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Abstract: Sea clutter introduces a significant amount of non-target reflections in the echo
signals received by radar, complicating target detection and identification. To address the
challenge of existing filter parameters being unable to adapt in real-time to the characteris-
tics of sea clutter, this paper integrates ocean numerical models into the sea clutter spectrum
estimation. By adjusting filter parameters based on the spectral characteristics of sea clutter,
the accurate suppression of sea clutter is achieved. In this paper, the Weather Research and
Forecasting (WRF) model is employed to simulate the ocean dynamic parameters within
the radar detection area. Hydrological data are utilized to calibrate the parameterization
scheme of the WRF model. Based on the simulated ocean dynamic parameters, empirical
formulas are used to calculate the sea clutter spectrum. The filter coefficients are updated
in real-time using the sea clutter spectral parameters, enabling precise suppression of sea
clutter. The suppression algorithm is validated using X-band radar-measured sea clutter
data, demonstrating an improvement factor of 17.22 after sea clutter suppression.

Keywords: ocean dynamics; shore-based radar; WRF model; sea clutter suppression; sea
clutter spectrum; digital filter

1. Introduction
For marine target detection radars, the backscatter from the sea surface, when illumi-

nated by radar, often significantly affects the radar’s ability to detect and identify targets
such as ships, aircraft, missiles, navigational buoys, and other objects located within the
same radar resolution cell as the sea surface. These interfering signals are referred to as sea
clutter. Compared to land clutter, sea clutter is more complex due to the dynamic nature of
the sea surface, which is influenced by natural factors such as wind speed, waves, humidity,
temperature, and tides.

The intensity and spectral characteristics of sea clutter are significantly influenced by
the radar operating frequency, the polarization mode, and the angle of electromagnetic
wave incidence. An increase in radar operating frequency enhances sensitivity to small-
scale ocean surface waves, resulting in higher amplitude sea clutter received by high-
frequency radars compared to their low-frequency counterparts. The polarization mode
affects the strength and distribution of sea clutter echoes; horizontal polarization more
effectively captures wave reflections from the sea surface, while vertical polarization is
more sensitive to wave crests [1]. The angle of incidence of radar waves is a critical
factor influencing sea clutter characteristics, with lower grazing angles typically generating
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stronger sea clutter due to the complex multiple scattering and reflection experienced as
radar waves approach the sea surface. As the grazing angle increases, the intensity of sea
clutter gradually diminishes. A thorough investigation of these influencing factors can
enhance the understanding of sea clutter’s interference with maritime target detection and
recognition, thereby improving the detection accuracy of radar systems.

Sea clutter modeling involves establishing relationships between sea clutter character-
istics and radar parameters, as well as ocean environmental parameters, to understand the
temporal and spatial variations of sea clutter [2,3]. Sea clutter can be modeled from multiple
dimensions. Traditional modeling methods rely on measured sea clutter data and employ
statistical techniques to develop relevant parameterized models [4]. Typical sea clutter
models include the backscattering coefficient model for the sea surface [5,6], amplitude
statistical models [7,8], polarization models [9,10], and Doppler spectrum models [11].

As the sea surface presents an incessant state of motion, combined with the influences
of antenna scanning modulation and radar platform movement, the sea clutter spectrum
will generate a Doppler shift. Therefore, the sea clutter power spectrum is also referred to
as the Doppler power spectrum, or more tersely, the Doppler spectrum [12]. The Doppler
spectrum of sea clutter refers to the Fourier transform of the autocorrelation function of
a continuous coherent time series signal within a single range gate on the sea surface.
Different spectrum models correspond to different spectrum parameters, among which
the most important are the Doppler shift and Doppler broadening. The former reflects
the velocity of the sea surface scatterer motion, while the latter reflects the randomness
of the scatterer motion. The spectrum characteristics of sea clutter can reflect the energy
characteristics and motion phase information of the sea surface, playing an irreplaceable
role in sea clutter research.

In the field of sea clutter spectrum foundational features, continuous research has been
performed by Lamont-Smith et al. [13,14], who delved systematically and profoundly into
the subject area. Under the precondition of considering Bragg and non-Bragg scattering
mechanisms, the average spectral model of sea clutter has evolved from simplistic initial
versions, such as the Gaussian model and power law model, to multi-component mixed
models such as the Lee model [15], Walker model [16,17], Lamont-Smith model [18],
and Rosenberg model [19,20]. The latter two models can be regarded as revisions of
the Walker model. The China Research Institute of Radiowave Propagation [21,22] has
established a time-varying Doppler spectrum model for sea clutter, addressing issues
related to incomplete consideration of scattering mechanisms and inconsistencies between
short-term and long-term modeling processes based on measured sea clutter data.

To enhance radar performance in detecting maritime targets, researchers have de-
veloped various effective sea clutter suppression algorithms, leveraging characteristics
exhibited by sea clutter in the time and frequency domains. These algorithms significantly
reduce the impact of sea clutter on target detection. Current approaches can be categorized
into methods based on fractal and chaotic features of the sea surface [23,24], time–frequency
analysis techniques [25,26], and artificial intelligence-based methods for detecting maritime
targets [27,28].

The detection performance of radar systems is primarily influenced by the charac-
teristics of sea clutter. Detection algorithms that utilize the spectral features of sea clutter
aim to identify and suppress it, thereby improving target detection accuracy. According
to optimal filtering theory, the optimal filter in a sea clutter background must adapt to
variations in clutter characteristics. Given the inherent variability of sea clutter with envi-
ronmental conditions, it is crucial to control the filter parameter changes based on real-time
characteristics of the sea clutter to achieve adaptive optimal filtering. The improvement
factor of the signal-to-clutter ratio (SCR) derived from the optimal filter is determined by
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the spectral width of the clutter and the order of the filter. To obtain satisfactory detection
performance, accurate estimation of sea clutter characteristics and real-time updates of
filter coefficients are essential.

Based on the aforementioned analysis, understanding the backscattering character-
istics and spectral properties of sea clutter can be achieved by obtaining sea surface state
parameters within the radar detection area, such as ocean currents and waves. By leverag-
ing these ocean dynamic parameters, the variations in filter parameters can be controlled,
enabling the design of an optimal filter.

To obtain wind speed and direction information for a specific sea area at a particu-
lar time within the radar illumination region, various numerical models are commonly
employed. Global meteorological models, such as the ECMWF (European Centre for
Medium-Range Weather Forecasts) and GFS (Global Forecast System), are among the most
frequently used options. However, global models often exhibit insufficient resolution for
fine-scale predictions in localized areas. Wave models, such as WAM (Wave Mode) and
SWAN (Simulating Waves Nearshore), are primarily designed for wave forecasting but can
also indirectly provide information on wind speed and direction. WAM [29] is one of the
most commonly used global wave models, being suitable for wave predictions in oceanic
and coastal regions. In contrast, SWAN [30] is a local wave simulation tool focused on
nearshore and shallow water applications, featuring high-resolution and flexible simulation
capabilities. However, since predicting the wind field is not the primary objective of wave
models, the accuracy of wind speed and direction forecasts is generally inferior to that of
specialized meteorological models.

In comparison, the regional model WRF (Weather Research and Forecasting) model
demonstrates clear advantages in localized forecasting. The WRF is a flexible, high-
resolution regional meteorological model that allows users to define the simulation area
and temporal scale according to their requirements [31]. It can achieve high-resolution
forecasts through nested techniques and can be adjusted based on specific topographical
and meteorological conditions, resulting in a simulation accuracy that significantly exceeds
that of global models in particular regions. Especially in complex terrain or marine con-
ditions, the WRF can capture more local details, such as land–sea breezes and localized
wind field variations. Due to its flexibility, adjustability, and high resolution, the WRF
provides distinct advantages in simulating wind speed and direction in localized sea areas.
Compared to global and wave models, the WRF not only offers finer spatial resolution but
also optimizes local forecasting accuracy through parameter adjustments and boundary
condition modifications. Consequently, the WRF is a highly effective tool for short- and
medium-term wind speed and direction predictions in specific marine areas. With the
advancement of WRF versions, the WRF model is increasingly employed for high-precision
regional wind field simulations [32–35].

After obtaining the ocean dynamical parameters, it is essential to design a filter that
matches the spectral characteristics of sea clutter, employing matched filtering to suppress
the clutter. The design of the filter is a critical step in this process. Digital filters, as effective
signal processing tools, can suppress clutter with minimal distortion, making them widely
used in radar signal processing systems. Digital filters are primarily categorized into Finite
Impulse Response (FIR) filters and Infinite Impulse Response (IIR) filters [36]. FIR filters
are renowned for their linear phase characteristics and stability, ensuring that the signal
does not undergo phase distortion during filtering, which makes them particularly suitable
for applications with high phase fidelity requirements. Despite their higher computational
complexity, FIR filters can effectively preserve the original form of the signal in sea clutter
removal, avoiding stability issues associated with feedback. In contrast, IIR filters utilize
feedback loops to achieve greater computational efficiency. While they can provide similar
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filtering effects at lower filter orders, their nonlinear phase characteristics and potential
instability limit their application in high-precision scenarios.

This paper addresses the challenges of modeling the time-varying Doppler spectrum of
sea clutter, the difficulty in obtaining real-time ocean dynamic parameters in radar detection
areas, and the design of optimal filters for sea clutter Doppler spectra. We introduce
the WRF meteorological model into the estimation of the sea clutter Doppler spectrum,
replacing the previous ocean data inversion methods based on sea clutter data. By designing
a parameterization scheme for the WRF model, we achieve fine-scale temporal and spatial
simulations of ocean dynamic parameters such as wind speed and direction within the
radar detection area. Subsequently, we estimate the sea clutter Doppler spectrum using
empirical formulas based on the ocean dynamic parameters. With the estimated Doppler
spectrum parameters, we employ FIR digital filters to accurately suppress clutter, ultimately
enhancing the SCR improvement factor and improving radar target detection capabilities.

The main contributions of this paper are as follows:

1. The WRF meteorological model is introduced into the simulation of ocean parameters
within a radar detection area. The parameterization scheme of the WRF model is
calibrated using measured hydrological data from the radar detection area, ensuring
simulation accuracy. This WRF numerical model simulation addresses the inability
to grasp real-time changes in the ocean environment characteristics within the radar
detection area.

2. Based on the simulated ocean dynamic parameters and integrating various sea clutter
spectral computation methods, we develop a sea clutter spectrum estimation method
based on ocean dynamic parameters. This enables the use of the WRF numerical
model to investigate ocean environment parameters and subsequently estimate the
sea clutter Doppler spectrum.

3. Utilizing the sea clutter Doppler spectrum parameters obtained from ocean dynamic
parameter simulations, we design digital filters that match the spectral characteristics
of sea clutter. By controlling the filter parameter changes based on simulated real-time
sea clutter characteristics, we achieve adaptive optimal filtering, accurately suppress-
ing clutter in radar echoes. The combination of ocean numerical modeling, ocean
dynamics, and matched digital filters provides new insights for the development of
sea clutter suppression technologies.

The remainder of this paper is organized as follows. Section 2 introduces the sea
clutter suppression method based on ocean dynamics used in this paper. It incorporates
the WRF numerical model to simulate ocean dynamic parameters, derives the calculation
formula for the sea clutter spectrum, and analyzes the FIR digital filter. Finally, it introduces
the two measured sea clutter datasets used in this study. Section 3 simulates various ocean
dynamic parameters in the detection area based on the radar deployment location and
gaze direction from the measured sea clutter data, comparing them with publicly available
hydrological data for validation. We design digital filters for clutter suppression based on
the sea clutter spectra and analyze the suppression effects, calculating the improvement
factors at different target frequencies. Section 4 summarizes the paper and proposes future
research plans.

2. Methods
This section primarily introduces the WRF model. Based on the WRF model and the

methodology outlined in this section, the sea clutter suppression method driven by ocean
dynamics is shown in Figure 1. The specific process is as follows: The WPS module of
the WRF model is driven by terrain and gridded meteorological data matching the radar
detection range. The WPS module consists of three main steps: its geogrid interpolates
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static geographical data onto the model grid, its ungrib extracts meteorological field data
from GRIB-format driver files, and its metgrid horizontally interpolates the meteorological
field data extracted by ungrib onto the simulation domain grid defined by geogrid. Upon
completion of WPS preprocessing, the WRF model performs simulation, outputting oceanic
dynamic parameters such as wind speed and direction at specific distance units along radar
gaze directions. During WRF model simulation, parameterization schemes are calibrated
against meteorological data measured by buoys within the radar detection region, selecting
the optimal parameterization scheme that matches the sea area. Based on oceanic dynamic
parameters simulated by the WRF model, the power spectrum of sea clutter is estimated
using empirical formulas. Corresponding sea clutter suppression filters are designed based
on the sea clutter power spectrum to suppress sea clutter signals in radar returns.

WPS

WRF Model

Geographical 

Data

Ocean dynamic 

parameters

Meteorological

Data

Observation 

data

Calibrations

Radar echo 

signal

Sea clutter 

digital filter

Post-suppression 

signal

Driving

Computed

Estimations

Power 

spectrum

Feedback

Design

metgrid ungribgeogrid

matched

Figure 1. Block diagram of sea clutter suppression based on ocean dynamics.

2.1. Simulation of Ocean Dynamics Parameters Based on the WRF Model

The WRF model is based on the fully compressible, non-hydrostatic Euler equations
in the flux form, allowing bidirectional and unidirectional multilayer nested domains
on horizontal grids. It employs the Arakawa C grid for the horizontal grid format and
an improved σ-coordinate for vertical direction (terrain-following η-coordinate). The
WRF model allows vertical stratification in three-dimensional space and is adaptable to
various research configurations, thereby mitigating significant errors inherent in calculating
advection terms, horizontal pressure gradient forces, and horizontal diffusion terms over
steep terrain coordinates. This atmospheric dynamics framework incorporates state-of-
the-art dynamic and physical processes, facilitating the selection and configuration of
different parameterization schemes according to research needs. This capability ensures
the model’s applicability across diverse spatial and temporal scales, thereby enhancing
numerical simulation outcomes.

The vertical coordinate system of the WRF model follows the terrain with a static
pressure-based η-coordinate [37]:

η = (ph − pht)/µ (1)

where ph represents the hydrostatic portion of atmospheric pressure, µ = phs − pht, and
pht and phs denote the atmospheric pressure at the upper and lower boundaries (ground
surface) of the numerical model, respectively. η = 0 indicates the upper boundary, while
η = 1 represents the lower boundary.

This η coordinate is also known as the terrain-following height coordinate. µ(x, y)
represents the unit area mass of the entire atmospheric layer at any point within the region,
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which varies with the horizontal grid position. Therefore, the flux form expression for
atmospheric variables is given by

V = µ(u, v, w) = (U, V, W),Ω = µη̇,Θ = µθ (2)

where w = η, (u, v, w) represents the covariant velocity components in the vertical and
horizontal directions, and θ represents potential temperature.

Using the newly defined variables described above, we introduce potential height
ϕ = gz, atmospheric pressure p, and the reciprocal of air density α = 1/ρ as three noncon-
servative variables. The flux form of the Euler equations is then rewritten as follows:

∂U
∂t

+ (∇ · Vu)− ∂

∂x

(
p

∂ϕ

∂η

)
+

∂

∂η

(
p

∂ϕ

∂x

)
= FU (3)

∂V
∂t

+ (∇ · Vu)− ∂

∂y

(
p

∂ϕ

∂η

)
+

∂

∂η

(
p

∂ϕ

∂y

)
= FV (4)

∂W
∂t

+ (∇ · Vw)− g
(

∂p
∂η

− µ

)
= FW (5)

∂Θ
∂t

+ (∇ · Vw) = FΘ (6)

∂µ

∂t
+ (∇ · V) = 0 (7)

∂ϕ

∂t
+

1
µ
[(V · ∇ϕ)− gW] = 0 (8)

Additionally, the expression for the reciprocal of density α in the hydrostatic equilib-
rium equation is given by

∂ϕ

∂η
= −αµ (9)

The equation of state is as follows:

p = p0(Rdθ/p0α)γ (10)

In Equations (3)–(10), assuming a represents a general variable, we have the following:

∇ · Va =
∂

∂x
(Ua) +

∂

∂y
(Va) +

∂

∂η
(Ωa) (11)

∇ · Va = U
∂a
∂x

+ V
∂a
∂y

+Ω
∂a
∂η

(12)

In Equations (3)–(10), FΘ, FV , FU , and FW denote forcing terms due to Earth’s rota-
tion, turbulent mixing, model physical processes, and spherical projection, respectively;
p0 is the reference pressure (typically 105 pascals), Rd is the gas constant for dry air;
γ = CP/Cv = 1.4, where Cp denotes the specific heat capacity at constant pressure; and Cv

represents the specific heat capacity at constant volume.

2.2. Sea Clutter Spectrum Estimation Based on Ocean Dynamics Parameters

Sea clutter is influenced not only by the swell structure of the sea surface but also
by local gusts and scattering mechanisms. Despite such complex relationships, empirical
formulas for the Doppler shift and spectral width of sea clutter can be derived. The time
scale of concern for modeling the average spectral shape of sea clutter is generally on the
order of seconds or more to ensure that the observed data can cover at least one complete
period of a gravity wave [38]. The average Doppler shift is a function of the wind speed,
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and it is proportional to the cosine of the angle between the wind direction and the radar
detection direction [39], as shown in the following equation:

fD =
2cosϕcosθg

λ

(
vw ± vc ± cp

)
(13)

where θg is the grazing angle, λ is the microwave wavelength, and vw, vc, and cp refer to
wind drift, current velocity, and the speed of the scattering object on the water surface,
respectively. ϕ is the angle between the wind direction and the radar detection direction.

Equation (13) neglects the surface tilt and vertical motion, instead approximately
calculating the sea clutter spectrum. The plus and minus signs, respectively, correspond to
the contributions of the approaching or receding scatterers. cp is calculated based on the
following equation:

cp =

(
g

kw
+

γ

ρ
kw

)1/2
(14)

where g is the gravitational acceleration, γ and ρ are the water surface tension and density,
respectively, and kw is the associated wave number. Generally, γ = 0.078 N/m, and
ρ = 1026 kg/m3. For Bragg scattering,

kw =
4πcosθg

λ
(15)

The calculation equation for the grazing angle θg is as follows [40]:

θg = arcsin
(

h
R
+

h2

2reR
− R

2re

)
(16)

where h denotes the height of the radar, re is the radius of the Earth, and R represents the
distance from the radar to the target, which can be obtained from the distance unit of the
measured data.

According to the measured data and theoretical derivation [41,42], when the grazing
angle is less than 45 degrees, the calculation of the average velocity of the sea clutter
Doppler spectrum can be simplified to the following equation:

VHH =
(
0.25 + 0.18U + 0.07Ucos(2θg)

)
cosθg

VVV = (0.25 + 0.18U)cosθg
(17)

where HH indicates that the radar transmits and receives electromagnetic waves with hori-
zontal polarization, and VV indicates that the radar transmits and receives electromagnetic
waves with vertical polarization.

The antenna beamwidth causes broadening of the sea clutter spectrum, known as the
Doppler spectrum width, which can be expressed as follows:

∆fD =
2V
λ

(cosψ2 − cosψ1)cosϕ (18)

where ψ1 and ψ2 are the local grazing angles at the front and rear boundary points of the
illuminated area, respectively.

2.3. FIR Filter Design

FIR filters are a class of digital filters whose output depends solely on a linear combi-
nation of the input signal. The design of FIR filters is highly flexible, allowing coefficients
to be precisely adjusted as needed, which ensures good stability and eliminates feedback
issues. Consequently, FIR filters are widely used in digital signal processing, particularly
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in applications requiring precise phase accuracy and stable signals, enabling effective
processing and suppression of interference within signals. The output formula for an FIR
filter is given by

y[n] =
N−1

∑
k=0

h[k]x[n − k] (19)

where y[n] is the output signal at time n, x[n − k] represents the current and previous k
values of the input signal, h[k] denotes the filter’s impulse response or coefficients, and N
indicates the order of the filter, representing the length of the impulse response.

The structure of FIR filters ensures that the output depends exclusively on the input
signal, thus avoiding feedback loops, which guarantees that the filter remains stable.
Additionally, the finite length of the FIR filter’s impulse response means that its output will
eventually return to zero after a finite number of input values. In the frequency domain,
the frequency response of an FIR filter is expressed as

H
(

ejω
)
=

N−1

∑
k=0

h[k]e−jωk (20)

where H
(
ejω) represents the frequency response of the filter, and ω is the normalized

angular frequency.
The frequency response allows for the analysis of the impact of FIR filters on different

frequency components of a signal. An important characteristic of FIR filters is the ability to
design them as linear phase filters, which ensures that all frequency components experience
the same phase delay, thereby preserving the integrity of the signal’s phase. Another notable
advantage of FIR filters is their inherent stability, as the absence of feedback structures
guarantees stability regardless of the chosen filter coefficients. FIR filters facilitate the
realization of arbitrary amplitude responses and allow for effective control over the filtering
effects across different frequency ranges.

2.4. The Measured Sea Clutter Dataset

Due to the ever-changing nature of the marine environment, sea clutter exhibits
complexities in both temporal and spatial dimensions, rendering simulated sea clutter data
inadequate in capturing its actual characteristics. Therefore, empirical data are typically
employed in practical research on sea clutter. This subsection introduces the measured
sea clutter data collected from the X-band radar and IPIX radar datasets, including the
spatial–temporal distribution and spectral variation plots, providing measured data for the
subsequent simulation of sea clutter spectra and sea clutter suppression.

2.4.1. X-Band Radar Dataset

The X-band radar measured sea clutter dataset is derived from the “Sea-detecting
X-band Radar and Data Acquisition Program”. The X-band radar is located on Yangma
Island in Yantai, a northern city in China, approximately 50 m inland from the coastline and
at an elevation of about 30 m above sea level. The radar has a field of view of approximately
180°, and data were collected under sea state conditions ranging from levels 1 to 4. The
specific coordinates of the radar are 121◦36.7′ E and 37◦28.35′ N, as illustrated in Figure 2.

The radar operates in the X-band with a frequency range of 9.3–9.5 GHz, using HH
polarization, a pulse width of 40 ns, a pulse repetition frequency (PRF) of 3000 Hz, and
a range resolution of 6 m. The grazing angle range for significant sea clutter data is
approximately 0.3° to 15°. The X-band radar data selected for this paper are from the first
quarter of 2019. The range–pulse diagram of this data is shown in Figure 3.
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(a)

(b)

Figure 2. Schematic of the X-band radar. (a) The placement of the X-band radar. (b) Actual photograph
of the X-band radar.
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Figure 3. Range–pulse distribution of the X-band radar data.

2.4.2. IPIX Radar Dataset

The IPIX radar dataset is a large database obtained by McMaster University in Canada
in 1993 and 1998 using the IPIX radar, which was installed on a cliff 30 m above sea level.
The radar was directed toward the Atlantic Ocean, and the target to be detected was a
floating sphere with a diameter of 1 m wrapped in aluminum wire. The radar beam width
was 0.9°, and the range resolution was 30 m. The radar operated in a dwell mode, with
each data file containing 14 range cells, each with 131,072 sampling points, and a dwell
time of approximately 131 s. The IPIX radar can transmit both horizontally and vertically
polarized electromagnetic waves and can utilize two linear receivers to achieve horizontal
and vertical reception. Therefore, during data acquisition, the radar typically obtained HH,
VV, HV, and VH types of polarized radar echo data. This paper employs data from 1993,
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covering sea states ranging from level 2 to level 4. The radar was installed at coordinates
44◦36.72′ N and 63◦25.41′ W, as illustrated in Figure 4.

(a) (b)

Figure 4. Schematic of the IPIX radar. (a) The placement of the IPIX radar. (b) Actual photograph of
the IPIX radar.

The IPIX dataset selected for this paper is #40 (19931110_001635_starea). The radar
operated at a transmission frequency of 9.39 GHz, with a pulse width of 200 ns and a
PRF of 1000 Hz. The range–pulse distribution of the sea clutter data for dataset #40 under
different polarization modes is illustrated in Figure 5. HH polarization indicates that the
radar transmits horizontally polarized electromagnetic waves and receives the returned
horizontally polarized signals. VV polarization indicates that the radar transmits vertically
polarized electromagnetic waves and receives the returned vertically polarized signals.
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Figure 5. Range–pulse distribution under different polarization modes. (a) HH polarization. (b) VV
polarization.

The Doppler spectrum estimation results of the sea clutter measured by the IPIX radar
under HH and VV polarization modes are shown in Figure 6. As illustrated in Figure 6,
the central frequency of the Doppler spectrum is positive, indicating that the sea waves
are moving towards the radar. The Doppler spectrum width, central frequency, and other
parameters were sensitive to the polarization mode, suggesting that the dominant scatterer
types differ between polarization modes [43].
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Figure 6. Doppler spectrum of IPIX measured sea clutter data.

When analyzing the time-varying characteristics of sea clutter spectrum, it is important
to select an appropriate time segment. If the duration of the data segment is less than
the gravity wave period, the local power level of the sea clutter remains approximately
constant, and the sea clutter can be regarded as a quasi-stationary random signal. Therefore,
when segmenting the data, the correlation time of the sea clutter data must be considered,
along with the length of each data segment to enhance the spectral estimation resolution.
The IPIX radar #40 dataset, totaling 131 s, was used with HH polarization to plot the
Doppler variation over time, as shown in Figure 7. Figure 7 demonstrates that the Doppler
frequency of the sea clutter continuously changed over time.
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Figure 7. Time–Doppler diagram of sea clutter.

3. Results and Dicussion
In this section, we discuss how the WRF model was used to simulate the ocean dy-

namic parameters within the radar detection area, such as wind speed and wind direction,
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and these simulations were then compared and validated against measured data. Sub-
sequently, the sea clutter power spectrum was estimated based on the equations, digital
filters were designed to suppress the sea clutter, and the suppression effects were analyzed.

3.1. WRF Model Simulation Results

The WRF model utilizes the WRF-ARW (Advanced Research WRF), version 4.3, oper-
ating on the Linux operating system. The basic parameter settings of the WRF model are
depicted in Table 1.

Table 1. Basic parameter configuration scheme of WRF model.

Options Parameter

Geogrid
D01: 172 × 127 (3 km)
D02: 151 × 118 (1 km)
D03: 229 × 175 (0.3 km)

IC BC ERA5 1-h 0.25 deg
feedback = 1

Domains

dt = 15 s
grid_ratio = 3
time_step_ratio = 3
smooth_option = 0

Dynamics hybrid_opt = 2
w_damping = 0

Physics

mp_physics: WSM6
cu_physics: Kain-Fritsch (new Eta) (D01, D02), off (D03)
ra_lw_physics: RRTMG
ra_sw_physics: RRTMG
sf_surface_physics: unified Noah land-surface model

The model employs a three-layer nested grid configuration, with the finely nested
third layer primarily covering the radar detection area. The grid resolution-to-time ratio in
the WRF model was set to 3, ensuring optimal spatial and temporal resolution. Initial and
boundary conditions were initialized using ERA5 data [44], ensuring reliable inputs for
meteorological simulations. ERA5 is the fifth generation ECMWF reanalysis for the global
climate, with a temporal resolution of 1h and a spatial resolution of 0.25° for the WRF
model. In most cases of WRF model simulations, the choices of grid size and integration
step depend on the scale of the experiment, available computational resources, and other
factors. In this paper, the grid size was primarily selected based on the radar resolution,
while the integration time was set to five times the grid size, measured in kilometers, as
recommended on the official WRF website. According to the WRF guidelines, when the
grid size is less than 4 km, the impact of the cumulus parameterization scheme is relatively
small. Therefore, in the sensitivity experiments conducted in this paper, the focus was
mainly on the microphysics schemes, with the WSM6, WDM6, and Thompson schemes
selected for comparison [45]. The Taylor diagram [46] of the parameterization results for
the three different microphysics schemes is shown in Figure 8, with the WSM6 scheme,
which exhibited the highest accuracy, ultimately selected. For the other parameterization
schemes, the high-precision schemes available in the WRF version were chosen.
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Figure 8. Taylor diagram of the parameterization results for different mp_physics schemes.

Based on the publicly available X-band radar dataset [47], the computational area for
this paper was set in the northern Yellow Sea, with a longitude range of 117° E to 123° E
and a latitude range of 36.2° N to 39.8° N. The computational area is shown in Figure 9.
The radar station is situated on Yangma Island in Yantai City. The red rectangle represents
the third nested grid of the WRF model, where the location of the X-band radar on Yangma
Island is indicated by a red upward triangle with coordinates of 121°36.7′ E and 37°28.35′ N.

Figure 9. Simulation of WRF model grid over the X-band radar detection area. The red upward
triangle indicates the radar installation location.

The WRF model was employed to simulate ocean dynamic parameters in the IPIX
radar detection area located on the Dartmouth coast in Canada, with the WRF grid configu-
ration depicted in Figure 10.
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Figure 10. The WRF model grid over the IPIX radar detection area. The red upward triangle indicates
the radar installation location.

The simulated region spans longitudinally from 55° W to 75° W and latitudinally from
41° N to 48° N. The red rectangular area represents the third-layer nested grid, covering the
radar’s detection range, with a red triangle indicating the IPIX radar located at 44.612° N,
63.4235° W. This paper utilized the IPIX dataset, specifically dataset #40, to simulate ocean
dynamic parameters. Radar measurements were taken at 00:00 on 10 November 1993.
Recorded meteorological data include a wind direction of 200°, wind speed of 2.5 m/s,
temperature of 6.5 °C, and relative humidity of 87%.

Taking the X-band radar dataset as an example, this study validated the accuracy of
oceanic dynamic parameters simulated by the WRF model. After setting the research area
and the driving files for the WRF model, the wind speed and wind direction at a certain
point in the X-band radar detection area were simulated. The simulation time was from 0:00
on 12 October 2019 to 0:00 on 13 October 2019, and the results were output every 30 min
for a total of 49 datasets. The parametrization scheme was adjusted according to publicly
available sea state data parameters. The simulation results are shown in Figure 11. The
Mean Squared Error (MSE) of the wind speed obtained from WRF simulations compared
to the measured data came out to 0.0614, the Root Mean Squared Error (RMSE) came
out to 0.2478, the Mean Absolute Error (MAE) came out to 0.2117, and the coefficient of
determination (R2) came out to 0.8679. For wind direction, the MSE came out to 10.0536,
the RMSE came out to 3.1707, the MAE came out to 2.8445, and the R2 came out to 0.8636.
The results from the WRF simulations closely align with the measured data.

3.2. Simulation Results of Sea Clutter Spectrum

The X-band radar measured data selected the 20191012112446 staring data, with
the first sampling point at a distance of 0.0775 km. The antenna polarization was HH
polarization. The temporal dimension comprised 10,000 groups. The 500th distance unit
was selected for the distance dimension, corresponding to a latitude and longitude of
37.48437° N and 121.6134° E at the radar detection point. The radar grazing angle was
calculated to be 3.45° using Equation (16). According to the WRF model simulation, the
angle ϕ between the wave direction at the radar detection point and the radar azimuth was
found to be 57°, with a wind speed of 3.257 m/s. Substituting these parameters into the sea
clutter spectrum estimation equation, the Doppler frequency was estimated to be 30.82 Hz.
The power spectrum obtained from the measured data is plotted in Figure 12, indicating a
peak frequency of 29.29 Hz.
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Figure 11. Comparison of ocean dynamic parameters obtained from WRF simulations with mea-
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Frequency (Hz)

A
m

pl
it

ud
e 

(d
B

)

Figure 12. Measured power spectrum of pure clutter signal.

In the estimation of sea surface radar echo Doppler spectra, both numerical model cal-
culations of ocean parameters and direct radar data-based sea clutter spectrum estimation
have their respective advantages and limitations. The WRF numerical model used in this
study can accurately estimate the spatiotemporal variations of sea clutter by simulating
factors such as wind speed, wave patterns, and meteorological conditions in the ocean
environment. This approach not only accounts for the coupling effects of multiple phys-
ical fields but also provides more precise sea surface echo predictions than actual radar
observations, especially in the absence of in situ radar data. Furthermore, the numerical
model can perform sensitivity experiments and scenario simulations to predict sea surface
radar echoes under different meteorological and oceanic conditions, offering more com-
prehensive theoretical support for sea surface detection. In contrast, directly estimating
the sea clutter spectrum from radar data offers the advantage of real-time application
and on-site observation. Radar data provide high spatiotemporal resolution and directly
reflects changes in the sea surface environment. However, this method also has certain
limitations. Radar echo data are prone to noise and environmental interference, especially
under adverse weather conditions and complex sea states, which can degrade the quality of
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the signal. Additionally, the radar-based sea clutter spectrum is constrained by the radar’s
range and positioning, potentially failing to capture all dynamic variations in complex
environments. Therefore, in practical applications, the combination of numerical models
and radar data can complement each other’s shortcomings, providing more accurate and
reliable sea surface radar echo spectrum predictions.

3.3. Algorithmic Complexity

In terms of algorithmic time complexity, the FIR filter requires multiplication of the
most recent N input signal values with their corresponding filter coefficients for each
output sample, followed by the summation of these products. Therefore, the computational
complexity for each output sample is O(N). If there are a total of M output samples, the
overall time complexity becomes O(M · N). Regarding space complexity, the FIR filter
must store N filter coefficients, the most recent input signal values, and the output signal,
resulting in a space complexity of O(M + N). Since both the order of the FIR filter and the
number of output samples are considered constants, the algorithmic complexity for sea
clutter suppression based on the FIR digital filter is regarded as constant, making it efficient
due to its low complexity.

In the WRF model, the spatial computatinonal complexity is primarily related to the
model’s grid resolution; higher spatial resolution significantly increases the number of
computational cells, leading to complexity growth in the form of O(n2), where n is the
number of grid points. Additionally, increasing the number of vertical layers linearly
enhances the computational load, resulting in an overall complexity that can be expressed
as O(n2 · m), where m represents the number of vertical layers. In terms of time complexity,
the computational burden of the model is closely tied to the time step; smaller time
steps lead to frequent computational updates, significantly increasing runtime. Overall,
the computational complexity of the WRF model during ocean parameter simulation is
contingent upon the selection of spatial and temporal parameters, with higher time and
spatial resolutions resulting in greater computational complexity.

3.4. Analysis of Sea Clutter Suppression Results

The amplitude and phase responses of the FIR filter designed based on the power
spectrum of the measured data are shown in Figure 13. The blue line represents the
amplitude response, and the orange line represents the phase response.
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Figure 13. Magnitude and phase responses of the FIR filter.
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The design of the FIR filter is directly influenced by the oceanic parameters simu-
lated by the WRF model. Oceanic dynamic parameters, such as wind speed and wind
direction, are crucial for characterizing the Doppler spectrum. The selection of different
meteorological models and parameterization schemes significantly affects the accuracy
of sea surface echo predictions, which in turn impacts the filter design. Variations in the
predicted oceanic parameters can alter the spectral distribution and power spectral density
of the Doppler spectrum, directly influencing the design of the FIR filter, including the
cutoff frequency and filter order. Therefore, the accuracy of the meteorological model plays
a key role in the effectiveness of the filter, as inaccurate oceanic dynamic parameters may
lead to suboptimal filtering performance. This further emphasizes the importance of model
accuracy in ensuring precise sea surface echo predictions and optimizing filter design.

Wavelet transform and Empirical Mode Decomposition (EMD) reconstruction meth-
ods [48] are applied to suppress the #17 sea clutter data from the IPIX radar. The results are
shown in Figure 14.
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Figure 14. Wavelet and EMD reconstruction suppression algorithm. (a) Wavelet transform-weighted
reconstruction. (b) EMD reconstruction.

In this paper, the db3 (Daubechies 3) wavelet was chosen as the wavelet basis for
performing wavelet transform to process radar data after distance processing, beamform-
ing, and Doppler processing. Assuming that the Doppler spectrum of the 0th range gate
being processed is denoted as RD(r0, fd), the wavelet transform with the db3 wavelet is
applied to this spectrum, extracting the time–frequency features at different scales. Wavelet
transform effectively captures local discontinuities and spectral variations within the signal,
thereby revealing the complex dynamic characteristics of the target. Specifically, wavelet
transform enables multi-scale analysis, decomposing the spectral signal into different fre-
quency components, which helps in identifying key features within the Doppler spectrum.
Subsequently, single-branch reconstruction and weighted merging are performed. For the
EMD method, the Doppler signal RD(r, fd) is decomposed into multiple Intrinsic Mode
Functions (IMFs) and a residual term. Each IMF represents a different frequency component
of the signal and reflects changes in the signal at various time scales. By analyzing these
IMFs, the target echo and clutter components of the signal can be effectively separated.
Then, by selecting appropriate IMFs, noise and irrelevant components can be removed,
enhancing the target signal and improving the radar system’s capability to recognize and
track the target.

Traditional algorithms impose numerous constraints during signal reconstruction,
often requiring the setting of various parameters. Consequently, they cannot accurately
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identify clutter frequencies and can only partially denoise the echo signals, resulting in
suboptimal suppression performance.

Two single-frequency simulated signals with frequencies of −100 Hz and 100 Hz,
respectively, were added to the X-band radar measurement data of the 20191012112446
staring data. The amplitude of the simulated signals was set lower than that of the sea
clutter. The power spectrum of the sea clutter, after suppression using the FIR filter, is
shown in Figure 15. As illustrated in Figure 15, the sea clutter around 30 Hz was effectively
suppressed, while the simulated signals at −100 Hz and 100 Hz were preserved.
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Figure 15. Power spectrum before and after sea clutter suppression.

After adding the target signals at −100 Hz and 100 Hz to the measured radar dataset,
the radar range–Doppler (RD) diagrams before and after ocean dynamics suppression
are plotted, as shown in Figure 16. The radar RD diagram converts the radar echo signal
into a two-dimensional representation of the range and Doppler frequency, where the
horizontal axis represents Doppler frequency and the vertical axis represents range cells.
As seen in Figure 16a, the clutter Doppler frequency varies little within 50 range cells.
From the suppressed diagram in Figure 16b, it can be observed that the clutter near zero
frequency was mostly filtered out, while the two target signals at −100 Hz and 100 Hz
were successfully retained.

In radar systems, the improvement factor is defined as the ratio of the signal-to-clutter
ratio at the output of the clutter filter to the signal-to-clutter ratio at the input. The equation
for calculating the improvement factor is given as follows:

I =
So/(Co + No)

Si/(Ci + Ni)
(21)

where I is the improvement factor, So is the output target signal power, Co is the output
clutter power, No is the output noise power, Si is the input target signal power, Ci is the
input clutter power, and Ni is the input noise power.

Simulated targets of different frequencies are added to the sea clutter, and the improve-
ment factor of sea clutter suppression based on ocean dynamics is shown in Figure 17. As
can be seen from Figure 17, filters at different target frequencies have certain improvement
effects. In particular, when the target frequency lies outside the power spectrum of sea
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clutter, the average improvement factor of the filter can reach 17.22, demonstrating the
effectiveness of the proposed method in suppressing sea clutter.
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(a) Range–Doppler diagram before suppression
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Figure 16. Range–Doppler diagrams of radar before and after sea clutter suppression.
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Figure 17. Correspondence between improvement factor and target signal frequency.

4. Conclusions
This paper analyzes the Doppler shift and broadening phenomenon caused by sea

surface wave motion in the radar beam illuminating area. Building on the mechanisms
of shore-based radar sea clutter spectrum and existing research on sea clutter spectrum
characteristics, we proposed a sea clutter suppression method based on ocean dynamics.
The WRF model was employed to simulate the marine parameters affecting the sea clutter
spectrum in correlation with time and radar range units. Two sets of measured sea clutter
data were used to suppress the sea clutter, and the suppression results were analyzed. The
suppression results show that the sea clutter suppression based on the WRF model of ocean
dynamics has a certain effect. Although the empirical formulas are data-dependent, this
method provides a viable solution for sea clutter suppression technology. Given that the
power spectrum estimation of sea clutter is based on empirical formulas, the spectrum
width of sea clutter varies significantly, posing a challenge for future ocean dynamics-based
suppression methods.

This paper utilized the WRF model to retrospectively simulate sea clutter spectrum
based on existing oceanic parameters. In practical applications, the forecasting capabilities
of the WRF model can be employed using global forecasting data such as the GFS to predict
oceanic dynamic parameters, including wind speed and direction, for a specific radar
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detection area over an upcoming period. This enables advanced simulation and suppression
of sea clutter spectrum, thereby aiding in target detection under sea clutter conditions.

Sea clutter characteristic sensing is of great significance in the field of sea surface target
detection, particularly in the current era of progressively advanced information technology.
There is immense potential for further research in this area. Leveraging the strong fitting
capabilities of deep learning, neural networks can be utilized to extract the relevant features
between sea waves within the radar detection area to estimate the sea clutter spectrum,
presenting a promising research direction.
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