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Abstract: A hybrid probabilistic road map (PRM) path planning algorithm based on
historical automatic identification system (AIS) information and Douglas—Peucker (DP)
compression is proposed to address the issues of low path quality and the need for extensive
sampling in the traditional PRM algorithm. This innovative approach significantly reduces
the number of required samples and decreases path planning time. The process begins
with the collection of historical AIS data from the autonomous vessel’s navigation area,
followed by comprehensive data-cleaning procedures to eliminate invalid and incomplete
records. Subsequently, an enhanced DP compression algorithm is employed to stream-
line the cleaned AIS data, minimizing waypoint data while retaining essential trajectory
characteristics. Intersection points among various vessel trajectories are then calculated,
and these points, along with the compressed AIS data, form the foundational dataset for
path searching. Building upon the traditional PRM framework, the proposed hybrid PRM
algorithm integrates the B-spline algorithm to smooth and optimize the generated paths.
Comparative experiments conducted against the standard PRM algorithm, A*, and Dijkstra
algorithms demonstrate that the hybrid PRM approach not only reduces planning time but
also achieves superior path smoothness. These improvements enhance both the efficiency
and accuracy of path planning for maritime autonomous surface ships (MASS), marking a
significant advancement in autonomous maritime navigation.

Keywords: AIS historical data; ship path planning; improved DP compression algorithm;
hybrid probabilistic route map (HPRM) algorithm; maritime autonomous surface ships

1. Introduction
1.1. Background

With the development of artificial intelligence technology, research on maritime au-
tonomous surface ships (MASS) has become a focal point, with path planning algorithms
being one of the key technologies for enabling autonomous navigation [1,2]. As global
trade continues to expand, the shipping industry increasingly demands efficient and safe
path planning. Traditional path planning methods mainly rely on static nautical charts
and heuristic rules, which are insufficient for addressing the dynamic factors and com-
plex environments encountered in real-world navigation. In recent years, the automatic
identification system (AIS) has become an essential tool for real-time monitoring of vessel
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movements (as shown in Figure 1) and has been widely adopted [3-5]. AIS data provide not
only rich historical navigation data but also valuable resources for researchers to improve
and optimize path planning algorithms.
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Figure 1. Modern maritime communication and navigation system: integrated schematic diagram of
the AIS system.

1.2. Literature Review

Global maritime path planning algorithms mainly fall into three categories: graph
search-based algorithms, sampling-based path planning algorithms, and intelligent op-
timization algorithms [6-8]. However, in recent years, with the rapid development of
computing power, the application of deep reinforcement learning in maritime path plan-
ning has become increasingly prevalent [8,9].

Among graph search-based algorithms, they are suitable for static and well-structured
environments. The classic shortest path algorithm proposed by the author of the article [10]
is widely used, and its variant, the A* algorithm [11-13], is equally popular. Introduced by
the author of the article [14], the A* algorithm is an improved heuristic search method that
combines the global search capability of Dijkstra’s algorithm with heuristic local guidance,
thereby enhancing search efficiency.

Intelligent optimization algorithms are methods that mimic natural biological behav-
iors or social phenomena to solve optimization problems [15,16], such as genetic algo-
rithms [17], particle swarm optimization [18], and ant colony optimization [19]. These
algorithms search for optimal solutions in complex search spaces by simulating processes
like evolution, group collaboration, or foraging behavior, exhibiting strong global search
capabilities and adaptability. However, intelligent optimization algorithms may require
substantial computational resources and are sensitive to parameter settings. For example,
the authors of the article [20] proposed the APF-ACO algorithm for dynamic and static
maritime path planning by combining the artificial potential field method with ant colony
optimization. This approach effectively overcomes the shortcomings of traditional path
planning methods, though it increases computational complexity. Additionally, while the
use of ant colony optimization improves path quality, the smoothness of the paths may still
be inferior to some interpolation or optimization-based smoothing methods.
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Sampling-based path planning algorithms generate feasible paths by randomly or
systematically sampling spatial nodes [21,22], such as rapidly-exploring random trees (RRT)
and probabilistic road maps [23,24]. These algorithms are well-suited for complex marine
environments, constructing navigable paths by incrementally expanding or connecting sam-
pled points. Compared to traditional global search methods, sampling-based algorithms
can more rapidly adapt to dynamic environments and irregular obstacle distributions.
However, the generated paths may lack smoothness or optimality, necessitating subsequent
optimization to enhance path quality. The authors of the article [25] utilized an improved
RRT algorithm combined with AIS data for path planning, followed by a DP algorithm to
compress and streamline the path. Although integrating AIS data and DP compression
effectively reduces computational load and improves path feasibility, the approach relies
heavily on multiple parameter settings, such as the expansion step size of the RRT algo-
rithm and the threshold design and compression tolerance of the DP algorithm. Improper
parameter settings may result in unstable paths or reduced computational efficiency.

With the development of data science, data-driven methods have gradually become
a research hotspot. The introduction of AIS data provides a substantial amount of actual
navigation data, making path planning based on historical data feasible. In recent years,
many studies have attempted to utilize machine learning and deep learning techniques
to analyze and predict AIS data, thereby enhancing the accuracy of path planning. For
instance, the authors of the article [26] proposed a maritime anomaly detection method
based on vessel trajectory clustering and classification. This method establishes normal
trajectory models using vessel trajectory clustering and then employs a naive Bayes clas-
sifier to detect anomalous trajectories. The authors of the article [27] introduced a vessel
trajectory prediction method that combines graph attention networks (GAT) with long
short-term memory networks (LSTM) to improve the accuracy and robustness of trajectory
predictions in the marine engineering field. This approach leverages GAT to capture spatial
dependencies in vessel trajectories and integrates LSTM to capture temporal sequence
features, thereby achieving efficient and accurate trajectory predictions. Table 1 clearly
illustrates the comparison of the advantages and disadvantages of different algorithms.

Table 1. Comparison of different path planning algorithms.

Algorithm Advantage Disadvantages
Insufficient consideration
. Provides optimal paths for dynamic environments
*
A* Algorithm with high efficiency and high computational
load
Slow convergence speed,
Genetic Algorithm Strong adaptability no consideration of
dynamic environment
Suitable for handling e e
RRT Algorithm dynamic obstacles and P

Ship Trajectory Clustering
and Classification-Based
Method
Method Combining Graph
Attention Networks (GAT)
and Long Short-Term
Memory Networks (LSTM)

real-time path planning

Utilizes historical data and
is capable of detecting
anomalous trajectories

Captures spatial and
temporal features,
improving prediction
accuracy and robustness

usually not globally
optimal solutions

Can only detect anomalies
and cannot plan paths

Computationally complex
and requires large amounts
of data for training
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However, when handling massive AIS data, how to effectively compress and clean
the data remains an urgent problem to be solved by these methods. Moreover, the use of
deep learning imposes high demands on computers, requiring extensive computations,
and runtime is also an issue.

The DP algorithm, as a classic trajectory compression technique, has been widely
applied in AIS data processing in recent years [28-30]. The authors of the article [31]
utilized the DP algorithm to compress AIS data, significantly reducing the data volume
while preserving key features of the trajectories. However, when processing large-scale data,
there is still a trade-off between computational efficiency and compression accuracy in the
DP algorithm. Additionally, the path planning process must comprehensively consider the
particularities of maritime navigation, such as avoiding land and islands—non-navigable
areas—to ensure navigation safety [25,32].

1.3. Motivation

At present, although many algorithms are used for ship path planning, their navigation
routes are usually based on existing routes rather than new paths generated by these
algorithms. Therefore, we plan navigation paths based on historical AIS data to improve
the safety of the routes and their adaptability to actual navigation needs. However, AIS
data are massive and contain redundant information, making direct use of these data for
path planning challenging. Effectively processing and utilizing AIS data has become the
key to improving the accuracy and efficiency of path planning. The Douglas—Peucker
(DP) algorithm, as a classic trajectory compression technique, can significantly reduce data
volume while retaining key features of the trajectories, but it still has certain limitations
when processing massive AIS data. Moreover, the path planning process needs to consider
the particularities of maritime navigation, such as avoiding land and islands, to ensure
navigation safety.

The PRM algorithm, as an effective path planning tool, has important applications
in obstacle avoidance and path optimization. Although the traditional PRM algorithm is
widely used in path planning, it also has some obvious drawbacks. First, the PRM algorithm
relies on randomly sampled nodes; this randomness may make it difficult to cover narrow
passages or key areas in complex environments, leading to insufficient connectivity of the
generated roadmap or too many path turns. Second, as the number of nodes increases, the
computational cost of collision detection rises significantly, especially in high-dimensional
spaces, resulting in low algorithm efficiency. Additionally, the paths generated by the
traditional PRM algorithm are often not optimal; they may be quite tortuous and require
additional smoothing to optimize route quality.

To address this, this study proposes a ship path planning algorithm based on historical
AIS information. The algorithm combines an improved DP compression technique and a
hybrid PRM algorithm, aiming to efficiently process and utilize AIS data to generate safe
and reliable navigation paths. First, AIS data are extracted from the database, and invalid
and incomplete records are eliminated through a series of data cleaning processes. Then,
the cleaned data are processed using an improved DP compression algorithm, reducing
data volume while retaining key features of the trajectories. Subsequently, intersection
points among the ship AIS data are calculated, and a hybrid PRM algorithm is developed,
which precisely considers the latitude and longitude data of land and islands to ensure that
the generated path does not cross or contact these non-navigable areas.

By integrating the improved DP compression technique and the hybrid PRM algorithm,
this study not only enhances the efficiency and accuracy of path planning but also fully
utilizes historical navigation data, providing new ideas and methods for ship path planning.
The proposed method offers strong support for achieving efficient and safe path planning
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in complex environments within the shipping industry and provides valuable references
for related research fields.

1.4. Method Overview

In this study, AIS data are utilized to provide initial information for path planning.

An improved Douglas-Peucker (DP) trajectory compression algorithm is employed to com-

press the initial AIS data, and intersection points between different voyages are calculated.

Finally, the intersection points and the compressed AIS data are used as navigable points in

the ship’s path, and an improved PRM algorithm is applied to determine the required path.
The proposed method follows the process outlined below:

@
@
®)

4)

Extract initial AIS information and perform data cleaning on the initial AIS data to
obtain data suitable for compression.

Apply the improved DP algorithm to compress the AIS data, resulting in compressed
ship routes.

Compute the latitude and longitude of the intersection points by performing pairwise
intersections of the compressed ship routes.

Use the intersection points obtained in the third step along with the compressed
AIS latitude and longitude data as navigable points, import environmental informa-
tion from electronic nautical charts, and finally apply the hybrid PRM algorithm to
determine the desired path.

The framework of this process is illustrated in Figure 2:

Input AIS data

Filtering AlS data

Data preprocess

Is the route
correct?

Right data

Improved DP Compressing
compression algorithm Data

Compressed AIS
data

Path Planning
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environment
information

Get the path

Figure 2. Main idea flow chart.
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1.5. Contributions

Based on the above research background, this study aims to propose an efficient,
reliable, and fast path planning method by combining an improved DP compression
technique and a HPRM algorithm to cope with the complex environments and dynamic
changes in actual navigation.

The main contributions of this paper are as follows:

(1) Proposed a HPRM path planning method that considers historical AIS data and
environmental data to plan a new route. In view of the random sampling method of
the traditional PRM algorithm, the compressed AIS data and the intersection points
between routes are used to replace the random sampling points. At the same time, the
electronic nautical chart is analyzed to obtain the longitude and latitude data points
of land, coastline, and islands, which will serve as the basis for the environmental
map modeling of the HPRM algorithm proposed in this paper;

(2) Utilized an improved DP algorithm to extract concise and consistent features from
the original AIS data, thereby improving the representativeness and expressiveness of
AIS data;

(3) Conducted validation and comparative simulation experiments, which show that the
paths planned by the HPRM have higher safety and planning efficiency than those of
conventional algorithms.

2. Data Preprocessing

The study uses a section of U.S. waters as an example, with AIS data sourced from
[https:/ /www.noaa.gov, accessed on 10 March 2024].

2.1. AIS Date

AIS (automatic identification system) is an automatic tracking system used for mon-
itoring vessels and maritime traffic. It transmits both dynamic and static information of
ships, including position, speed, heading, and vessel type, through VHF radio frequencies.
AIS data are widely utilized in ship navigation, maritime monitoring, search and rescue
operations, and environmental protection, contributing to enhanced maritime safety and
traffic management efficiency. AIS data are collected via terrestrial receiving stations and
satellites, and after compression and analysis, they are used to predict navigation trajecto-
ries, detect collision risks, and identify anomalous behaviors. In marine transportation and
research, AIS data play a crucial role.

By thoroughly analyzing historical AIS data, it is possible not only to better adapt to the
current marine environment but also to learn from past navigation tracks, thereby avoiding
the repetition of previous navigation errors. Traditional path planning algorithms often
overlook specific geographical features, such as islands, land locations, and underwater
reefs and shoals near ports. These obstacles are often difficult to clearly identify on maps.

2.2. Data Cleaning

In the data processing phase of this study, we conducted meticulous screening and
cleaning to ensure the accuracy of the analysis. First, we excluded invalid data that did not
align with the research objectives, specifically vessel records that were in non-navigational
states (such as anchoring, mooring, or grounding). Figure 3 is a schematic diagram of
common erroneous AIS data, indicating that this study needs to delete the erroneous data.
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Figure 3. Cleaning of erroneous data. (a) Type I: sharp turning; (b) Type II: self crossing.

Next, we identified and removed erroneous data that did not adhere to parameter
specifications, including records with missing key information, unreasonable latitude and
longitude positions, abnormal speeds, or courses exceeding 360 degrees. These errors
typically originate from data packet losses in the physical layer communication links.

Additionally, we addressed duplicate data by categorizing them into two types. For
data entries that were completely identical, we retained only one record to avoid redun-
dancy. For data packets with the same MMSI (maritime mobile service identity) and
timestamp but different data parameters, we adopted a more cautious approach. Since
the authenticity of these data packets could not be determined, we chose to delete them to
prevent potential interference and confusion. Through these steps, we ensured the purity
of the research dataset and the reliability of the analysis results.

When processing automatic identification system (AIS) data, we often face the chal-
lenge of managing vast amounts of information. To ensure the specificity and effectiveness
of the analysis, it is essential to meticulously filter the data to extract information closely
related to the analytical objectives. Figure 4 is a comparison of AIS data before and after
cleaning. This process involves multi-dimensional considerations, including but not limited
to geographic region, time range, vessel type, and navigational status.
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Figure 4. Comparison of AIS data before and after cleaning. (a) Raw AIS data; (b) AIS data after cleaning.

In order to facilitate discussion, the data cleaning part will be completed using the
filter function of Excel software. It is generally recognized that the draft of medium-sized
container ships is usually around 10 m to 12 m. Therefore, we will filter out the data of ships
with a draft of more than 10 m. At the same time, we can filter out ships with SOG greater
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than 2, COG between 0° and 360°, and longitude and latitude should also be between
reasonable areas.

3. Improved DP Compression Algorithm

In this paper, we introduce an improved DP algorithm specifically designed for
the efficient compression of vessel trajectory data. Given the massive scale of AIS data,
especially in busy shipping lanes and port areas, this efficient compression algorithm is
crucial as it can significantly reduce storage requirements, accelerate data transmission
speeds, and enhance data processing efficiency.

3.1. Algorithm Principle

The DP compression algorithm identifies key points in a curve through a recursive
approach: first, it forms a line segment between the starting point and the ending point and
finds the point on the curve that deviates the most from this line segment. If the deviation
distance is less than the threshold, the intermediate points are approximated with a straight
line; otherwise, the point with the maximum deviation is designated as a new key point,
and the process is recursively applied. This continues until the error is within the threshold
range, thereby simplifying the curve while retaining its main features.

This set of figures illustrates the basic concept of DP compression: within a series of
state nodes, a maximum allowable distance d4y is set. When d > d;,4y, the corresponding
point is retained; and when d < dy,x, the point is removed, thereby compressing the path.
By progressively eliminating unnecessary intermediate nodes and retaining only the key
states, the path is simplified. In Figure 5, this process is clearly illustrated. This method
is widely used in path optimization, compression, and data simplification. However,
for AIS data, simple parameter compression alone does not sufficiently meet practical
requirements, as it is necessary to preserve key nodes. Therefore, we introduce multiple

threshold parameters to retain the critical points of the vessels.

(0) (d)

Figure 5. Principle of the DP algorithm. (a) Initial route segment; (b) Determine whether the point
needs to be retained based on the set threshold; (c) Select key points based on the threshold, divide
the path into two segments, and repeat this operation until all key points are selected; (d) Finally,
only the key points are retained, and the rest are discarded to form a simplified path while retaining
the main shape features of the original path.

However, the DP algorithm utilizes planar Cartesian coordinate data, whereas ship
trajectory data (typically based on geographic coordinate systems) involve calculating
spherical distances. For our purposes, it is challenging to directly compute the distance
between trajectory points and lines using geographic coordinates. Therefore, to facilitate the
calculation of point-to-line distances, we can convert geographic coordinates to Mercator
projection coordinates. In Equation (1), (A, ¢) represents the longitude and latitude of
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a trajectory point. ¢o denotes the standard latitude in the Mercator projection, and e
represents the first eccentricity of the Earth’s ellipsoid. The Mercator projection coordinates
(X, Y) of a trajectory point are calculated as follows:

X — ) Ac05g0
v/ 1—e2sin? gy

14
_ a.cos@g . @\ (l-esing)2
Y= /1—e2sin? g, In (tan ( 1713 ) (1+esin<p) )

3.2. Threshold Design

The traditional Douglas—Peucker (DP) algorithm primarily focuses on geometric
attributes but neglects the dynamic environmental changes during navigation, such as
ocean currents, wind speed, and the movement of other vessels. These dynamic factors are
crucial in actual maritime navigation and can significantly impact the accuracy of vessel
trajectories. Additionally, during the trajectory simplification process, key turning points
or locations near important navigational markers may be inadvertently removed, thereby
reducing the practicality and safety of the routes.

To address these issues, we have implemented the following key optimizations to the
DP algorithm:

Consideration of Speed and Heading Changes: By setting thresholds for speed and heading
changes, the improved algorithm retains key points that exhibit significant variations in speed
or heading. This measure ensures that the dynamic characteristics of the navigation data are
preserved, significantly enhancing the precision and safety of path planning.

Dynamic Segmentation: The new algorithm segments the trajectory based on high
curvature or significant distance differences to better adapt to complex navigational envi-
ronments. This approach is particularly effective in handling abrupt trajectory changes
caused by environmental variations or vessel maneuvers.

Data Compression and Quality Assurance: By repeatedly applying the improved
standards, the algorithm not only effectively compresses the data but also ensures data
quality by precisely selecting which data points to retain.

The calculation of thresholds plays a crucial role in compressing vessel trajectory
paths. For AIS data, a higher threshold implies a higher compression rate, resulting in
fewer latitude and longitude points being retained. However, this also means that fewer
relevant features of the vessel trajectories are preserved. Therefore, it is essential to set
appropriate thresholds to compress the paths effectively. In the improved DP algorithm,
we consider four key vessel features, which are as follows:

(1) Geometric threshold determination: Calculate the perpendicular distance D; each
intermediate point (P;(x;, y;) in a sequence relative to the line defined by the start and end points
Pi(x1,y1) and Pn(xn, yn). For each point, this distance is calculated using the following formula:

D, = |(yn — y1)xi — (xn — ¥1)yi + (XN - ¥1 — X1 - Yn)| @)
\/(yN 1)+ (xn — 1)’

If (D;) exceeds a preset geometric threshold, the segment is considered to require
preservation in order to capture more geometric details of the path.

(2) Velocity difference threshold determination: For each pair of consecutive points P;
and P; 1, calculate the difference in velocity:

AV; = [Vig = Vil €)

If max(AV;) exceeds the set velocity threshold, it indicates significant velocity changes
in this path segment, which may affect navigational stability. Therefore, more points should
be retained to capture detailed variations in velocity.
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(3) Heading change threshold determination: Calculate the heading change between
consecutive points:

AH; = |mod(H;;1 — H; + 180,360) — 180| 4)
where H; and H; 1 are the headings of points P; and P; 1, respectively. If max(AH;) exceeds
the preset heading threshold, it indicates a significant change in heading within this path
segment. To ensure the completeness and usefulness of navigation data, these key points
should be retained.

(4) The curvature is defined as follows: as M’ approaches M along curve L, if the limit

of the mean curvature of arc MM’ exists, this limit is called the curvature of curve L at
point M, denoted as K.

A
As

dix
ds

K=1 3
(1+£(0)?

m
As—0

The equation y = f(x) for the path is inconvenient to solve, so we transform this
formula to derive the calculation formula for the curvature threshold.

P V/si(si — ai) (si — bi) (si — ¢i)

! ai-bi-ci

(6)

Here, s; = %, where a;, b; , c; are the side lengths of the triangle formed by three
consecutive points P;_1, P;, and P 1. If max(k;) exceeds the set curvature threshold, it
indicates that this segment of the path contains a significant curve or turn. To prevent loss
of path information, this segment should be retained.

By defining these thresholds, we ensure that some critical points are retained when
using the DP (Douglas-Peucker) algorithm for path simplification.

The pseudocode of Algorithm 1 is as follows:

Algorithm 1 Improved DP Algorithm with Multiple Thresholds

Require: Trajectory points P = {P1, P2, ... Pn}, thresholds Ts, T, Ty, T¢
Ensure: Simplified trajectory points Q
. Q « {P1, Pn}
: Initialize stack S <+ [(P1, Pn)]
: while S is not empty do
(Pstart, Pena) < S-pop()
dmax/ imax — 0/ 0
for i + index(Pstart) + 1index( Pepg ) — 1 do
Calculate D;, Av;, AH;, k;
if any threshold exceeded then

D N AR A N

dmax < value exceeding threshold
].O: imax “— l

11:  endif

12: end for

13: if dyae > Tg then
14:  Insert P; _intoQ

15:  S.push((Pstart, pimax))
16:  S.push((P;,,., Pona))
17: endif

18: end while

19: return Q
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This algorithm simplifies the data points in the compressed ship path through iteration,
retaining those points that have a significant impact on the path’s shape, speed, heading,

and curvature.

In the Figure 6, the left side displays the vessel AIS data for 1 January 2020, while
the right side shows the data after compression using the improved DP algorithm. The
results demonstrate that the improved DP algorithm can significantly compress AIS data,
achieving a compression rate of over 80%.
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Figure 6. Comparison of AIS data of some coastlines on a certain day before and after the improved
DP algorithm compression. (a) AIS data after cleaning; (b) AIS data after compression using the

Figure 7 is about compressing the route of the same vessel. The results in the figure
indicate that the improved DP algorithm significantly enhances the compression rate of
AIS data in comparative experiments and also performs excellently in retaining key points.
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Figure 7. Comparison of a single route before compression and after using the improved DP algorithm.
(a) Initial route of the ship; (b) The route after compression using the improved DP algorithm.
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4. Hybrid Probabilistic Road Map (HPRM)
4.1. Environment Map Import

In traditional path planning, grid maps are a commonly used method for environmen-
tal representation. Grid maps divide the environment into discrete cells or pixels, where
each cell’s navigability is indicated in binary form. Although this approach is relatively
simple to implement and can meet the basic needs of path planning, it suffers from limited
resolution, leading to poor accuracy, particularly when dealing with areas characterized by
complex terrain or dynamic maritime environments. Furthermore, the spatial representa-
tion capability of grid maps is constrained, making it difficult to accurately depict detailed
geographic features. As a result, they exhibit significant limitations when processing
complex geographical environments, such as coastlines and island distributions.

To address these issues, this study delves into the analysis of S-57 nautical chart
files, extracting key geographic information contained within, especially the latitude and
longitude data and other maritime features from the Gulf of Mexico and the Caribbean
region. As an internationally recognized electronic chart standard, 5-57 charts provide rich
geographic and navigational data, including water depth, shipping lanes, obstacles, and
navigational markers [33,34].

Figure 8 presents the environmental map construction results for the Gulf of Mexico
and parts of the Caribbean Sea. The map not only accurately delineates the regional
boundaries but also achieves a higher level of precision in displaying details, capturing the
complex terrain and key navigational features within the area. With this environmental
map, the study is able to better simulate real-world navigation scenarios, thereby enhancing
the adaptability and reliability of the path planning process in actual environments.
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Figure 8. Environment map construction. (a) Electronic navigational charts; (b) Environmental maps
created by analyzing nautical chart data.

4.2. Selection of Sampling Points

The traditional PRM algorithm uses random sampling, but this often results in many
invalid sampling points, such as those located in obstacles or non-navigable areas. These
points cannot be used for path planning, thus wasting computational resources. Especially
in complex environments, sparse sampling may cause some critical navigable paths to
be overlooked.

AIS points represent the actual navigation paths and positions of vessels, reflecting
areas with high navigation density in the waterway. These data typically show commonly
used routes and real navigation habits for avoiding hazardous areas, enabling the gener-
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ation of routes that better meet practical needs. However, the large volume of AIS data
can reduce algorithm efficiency if used directly. Section 3 introduces an algorithm for
compressing AIS data, and the resulting data are then used as sampling points for the PRM
algorithm, which can significantly enhance the rationality and practicality of path planning.

Since intersections can occur between different routes, we can calculate these inter-
sections to identify navigable points along the path. A vessel’s historical route consists
of numerous latitude and longitude points. We treat each pair of adjacent latitude and
longitude points as a short route segment, so each segment consists of only two points.
Then, by setting up equations for all route segments, we can calculate the intersections
between different routes.

Assume route segment AB is defined by points A(x1, y1) and B(xy, y2), and route
segment CD is defined by points C(x3, y3) and D(x4, ya).

Solve the system of equations to find the intersection point as follows:

xp —x1  —(xg4—x3) t| | x3—x
= )
va—y1 —(ya—ys3) s Y3 — W1

Let the matrix be A and the vector be b, then we have the following;:

alfl=» (8)
s
The matrix A can be represented as follows:
A= | 27M — (x4 — x3) 9)
ya—y1 —(Ya—ys)

The vector b is as follows:

Ys—1

To solve for t and s, use the inverse of the matrix.

.

The inverse of matrix A (if it exists) is as follows:

b—[’@'"l] (10)

=A"1 (11)

-1 _ 1 —(Ya—y3) x4—x3
A _(xz—xl)(}/4—y3)—(yz—l/l)(x4—x3)[—(yz—yl) n-x | 0

If the denominator is 0, it indicates that the two line segments are either parallel or
collinear, and there is no unique intersection point.

Determine the intersection point.

After solving for the parameters t and s, substitute t into the parametric equation
of line segment AB, or s into the parametric equation of line segment CD to obtain the
coordinates of the intersection point: x = x1 +t(xa —x1), ¥y = y1 +t(y2 — y1);

This intersection point is the intersection of the two line segments. If 0 <t <1
and 0 < s < 1, then the intersection point lies within the bounds of both segments.
Otherwise, the intersection point lies on the extension of the segments, outside the actual
line segments themselves.

Calculate the intersection points between AIS trajectory segments, and use these
intersection points along with the compressed AIS data points as fundamental sampling
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points. Figure 9 is about the intersection points between the routes. These points can
be considered as navigable points in the PRM algorithm, serving as a foundation for
preliminary route planning.
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Figure 9. Intersection diagram between routes.

4.3. HPRM Algorithm Design
4.3.1. Constructing Path Segments Between Nodes

When constructing connecting path segments, the Haversine formula is used to cal-
culate the spherical distance between nodes, and a distance matrix is generated. Each
node selects several of its nearest neighboring nodes for connection based on the distance
matrix, thereby forming a sparse graph. To avoid unreasonable long-distance connections,
a maximum allowable connection distance can be set, and only neighboring nodes within
this distance range are considered for connections. This method ensures the rationality
of connections, making the generated paths more consistent with the actual geographi-
cal conditions while also ensuring computational efficiency. The Haversine formula is

as follows:
d = 2rarcsin <\/sin2 <¢2;¢l) 4 c0s (¢ )cos (¢ )sin? (W) ) (13)

In the Haversine formula, ¢ represents latitude, A represents longitude, R is the Earth’s

radius (6371 km), and d is the spherical distance between two points.

4.3.2. Collision Detection Between Path Segments

The collision detection step employs a grid mapping detection method for obstacle
identification. During map construction, the area is processed into a grid, with each grid
cell indicating whether it represents an obstacle region. When evaluating a candidate path
segment, each grid cell that the path traverses is individually checked to determine if it
contains an obstacle. If the path intersects an obstacle region, that edge is marked as invalid
and is not included in the node’s edge list. This grid-based collision detection accurately
identifies obstacles along the path, ensuring that the generated path is feasible.

To enhance the precision of grid mapping detection, the size of the grid should be
appropriately set. If the grid size is too large, the deviation of the planned path will
significantly increase. Figure 10 is about inflating obstacles to enhance navigation safety.
Conversely, if the grid size is too small, the resulting path may run too close to the coastline,
which does not meet practical requirements. Therefore, it is necessary to establish a
reasonable grid size range. Additionally, by performing simple obstacle grid inflation,
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safety margins can be increased, and the system can better accommodate obstacles of
various shapes [35-37].

32
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Figure 10. Inflate the drawn environment map with obstacles.

Figure 11 illustrates the relationship between nodes and their connecting edges, with
green lines representing navigable segments of the path. The background gradient in
the figure indicates varying risk levels across different regions, where blue areas denote
high risk and yellow areas correspond to low risk. By employing an obstacle expansion
technique, nodes and path edges are extended outward from high-risk regions, effectively
reducing the potential for collisions. This approach enhances the safety of the path, particu-
larly in complex environments, and significantly improves the robustness and navigational
safety of the path planning process. The optimized nodes and edges in the figure not only
cover low-risk areas but also ensure the connectivity of the path, thereby providing an
efficient and safe navigation route for vessels [38].
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Figure 11. Routable routes generated by connecting nodes.

4.3.3. Shortest Path Search

The graph structure is used to represent the relationships between nodes and their
connecting edges, treating nodes as vertices in the graph and effective connecting edges as
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path segments. The Dijkstra algorithm is employed to search for the shortest path from the
starting node to the target node within the graph. The Dijkstra algorithm can efficiently
find the shortest path in weighted graphs with non-negative weights, making it one of
the most commonly used single-source shortest path algorithms. The path search results
provide a sequence of nodes from the start point to the end point, and these node sequences
serve as the basis for further path optimization [39,40].

Figure 12 illustrates the path planning results generated using the HPRM algorithm in
a complex maritime environment. The figure clearly marks the starting point (Start) and
goal point (Goal), with a red line connecting these two points, representing the optimal
navigation path computed by the algorithm. It is evident from the figure that the planned
path intelligently avoids islands and other potential obstacles, ensuring navigational safety.
Additionally, the path network, formed by blue nodes and green edges, explores multiple
path options, ultimately generating a route that is both efficient and safe. This path planning
approach demonstrates the effectiveness of the HPRM algorithm in avoiding obstacles
within complex maritime areas, providing a theoretical foundation for ship navigation in
real-world applications.

26

25.5

25

Latitude

2458

24

23.5

-815 81 -805 -80 -795 -79 -785 -78
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Figure 12. Path obtained by the HPRM.

4.4. Basis Spline (B-Spline) Path Smoothing Optimization

The B-spline expression can be defined as follows:
n
Ct) = Y Nip(t)Pi (14)
i=0

Here, P; represents the control points, N; ,(t) is the B-spline basis function, and p is
the degree of the curve.
The B-spline basis function N; ,(t) is defined recursively as follows:
When p = 0:
1, ity <t<ti

N:o(t) = (15)
io(f) 0, otherwise

When p > 0:
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t—t

tiypi1 —t
——— N, 1(f) + LNiH,p—l(t) (16)
ti+p —t

Nip(t) =
P tivpy1 —tipa
Here, t; represents the elements of the node vector, the objective function with a
smoothing parameter.
In the optimization process of smoothing the B-spline, an objective function is used to

balance the fitting accuracy and the smoothness of the curve:

I=(1—P);HC(t R )yt (17)

(1—- p) 1 I C( i) — P; || represents the fitting error of the curve to the data.

P i 's || ; t2 || dt represents the smoothness of the curve.

By adjusting the smoothing parameter p, a trade-off can be made between the fitting
accuracy and the smoothness of the curve.

Obstacle avoidance constraint: To ensure that the path avoids obstacles, the following
constraints can be added: d(C(t),Oj) > dpin, Vj, Vt € [to, tf].

d(C(t),O;) represents the distance between the curve point C(t) and the obstacle O;,
and dpin is the minimum safety distance. Figure 13 shows how the B-spline smooths and
optimizes the path.

B-spline
—@— Point

Figure 13. B-spline optimization principle.

Figure 14 shows that the use of B-spline curves can effectively optimize the smoothness
of the path. Compared with the polyline path that directly connects the path nodes, the
generated path is smoother and can eliminate sharp turns and discontinuous curvature

changes [41,42].
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Figure 14. Path after B-spline smoothing. (a) The initial path obtained by planning; (b) The path after

smoothing by the B-spline algorithm.
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The following Algorithm 2 is the pseudocode of the HPRM algorithm:

Algorithm 2 HPRM Algorithm

Require: Map, Start, Goal, n, k, Collision Check(p1, p2)
Ensure: A valid smoothed path from Start to Goal
Vo, E+ g
: while | V |< n do
p < Random sample in map
if p is navigable then
V «— Vu{p}
end if
: end while
:forallp € Vdo
Np < k-nearest neighbors of p
: forall pr € Npdo
if Collision Check(p, p’) then
E«EU{(p p)}
end if
: end for

O XN DR

e e Y T gy
L N v =

: end for

—
N U1

: Connect Start and Goal to V by finding k-nearest neighbors
: Perform graph search on G = (V, E) to find path P
: for all edges (p, p/) € P do
: if not Collision Check(p, p/) then
E—E\{(p, p1}
Re-run path search
: end if
: end for

N NN DND PR = =
W N P © O 0

24: Path Smoothing: Apply B-spline smoothing on path P to generatesmoothed path
Psmooth
25: return final smoothed path P04, from Start to Goal

5. Experiment and Comparative Analysis

This section focuses on experimental validation of the improved DP algorithm and
hybrid PRM, with a comparative analysis of their effectiveness and superiority. The
study uses a section of U.S. waters as an example, with AIS data sourced from [https:
//www.noaa.gov, accessed on 5 May 2024].

5.1. Comparison of Different Compression Algorithms

To demonstrate the superiority of the improved DP algorithm, this study compared it
with the k-means, RDP, and sliding window algorithms from multiple aspects, including
compression rate comparison and the compression effects on the same trajectory.

From Figure 15, it can be analyzed that both the improved DP algorithm and the RDP
algorithm are suitable for compressing AIS data. The k-means algorithm does not perform
well in terms of compression, as it retains some unnecessary points and requires manual
adjustment of clustering points for different vessels. Meanwhile, the sliding window
algorithm transforms the compressed route into a straight-line path, resulting in excessively
large turning radii at corners.
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Figure 15. Comparison of different algorithms for compressing the same vessel data. (a) Improved
DP algo-rithm; (b) k-means algorithm; (c) Ramer DP algorithm; (d) sliding window algorithm.

A key metric for evaluating a compression algorithm is its compression rate. Figure 16
clearly illustrates the comparison of four different compression algorithms across three
different vessel IDs. Among them, the sliding window algorithm demonstrates the best
performance in terms of compression rate, while the efficiency of the k-means algorithm is
relatively low. Both the improved DP and RDP algorithms exhibit stable and robust perfor-
mance. However, based on prior analysis, it is evident that the improved DP algorithm is
particularly well-suited for compressing AIS data: it not only offers a high compression
rate but also excels in retaining critical data points compared to other algorithms.

Il 1mproved DP

% [ kop
[ ]Sliding Window|
97.89 97 36 95,98, 98.48

100

P 2] =)
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Compression rate

[
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Comparison of compression rate of different algorithms

Figure 16. Compression rate comparison of different algorithms.
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5.2. Comparison of Path Planning Algorithms

To verify the advanced nature of the proposed hybrid PRM algorithm, a specific
geographic area near the waters of the United States was selected for testing. The latitude
range is between 17.7915° and 33.6085°, and the longitude range is between —98.1167° and
—76.1000°. This area covers parts of Florida, Georgia, and South Carolina, located mainly
along the Atlantic coast. Within this region, random start and end points were chosen for
path planning, and comparisons were made with the non-optimized PRM algorithm as
well as the current mainstream algorithms, A* and Dijkstra. The results are as follows.

By combining Table 2 and Figure 17, it can be observed that, compared with the
unoptimized PRM algorithm and the current mainstream algorithms A* and Dijkstra, the
hybrid PRM algorithm has significant advantages in terms of planning time and route
length. It generates the shortest processing time and shorter routes, making it suitable
for applications that require rapid and efficient path planning. Additionally, as shown in
the figure, the paths planned by the initial PRM algorithm have excessive turning points,
insufficient curve smoothness, and are easily influenced by sampling points. In contrast,
the A* and Dijkstra algorithms tend to become trapped in local optima, and the paths they
generate do not meet the actual navigational requirements.

() (d)

Figure 17. Path planning comparison diagram for different algorithms. (a) HPRM algorithm; (b) PRM
algorithm; (c) A* algorithm; (d) Dijkstra algorithm.
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Table 2. Comparison of path planning across different algorithms.
. . . Number of
Algorithm Planning Times (s) Route Length (nm) Turning Points
Hybrid PRM 14.067670 1045.15 26
PRM 21.982659 1060.14 16
A* 28.236141 1239.69 36
Dijkstra 39.645747 1257.55 21

References

6. Conclusions

The hybrid PRM algorithm proposed in this study effectively addresses the limitations
of the traditional PRM, with the following key innovations: (1) The application of an
improved dynamic programming (DP) algorithm for compressing AIS data resolves the
issue of excessive data volume, significantly enhancing the efficiency of subsequent path
planning. (2) The sampling strategy of the PRM algorithm is improved by replacing random
sampling points with compressed AIS latitude and longitude points, eliminating invalid
samples, and simultaneously enhancing the safety of navigational planning. (3) B-splines
are employed to optimize the smoothness of the path, addressing issues such as excessively
large turning radii and unsmooth paths, thereby improving vessel maneuverability.

Comparative experiments demonstrate that the improved DP algorithm can effectively
compress vessel trajectories, retain critical feature points, and extract valuable data. A
comparison of different path planning algorithms highlights the efficiency and safety
advantages of the proposed hybrid PRM algorithm. Experimental results show that the
algorithm achieves an average reduction of approximately 10% in the length of the shortest
paths generated, while efficiency is improved by over 35%.

Author Contributions: Conceptualization, G.W. and L.G.; methodology, L.G., D.S. and B.H.; software,
G.W. and L.G;; validation, G.W. and FY.; formal analysis, L.G., D.S. and B.H.; investigation, G.W.,
D.S. and B.H,; resources, G.W., D.S. and B.H.; data curation, L.G., D.S. and B.H.; writing—original
draft preparation, L.G.; writing—review and editing, G.W., D.S. and B.H.; visualization, L.G. and FY,;
supervision, G.W., D.S. and B.H.; project administration, G.W., D.S. and B.H.; funding acquisition,
G.W. and B.H. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the National Engineering Research Center of Ship & Shipping
Control System and by the National Natural Science Foundation of China, grant number 52271322.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: All data are presented in the paper.

Conflicts of Interest: Author Bing Han was employed by the company Shanghai Ship and Shipping
Research Institute Co., Ltd. The remaining authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a potential conflict
of interest.

1. Wu, G, Atilla, L; Tahsin, T.; Terziev, M.; Wang, L. Long-voyage route planning method based on multi-scale visibility graph for
autonomous ships. Ocean Eng. 2021, 219, 108242. [CrossRef]

2. Wu, G, Li, H;; Mo, W. Improved Whale Optimization Algorithm for Maritime Autonomous Surface Ships Using Three Objectives
Path Planning Based on Meteorological Data. J. Mar. Sci. Eng. 2024, 12, 1313. [CrossRef]

3. Svanberg, M.; Santén, V.; Horteborn, A.; Holm, H.; Finnsgard, C. AIS in maritime research. Mar. Policy 2019, 106, 103520.

[CrossRef]

4.  Hart, E,; Timmis, ]. Application areas of AIS: The past, the present and the future. Appl. Soft Comput. 2008, 8, 191-201. [CrossRef]


https://doi.org/10.1016/j.oceaneng.2020.108242
https://doi.org/10.3390/jmse12081313
https://doi.org/10.1016/j.marpol.2019.103520
https://doi.org/10.1016/j.asoc.2006.12.004

J. Mar. Sci. Eng. 2025, 13,184 22 of 23

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Robards, M; Silber, G.; Adams, J.; Arroyo, J.; Lorenzini, D.; Schwehr, K.; Amos, ]J. Conservation science and policy applications of
the marine vessel Automatic Identification System (AIS)—A review. Bull. Mar. Sci. 2016, 92, 75-103. [CrossRef]

Zhou, C.; Gu, S;; Wen, Y.; Du, Z,; Xiao, C.; Huang, L.; Zhu, M. The review unmanned surface vehicle path planning: Based on
multi-modality constraint. Ocean Eng. 2020, 200, 107043. [CrossRef]

Oztiirk, U.; Akdag, M.; Ayabakan, T. A review of path planning algorithms in maritime autonomous surface ships: Navigation
safety perspective. Ocean Eng. 2022, 251, 111010. [CrossRef]

Song, Y.; Cao, X. Review of Intelligent Ship Path Planning Algorithms. Front. Manag. Sci. 2024, 3, 90-101. [CrossRef]

Wu, Y,; Wang, T.; Liu, S. A Review of Path Planning Methods for Marine Autonomous Surface Vehicles. . Mar. Sci. Eng. 2024, 12,
833. [CrossRef]

Dijkstra, E.W. A note on two problems in connexion with graphs. In Edsger Wybe Dijkstra: His Life, Work, and Legacy; Association
for Computing Machinery: New York, NY, USA, 2022; pp. 287-290.

Muhammed, M.L.; Humaidi, A J.; Flaieh, E.H. Towards Comparison and Real Time Implementation of Path Planning Methods
for 2R Planar Manipulator with Obstacles Avoidance. Math. Model. Eng. Probl. 2022, 9, 379-389. [CrossRef]

Laith, M.M.; Jaleel, H.A.; Hassan, FE. A comparison study and real-time implementation of path planning of two arm planar
manipulator based on graph search algorithms in obstacle environment. Break. News Innov. Comput. Inf. Control. 2023, 17, 61.
Muhammed, M.L.; Flaieh, E.H.; Humaidi, A.]. Embedded system design of path planning for planar manipulator based on chaos
A* algorithm with known-obstacle environment. J. Eng. Sci. Technol. 2022, 17, 4047-4064.

Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci.
1968, 4, 100-107. [CrossRef]

Kennedy, ]. Swarm intelligence. In Handbook of Nature-Inspired and Innovative Computing: Integrating Classical Models with Emerging
Technologies; Springer: Berlin/Heidelberg, Germany, 2006; pp. 187-219.

Jino Ramson, S.; Lova Raju, K.; Vishnu, S.; Anagnostopoulos, T. Nature inspired optimization techniques for image processing—A
short review. In Nature Inspired Optimization Techniques for Image Processing Applications; Springer: Cham, Switzerland, 2019; pp.
113-145. [CrossRef]

Golberg, D.E. Genetic algorithms in search, optimization, and machine learning. Addion Wesley 1989, 1989, 36.

Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural
Networks, Perth, Australia, 6 August 2002; pp. 1942-1948.

Dorigo, M.; Gambardella, L.M. Ant colony system: A cooperative learning approach to the traveling salesman problem. [EEE
Trans. Evol. Comput. 1997, 1, 53-66. [CrossRef]

Li, M.; Li, B; Qi, Z,; Li, J.; Wu, J. Optimized APF-ACO algorithm for ship collision avoidance and path planning. . Mar. Sci. Eng.
2023, 11, 1177. [CrossRef]

Elbanhawi, M.; Simic, M. Sampling-based robot motion planning: A review. IEEE Access 2014, 2, 56-77. [CrossRef]

Karaman, S.; Frazzoli, E. Sampling-based algorithms for optimal motion planning. Int. ]. Robot. Res. 2011, 30, 846-894. [CrossRef]
LaValle, S.M.; Kuffner, J. Rapidly-exploring random trees: Progress and prospects. In Algorithmic and Computational Robotics;
Taylor & Francis Group: New York, NY, USA, 2001; pp. 303-307. [CrossRef]

Kavraki, L.E.; Svestka, P.; Latombe, ].-C.; Overmars, M.H. Probabilistic roadmaps for path planning in high-dimensional
configuration spaces. IEEE Trans. Robot. Autom. 1996, 12, 566-580. [CrossRef]

Gu, Q.; Zhen, R;; Liu, J.; Li, C. An improved RRT algorithm based on prior AIS information and DP compression for ship path
planning. Ocean Eng. 2023, 279, 114595. [CrossRef]

Zhen, R.; Jin, Y.; Hu, Q.; Shao, Z.; Nikitakos, N. Maritime anomaly detection within coastal waters based on vessel trajectory
clustering and Naive Bayes Classifier. |. Navig. 2017, 70, 648-670. [CrossRef]

Zhao, J.; Yan, Z.; Zhou, Z.; Chen, X.; Wu, B.; Wang, S. A ship trajectory prediction method based on GAT and LSTM. Ocean Eng.
2023, 289, 116159. [CrossRef]

Tang, C.; Wang, H.; Zhao, J.; Tang, Y.; Yan, H.; Xiao, Y. A method for compressing AIS trajectory data based on the adaptive-
threshold Douglas-Peucker algorithm. Ocean Eng. 2021, 232, 109041. [CrossRef]

Zhao, L.; Shi, G. A trajectory clustering method based on Douglas-Peucker compression and density for marine traffic pattern
recognition. Ocean Eng. 2019, 172, 456-467. [CrossRef]

Zhou, Z.; Zhang, Y.; Yuan, X.; Wang, H. Compressing AIS trajectory data based on the multi-objective peak Douglas—Peucker
algorithm. IEEE Access 2023, 11, 6802-6821. [CrossRef]

Zhao, L.; Shi, G. A method for simplifying ship trajectory based on improved Douglas-Peucker algorithm. Ocean Eng. 2018, 166,
37-46. [CrossRef]

Marian-Vasile, S. Analysis of Submarine Operations in Semi-Enclosed Seas—The Black Sea. In Proceedings of the 20th International
Scientific Conference “Strategies XXI” Technologies—Military Applications, Simulation and Resources; “Carol I” National Defence
University: Bucharest, Romania, 2024; pp. 211-218.


https://doi.org/10.5343/bms.2015.1034
https://doi.org/10.1016/j.oceaneng.2020.107043
https://doi.org/10.1016/j.oceaneng.2022.111010
https://doi.org/10.56397/FMS.2024.02.10
https://doi.org/10.3390/jmse12050833
https://doi.org/10.18280/mmep.090211
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1007/978-3-319-96002-9_5
https://doi.org/10.1109/4235.585892
https://doi.org/10.3390/jmse11061177
https://doi.org/10.1109/ACCESS.2014.2302442
https://doi.org/10.1177/0278364911406761
https://doi.org/10.1201/9781439864135-43
https://doi.org/10.1109/70.508439
https://doi.org/10.1016/j.oceaneng.2023.114595
https://doi.org/10.1017/S0373463316000850
https://doi.org/10.1016/j.oceaneng.2023.116159
https://doi.org/10.1016/j.oceaneng.2021.109041
https://doi.org/10.1016/j.oceaneng.2018.12.019
https://doi.org/10.1109/ACCESS.2023.3234121
https://doi.org/10.1016/j.oceaneng.2018.08.005

J. Mar. Sci. Eng. 2025, 13,184 23 of 23

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Contarinis, S.; Nakos, B.; Tsoulos, L.; Palikaris, A. Web-based nautical charts automated compilation from open hydrospatial data.
J. Navig. 2022, 75, 763-783. [CrossRef]

Clarke, J. A Proposed Submarine Electronic Chart Display and Information System. 2023. Available online: https://unbscholar.
lib.unb.ca/items/c747099d-1c12-4710-af7c-2809fdac9b96/full (accessed on 15 January 2024).

Ayawli, B.B.K.; Appiah, A.Y.; Nti, LK.; Kyeremeh, F.; Ayawli, E.I. Path planning for mobile robots using Morphological Dilation
Voronoi Diagram Roadmap algorithm. Sci. Afr. 2021, 12, e00745. [CrossRef]

Yang, F,; Cao, C.; Zhu, H.; Oh, J.; Zhang, ]. Far planner: Fast, attemptable route planner using dynamic visibility update. In
Proceedings of the 2022 IEEE/RS]J International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 23-27
October 2022; pp. 9-16.

Zhang, W.; Hou, Y,; Liu, H; Lin, Z. Path planning for submersible surface ships in a three-dimensional environment considering
safety distance. . Mar. Eng. Technol. 2024, 1-22. [CrossRef]

Yin, X,; Cai, P; Zhao, K.; Zhang, Y.; Zhou, Q.; Yao, D. Dynamic path planning of AGV based on kinematical constraint A*
algorithm and following DWA fusion algorithms. Sensors 2023, 23, 4102. [CrossRef]

Cho, S.W.; Park, H.J.; Lee, H.; Shim, D.H.; Kim, S.-Y. Coverage path planning for multiple unmanned aerial vehicles in maritime
search and rescue operations. Comput. Ind. Eng. 2021, 161, 107612. [CrossRef]

Li, Q.; Ma, Q.; Weng, X. Dynamic path planning for mobile robots based on artificial potential field enhanced improved
multiobjective snake optimization (APF-IMOSO). J. Field Robot. 2024, 41, 1843-1863. [CrossRef]

Liu, X.; Wang, X.; Wu, Z.; Zhang, D.; Liu, X. Extending Ball B-spline by B-spline. Comput. Aided Geom. Des. 2020, 82, 101926.
[CrossRef]

Li, X.; Gao, X.; Zhang, W.; Hao, L. Smooth and collision-free trajectory generation in cluttered environments using cubic B-spline
form. Mech. Mach. Theory 2022, 169, 104606. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1017/S0373463322000327
https://unbscholar.lib.unb.ca/items/c747099d-1c12-4710-af7c-2809fdac9b96/full
https://unbscholar.lib.unb.ca/items/c747099d-1c12-4710-af7c-2809fdac9b96/full
https://doi.org/10.1016/j.sciaf.2021.e00745
https://doi.org/10.1080/20464177.2024.2424534
https://doi.org/10.3390/s23084102
https://doi.org/10.1016/j.cie.2021.107612
https://doi.org/10.1002/rob.22354
https://doi.org/10.1016/j.cagd.2020.101926
https://doi.org/10.1016/j.mechmachtheory.2021.104606

	Introduction 
	Background 
	Literature Review 
	Motivation 
	Method Overview 
	Contributions 

	Data Preprocessing 
	AIS Date 
	Data Cleaning 

	Improved DP Compression Algorithm 
	Algorithm Principle 
	Threshold Design 

	Hybrid Probabilistic Road Map (HPRM) 
	Environment Map Import 
	Selection of Sampling Points 
	HPRM Algorithm Design 
	Constructing Path Segments Between Nodes 
	Collision Detection Between Path Segments 
	Shortest Path Search 

	Basis Spline (B-Spline) Path Smoothing Optimization 

	Experiment and Comparative Analysis 
	Comparison of Different Compression Algorithms 
	Comparison of Path Planning Algorithms 

	Conclusions 
	References

