.
At this point, there may be strong modal coupling and complex modal interactions be-
tween the modes. Therefore, in the subsequent analysis, the Irvine parameter λ = 1.5π is
selected, corresponding to point B in the figure, while the Young’s modulus of the cable is
E = 7.6 × 108 Pa. Meanwhile, the numerical solutions in subsequent steps primarily adopt
the fourth-order Runge–Kutta method due to its simplicity, efficiency, and suitability for
systems with moderate to low stiffness and small time steps.
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4.1. Comparison of Drag Force Models

To compare the effects of drag forces on the dynamic response of the cable–buoy
system under absolute and relative velocity models, the fourth-order Runge–Kutta method
is used to directly solve Equations (11) and (12) numerically. The displacement–time history,
velocity–time history, and phase plots for the single-mode cable–buoy coupled system
under different drag force models are illustrated in Figure 3. The black solid line represents
the absolute velocity drag force model, while the red solid line represents the relative
velocity drag force model.
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Figure 3. The displacement–time history curve, velocity–time history curve, and phase plot of the
single-modal cable–buoy coupled system under different drag force models: (a) buoy; (b) first-order
mode of the cable.

It can be observed that, under the relative velocity drag force model, both the longi-
tudinal displacement of the buoy and the streamwise displacement of the cable approach
equilibrium near zero. In contrast, under the absolute velocity drag force model, the equi-
librium positions of both the buoy and the cable exhibit significant offsets. This discrepancy
arises because, in the relative velocity drag force model, the motion velocity is referenced
to the flow velocity, ensuring that the equilibrium position remains consistent under steady
flow conditions. In the absolute velocity drag force model, however, the system’s motion
velocity is referenced to a fixed ground, with the equilibrium position thus referenced to a
stationary flow velocity (i.e., zero flow velocity), leading to the observed displacement shifts.

In addition, the absolute velocity drag force model includes a coupling term related
to the flow velocity, whereas the relative velocity model does not. As a result, the system
under the absolute velocity model experiences greater nonlinear damping forces, leading
to a slightly lower amplitude of dynamic response compared to the relative velocity model.
However, the omission of the coupling term has a limited impact on the overall system’s
dynamic response, and the general trend remains consistent. From the phase plot, it can be
observed that the phase trajectories in both plots form closed elliptical shapes, indicating
that the motion of both the buoy and the cable is periodic.
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As shown in the frequency spectrum in Figure 4, the overall dynamic response of the
system exhibits some differences under the two drag force models. However, the relative
velocity drag force, as a simplified model, amplifies the dynamic response trend. Therefore,
this error is acceptable in the single-mode analysis.
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To further analyze the system, the dynamic response comparison of the two drag force
models for the fourth-order mode is shown in Figure 5, with excitation applied only to the
higher-order modes. It can be observed that in the comparison of the two drag force models,
only the displacement response of the lower-order modes of the cable shows a shift in the
equilibrium position, while the higher-order modes do not exhibit such a shift. This is due
to the strong coupling effects at the veering point. Additionally, the lower-order modes and
the buoy exhibit periodic oscillations, while the higher-order modes do not. This further
confirms that under multi-modal coupling effects, energy transfer occurs between coupled
modes, leading to the complexity of the overall system’s dynamic characteristics.

Furthermore, the damping effects caused by the two drag force models, amplified by
the modal coupling effects, result in a greater damping effect in the absolute velocity drag
force model. This leads to significant differences in the dynamic response of the cable’s
lower-order modes between the two models. However, the dynamic responses of the buoy
and cable’s lower-order modes are one to two orders of magnitude smaller than those of the
higher-order modes, meaning that the errors in the dynamic response of the higher-order
modes can be considered as errors in the overall system response. From the perspective
of the cable’s higher-order modal dynamic response, these errors are within a reasonable
range, indicating that the relative velocity drag force model provides acceptable accuracy
as a simplified approach.

In summary, in the relative velocity drag force model, the system’s velocity is calcu-
lated relative to the fluid velocity, so the equilibrium position can be directly treated as
the reference position. In the absolute velocity drag force model, the system’s velocity is
calculated relative to the ground, which results in the equilibrium position being referenced
at zero fluid velocity, causing the displacement response to shift. The multi-modal analysis
reveals that the differences in the system’s dynamic response under the two drag force
models mainly stem from the modal coupling effects at the veering point. As shown in the
frequency spectrum in Figure 6, the relative velocity drag force model similarly amplifies
the dynamic response of the cable in the system, while the dynamic response of the buoy
exhibits the opposite trend. Although the relative velocity drag force model generally
amplifies the cable’s dynamic response, the goal in studying dynamic characteristics is to
optimize structural design and reduce response amplitudes. Therefore, under this simpli-
fied model, amplifying the system’s dynamic response is preferable to reducing it, as the
introduced error is deemed acceptable for practical applications. Thus, when studying the



J. Mar. Sci. Eng. 2025, 13, 176 13 of 22

dynamic behavior of the cable, the relative velocity drag force model serves as a reasonable
simplification of the absolute velocity drag force model.
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4.2. Comparison of Coupled and Decoupled Systems

In this section, to compare the dynamic responses of the coupled and decoupled
systems, the fourth-order Runge–Kutta method is used to directly solve the coupled system
Equations (11) and (12) as well as the decoupled system (15). Similar to the comparison with
drag forces, Figure 7 presents the displacement–time history curve, velocity–time history
curve, and phase plot for the single-mode coupled and decoupled cable–buoy systems.
The black solid line represents the coupled system, and the red solid line represents the
decoupled system.
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The results show that the longitudinal displacement and velocity response ampli-
tudes of the buoy in the decoupled system are smaller than those in the coupled sys-
tem. This is because, in the decoupled system, the nonlinear motion of the buoy is ne-
glected, and only its linear motion characteristics are considered, leading to a reduction
in the dynamic response amplitude. However, the neglect of the buoy’s nonlinear motion
only has a limited impact on the response amplitude, and the overall error is within an
acceptable range.

Furthermore, the displacement and velocity responses of the cable in the decoupled
system are nearly identical to those in the coupled system, indicating that the nonlinear
motion of the buoy has a minimal impact on the cable’s dynamic response. In the phase
plot, both the buoy and cable exhibit closed elliptical trajectories, suggesting that both
display typical periodic motion. As shown in the frequency spectrum in Figure 8, the
overall dynamic response of the coupled and decoupled systems shows little difference.
This indicates that, when focusing on the dynamic response of the cable, appropriate
decoupling of the system can effectively simplify the analysis process while maintaining
the accuracy and reliability of the results.
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Figure 8. Frequency spectrum of the single-mode cable–buoy system: (a) buoy; (b) cable.

Similarly, to further analyze the system, Figure 9 presents a comparison of the dynamic
responses of the coupled and decoupled cable–buoy systems under multi-mode analy-
sis, considering the fourth-order mode, with excitation applied only to the higher-order
modes. As shown, the dynamic response amplitude of the buoy in the decoupled system is
smaller than that in the coupled system, which is consistent with the single-mode analysis.
However, the difference lies in the periodic oscillations generated by the buoy and cable
in the lower-order modes, reflecting the complexity of the system’s dynamic behavior at
veering points. In contrast, the dynamic response of the cable in higher-order modes is
nearly identical in both systems, exhibiting periodic motion.

Further analysis reveals that when excitation is applied to the higher-order modes
of the cable, the nonlinear damping effect of the underwater drag force leads to gradual
energy dissipation during the transfer process, particularly as energy is transmitted to the
buoy and the lower-order modes of the cable, causing significant amplitude attenuation.
This energy dissipation effectively suppresses the dynamic response of the lower-order
modes. However, since the magnitude of the lower-order mode response of the cable is
relatively small, the error caused by the nonlinear motion of the buoy is amplified in the
decoupled system, resulting in discrepancies between the coupled and decoupled systems
in the lower-order mode responses. As seen in the frequency spectrum in Figure 10, the
impact of neglecting the buoy’s nonlinear terms on the overall response of the cable is
limited, due to the relatively small magnitude of the lower-order mode responses, but it
significantly affects the buoy’s response.

In conclusion, although the decoupled system neglects the nonlinear motion of the
buoy, it still effectively captures the dynamic response of the cable and the overall periodic
characteristics of the system, maintaining similar dynamic behavior to the coupled system.
Therefore, in more complex nonlinear dynamic analyses, decoupling can effectively simplify
computational complexity, demonstrating its applicability.
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4.3. Primary Resonance Response

In this section, the nonlinear dynamic behavior of the cable in the cable–buoy system
is investigated. The external excitation amplitude is assumed to be fv = 2 N/m, and
the third-order mode of the system is selected. The frequency response curve equations
are solved numerically, with the coupled system described by Equation (33) and the
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decoupled system by Equation (46). The basic parameters used in the analysis are listed
in Table 1. However, for the subsequent analysis, the buoy mass M and the Young’s
modulus of the cable E need to be determined based on the buoy mass parameter z1 and
the Irvine parameter λ. Additionally, the fluid velocity of V = 0.1 m/s is assumed to
ensure that the transverse motion induced by vortex-induced vibrations is neglected under
low-flow conditions.

Figure 11 presents a comparison of the frequency response curves for the coupled and
decoupled cable–buoy systems under six different parameter sets. Here, the black lines
represent the coupled system, whereas the red lines denote the decoupled system. And in
the following figures, stable solutions are shown with solid lines, and unstable solutions
are represented by dashed lines. To validate the theoretical results, numerical solutions are
obtained by directly integrating Equation (15) with the fourth-order Runge–Kutta method,
and the results are shown in the figures as circles.
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(d) z1 = 100, λ = 3π; (e) z1 = 100, λ = 6π; (f) z1 = 100, λ = 9π.

In Figure 11a–c, the frequency response curves of the coupled and decoupled sys-
tems exhibit negligible differences for a buoy mass parameter z1 = 10, across the three
Irvine parameters λ = 3π, 6π, and 9π. This observation indicates that, for these parameter
combinations, low-order perturbation analysis accurately captures the nonlinear dynamic
characteristics of the cable, yielding results consistent with numerical simulations. How-
ever, as the buoy mass parameter increases to z1 = 100, as illustrated in Figure 11d–f,
significant differences emerge between the frequency response curves of the coupled and
decoupled systems, despite the Irvine parameters λ remaining unchanged. This observa-
tion highlights the limitations of low-order perturbation analysis under these conditions,
indicating its reduced accuracy in capturing the nonlinear dynamic behavior of the system
for higher buoy mass parameters.

The above results indicate that, under specific parameter conditions, analyzing the
frequency response curves using the decoupled system achieves higher precision with
controllable computational complexity. Moreover, the decoupled system not only simplifies
the computational process but also maintains the accuracy of the frequency response
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analysis in most cases. Therefore, for subsequent analysis, the frequency response equations
derived from the decoupled system will be utilized.

To further investigate the impact of different parameters on the nonlinear behavior of
the cable–buoy system, Figure 12 illustrates the effect of variations in the Irvine parameter
λ on the system’s frequency response curves for three different buoy mass parameters,
z1 = 1, 10, and 100. In Figure 12a,b, it can be observed that for z1 = 1 and z1 = 10, the
frequency response curves for the six different Irvine parameters λ exhibit similar trends.
As λ increases, the system’s nonlinear characteristics gradually intensify, with the frequency
response curve shifting to the right and displaying pronounced hard spring behavior. In
these cases, the system exhibits a maximum of three steady-state solutions, two of which
are stable and one unstable.

J. Mar. Sci. Eng. 2025, 13, x FOR PEER REVIEW 19 of 23 
 

 

-1.2 -0.6 0.0 0.6 1.2
0.0

0.2

0.4

0.6
´10-4

a


(b)

λ=1.5

λ=3.0

λ=4.5

λ=6.0

λ=7.5

λ=9.0

 Stable

 Unstable

 RK

-1.2 -0.6 0.0 0.6 1.2
0.0

0.2

0.4

0.6
´10-4

 Stable

 Unstable

 RK

(a)

a



λ=1.5

λ=3.0

λ=4.5

λ=6.0

λ=7.5

λ=9.0

-1.2 -0.6 0.0 0.6 1.2
0.0

0.5

1.0

1.5
´10-4

 Stable

 Unstable

 RK

=6

=4.5

=3

=1.5

a



(c)

-1.2 -0.6 0.0 0.6 1.2
0.0

1.5

3.0

4.5
´10-5

=9

 Stable

 Unstable

 RK

(d)

a



=7.5

=10.5

 

Figure 12. Effect of variations in the Irvine parameter λ on the frequency response curves of the 

cable–buoy system for different buoy mass parameters z1: (a) z1 = 1; (b) z1 = 10; (c) z1 = 100 (Part 1); 

(d) z1 = 100 (Part 2). 

As the buoy mass parameter increases to z1 = 100, the system’s nonlinear behavior 

becomes more pronounced, as shown in Figure 12c,d. As λ increases from 1.5π to 6π, 

Figure 12c reveals that the system’s nonlinear characteristics become significantly 

stronger, with an increased rightward shift of the frequency response curve, continuing 

to display hard spring behavior. In this case, the system also has three steady-state solu-

tions, two stable and one unstable. However, Figure 12d shows a more complex nonlinear 

behavior as λ increases from 7.5π to 9π. Initially, the response curve shifts to the left and 

then to the right, exhibiting soft spring behavior followed by hard spring behavior. In this 

scenario, the system can have up to five steady-state solutions, three stable and two un-

stable. As λ increases further to 10.5π, the frequency response curve shifts only to the left, 

displaying clear soft spring behavior. 

Therefore, for a given buoy mass parameter z1, variations in the cable parameter λ 

not only significantly affect the nonlinear vibrational behavior of the system but also cause 

both qualitative and quantitative changes in the system’s dynamic characteristics. 

Finally, the effect of variations in the buoy mass parameters z1 on the nonlinear be-

havior of the cable–buoy system is analyzed, as illustrated in Figure 13. The results reveal 

that as z1 decreases, the system’s nonlinear behavior becomes less complex. Specifically, 

the system transitions from a softening spring response to a hardening spring response 

and ultimately exhibits exclusively hardening spring characteristics. This hardening phe-

nomenon implies that the system’s stiffness increases with amplitude, resulting in three 

steady-state solutions: two stable and one unstable. Such multistability is a hallmark of 

nonlinear systems, highlighting the intricate dynamic response modes the system can ex-

hibit under certain parameter conditions. 
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cable–buoy system for different buoy mass parameters z1: (a) z1 = 1; (b) z1 = 10; (c) z1 = 100 (Part 1);
(d) z1 = 100 (Part 2).

As the buoy mass parameter increases to z1 = 100, the system’s nonlinear behavior
becomes more pronounced, as shown in Figure 12c,d. As λ increases from 1.5π to 6π,
Figure 12c reveals that the system’s nonlinear characteristics become significantly stronger,
with an increased rightward shift of the frequency response curve, continuing to display
hard spring behavior. In this case, the system also has three steady-state solutions, two
stable and one unstable. However, Figure 12d shows a more complex nonlinear behavior
as λ increases from 7.5π to 9π. Initially, the response curve shifts to the left and then to the
right, exhibiting soft spring behavior followed by hard spring behavior. In this scenario,
the system can have up to five steady-state solutions, three stable and two unstable. As λ

increases further to 10.5π, the frequency response curve shifts only to the left, displaying
clear soft spring behavior.

Therefore, for a given buoy mass parameter z1, variations in the cable parameter λ

not only significantly affect the nonlinear vibrational behavior of the system but also cause
both qualitative and quantitative changes in the system’s dynamic characteristics.

Finally, the effect of variations in the buoy mass parameters z1 on the nonlinear behav-
ior of the cable–buoy system is analyzed, as illustrated in Figure 13. The results reveal that
as z1 decreases, the system’s nonlinear behavior becomes less complex. Specifically, the
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system transitions from a softening spring response to a hardening spring response and ul-
timately exhibits exclusively hardening spring characteristics. This hardening phenomenon
implies that the system’s stiffness increases with amplitude, resulting in three steady-state
solutions: two stable and one unstable. Such multistability is a hallmark of nonlinear
systems, highlighting the intricate dynamic response modes the system can exhibit under
certain parameter conditions.
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Figure 13. Effect of variations in the buoy mass parameter z1 on the frequency response curves of the
cable–buoy system for different cable parameters λ: (a) λ = 6π; (b) λ = 9π.

These results indicate that, for a given buoy mass parameter z1, selecting an ap-
propriate cable parameter λ can substantially influence the system’s nonlinear response
characteristics. By tuning these parameters, the resonance response of the system can be effec-
tively mitigated, thereby improving its overall stability. This insight offers valuable theoretical
guidance and practical significance for the design and control of cable–buoy systems.

In summary, variations in the buoy mass parameter z1 and the cable parameter λ

not only significantly influence the nonlinear vibration behavior of the system but also
lead to qualitative and quantitative changes in its dynamic characteristics. These complex
nonlinear dynamic phenomena indicate that, under specific parameter conditions, the
system response may transition between hard spring and soft spring behaviors, thereby
impacting the system’s stability and response characteristics.

5. Conclusions
The dynamic response of a cable–buoy system in marine engineering was analyzed

with a focus on reference frame selection and buoy nonlinearities. The results show that
the relative velocity drag force model amplifies the system’s response but remains a valid
approximation under typical conditions. Neglecting buoy nonlinearities in the decoupled
system leads to minimal variation in cable dynamics but significantly reduces buoy re-
sponse, indicating that buoy nonlinearities can be ignored when focusing on the cable.
Theoretical analysis using the multiple scales method demonstrates higher accuracy for the
decoupled system under specific conditions, meeting high-precision requirements. Nonlin-
ear vibration characteristics are highly sensitive to parameter variations, providing insights
for structural optimization. Future studies can validate the conclusions of the simplified
model through experimental verification. Additionally, further theoretical investigations
could explore the system’s bifurcation behavior and potential chaotic characteristics.
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Nomenclature
A Cable cross-sectional area
P Cable tension
Ak, Bk Mode complex-valued amplitudes
qn(t) Modal coordinate of the cable as a time-dependent function
a, ak Amplitude of A, Ak

u(s,t), v(s,t) Cable displacements in local tangential and normal directions
C1 Modal normalization constant
V Uniform fluid velocity
CaB Buoy added-mass coefficient
VB Buoy volume
Cac Cable added-mass coefficient
x, y Horizontal, vertical global coordinate system
cu, cv System damping coefficients
z1 Buoy-to-cable mass ratio (with added fluid mass)
cc Complex conjugate
β Phase angle of A
D Cable diameter
βk Phase angle of Ak

DM Buoy diameter
ηn Eigenvalue parameter for solving system frequencies
Dk, D2

k Differential operators
θ Angle between the cable tangent and the horizontal axis
E Cable Young’s modulus
θ1 The angle value at s = 1
Fv(s,t) External excitation
κ Cable curvature
FDN Cable drag force along normal direction
λ Irvine parameter (cable parameter)
Fi

DN Fluid force along cable normal direction in static equilibrium
ξn Buoy’s eigenshape function amplitude constant for the n-th mode
HDT, HDN Drag forces acting on the buoy in the tangential and normal directions
ρc Cable density
Hi

DT, Hi
DN Buoy drag forces in tangential and normal directions

ρf Fluid density
L Cable length
σ1, σ2 Detuning parameters
M Buoy mass
ϕn(s) Cable’s eigenshape function corresponding to the n-th mode
Ma Buoy mass with added fluid mass
ω1 Vibration frequency of the buoy
ma Cable mass per unit length with added fluid mass
ωk Vibration frequency of the cable’s k-th mode
n, t Tangential, normal local coordinate system
Ω Vibration frequency of the external excitation
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