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Abstract: The axial-flow pump system has been widely applied to coastal drainage pump 
stations, but the hydraulic performance optimization based on the contraction angles of 
the inlet passage has not been studied. This paper combined the computational fluid 
dynamics (CFD) method, machine learning (ML) algorithms and genetic algorithm (GA) 
to find the optimal contraction angles of the inlet passage. The 125 sets of comprehensive 
objective function were obtained by the CFD method. Three contraction angles and 
comprehensive objective function values were regressed by three ML algorithms. After 
hyperparameter optimization, the Gaussian process regression (GPR) model had the 
highest R2 = 0.958 in the test set and had the strongest generalization ability among the 
three models. The impact degree of the three contraction angles on the objective function 
of the GPR model was investigated by the Sobol sensitivity analysis method; the results 
indicated that the order of impact degree from high to low was 𝜃ଷ > 𝜃ଶ > 𝜃ଵ. The optimal 
objective function values of the GPR model and corresponding contraction angles were 
searched through GA; the maximum objective function value was 0.963 and 
corresponding contraction angles were 𝜃ଵ = 13.34° , 𝜃ଶ = 28.36° and 𝜃ଷ = 3.64° , 
respectively. The results of this study can provide reference for the optimization of inlet 
passages in coastal drainage pump systems. 

Keywords: coastal drainage pump system; inlet passage optimization; computational 
fluid dynamics method; machine learning algorithms; sobol sensitivity analysis; genetic 
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1. Introduction 
With the development of axial-flow pumps, the axial-flow pump systems are 

increasingly used in coastal drainage pump stations and marine jet propulsion plants [1,2] 
. The axial-flow pump system generally includes the inlet passage, impeller, guide vane 
and outlet passage (Figure 1), and the function of the inlet passage is to uniformly direct 
the water from the inlet sump to impeller chamber and provide a good flow condition for 
the impeller inlet [3]. For a low-head axial-flow pump system, the suction vortex in the 
inlet passage can cause vibration of the impeller, seriously affecting its operation [4]. 
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Moreover, the efficiency of the pump system can be improved more than 5% after 
optimizing the flow passage [5]. Therefore, the hydraulic performance of the inlet passage 
has a great effect on the stability and efficiency of the pump system. 

 

Figure 1. Components of pump system. 

Many authors have studied the hydraulic performance of the axial-flow pump 
system. In energy loss, the entropy production theory was adopted to analyze the energy 
dissipation distribution of the components of the axial-flow pump system under different 
flow rates and the reasons were analyzed for the production of high entropy production 
areas [6,7]. In cavitation, the condition of ensuring erosion-free flow in the impeller of an 
axial pump with a specific speed of 600 was studied, and the results indicated that the 
condition ensures the ratio NPSHa/NPSHa3 > 2.5 [8]. In addition, the tip leakage vortex 
(TLV) of the axial flow pump was studied, indicating that the variations in the vortex 
structure will generate and promote the development of cavitation [9]. In pressure 
fluctuation, the pressure fluctuation characteristics of the axial-flow pump with different 
flow rates and positions were studied, and the time-domain and frequency-domain 
characteristics of pressure fluctuation were analyzed [10,11]. In the vortex, the vortex at 
the inlet of the axial-flow pump has been studied through experiments and CFD methods, 
and the influence mechanism of the vortex on pump operation has been revealed [12,13]. 

In order to save costs and improve optimization efficiency, the hydraulic 
performance of pump passage optimization is usually predicted through the CFD 
method. The mechanisms of energy dissipation in the passage of a pump as turbine (PAT) 
were studied by the CFD method, revealing that the blade inlet shock, flow deviation at 
the blade outlet, flow separation, backflow and vortices in flow passages are categorized 
as the main reasons for entropy production [14]. The influence of the splitter blade on a 
special impeller used in the PAT was studied by the CFD method, displaying that adding 
splitter blades can obviously increase its hydraulic performance under large flow 
conditions [15]. In addition to basic analysis of the flow state, the researchers have also 
studied the energy loss [16–19], cavitation [20], pressure fluctuation [21], impeller forces 
[22] and hydrodynamic characteristics of a full working condition [23], etc., through the 
CFD method. 

With the development of artificial intelligence (AI), machine learning (ML) 
algorithms are widely used in the optimization of pump systems. In the optimization 
process of a pump system, ML algorithms are usually used as surrogate models, which 
receive data entirely from the CFD calculation [24]. The heat transfer rate was predicted 
to speed up the calculation process during the channel optimization through artificial 
neural network models and genetic algorithm [25]. In the axial-flow pump, the machine 
learning algorithms were used in blade optimization to improve the hydraulic 
performance of the axial-flow pump in different working conditions [26,27]. In the 
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centrifugal pump, the machine learning algorithms were applied in different aspects 
including hydraulic performance prediction [28,29], rotating stall [30,31], structural 
optimization [32,33], cavitation optimization [34], etc. In the heat pump system, its 
performance was predicted with high precision by machine learning algorithms [35,36]. 

In this paper, the inlet passage designed by three contraction angles (𝜃ଵ, 𝜃ଶ and 𝜃ଷ) 
was optimized for better hydraulic performance through the CFD method, three different 
machine learning algorithms and the genetic algorithm. The flowchart of this study is 
shown in Figure 2, and the steps of this study are as follows: Step 1, design 125 sets of inlet 
passages schemes by changing the three contraction angles based on constraint 
conditions. Step 2, solve the hydraulic performance of 125 sets of inlet passages by the 
CFD method which has been verified through the model test, and calculate the 
comprehensive objective function (Y) by the information weight method. Step 3, after 
hyperparameter optimization by the Bayesian optimization method, establish three 
machine learning regression models for three contraction angles and the comprehensive 
objective function, choose the optimal regression model (GPR model) based on the 
generalization ability of models in the test set, and analyze the influence degree of three 
contraction angles on the objective function. Step 4, search for the optimal inlet passage 
scheme corresponding to the highest objective function value by the genetic algorithm, 
and compare the CFD cloud map results of the initial scheme and optimal scheme. 

 

Figure 2. Flowchart of this study. 
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2. Research Object and Method 
2.1. Research Object 

The research object of this paper is the inlet passage of an axial-flow pump system. 
The flow state in the inlet passage is the contraction flow, so the contraction angle of a 
circular segment on the horizontal plane (𝜃ଵ), the contraction angle of a square to circular 
segment on the horizontal plane (𝜃ଶ) and the contraction angle on the vertical plane (𝜃ଷ) 
were researched to explore the effect of three contraction angles on the hydraulic 
performance of the inlet passage and search optimal hydraulic performance scheme of the 
inlet passage. The model dimension of the inlet passage and axial pump are shown in 
Figure 3. The inlet passage is divided into three parts: square segment, square to circular 
segment and circular segment. The model perspective drawing of inlet passage is shown 
in Figure 4. 

 

Figure 3. Model dimension of inlet passage and axial pump (unit: mm). 

 
Figure 4. Model perspective drawing of inlet passage. 
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2.2. Research Method 

2.2.1. Numerical Simulation Method 

The flow in the inlet passage is a three-dimensional incompressible flow. The flow 
can be described by the conservation of mass equation and conservation of momentum 
equation (Navier–Stokes equation), to better solve the equations. The Reynolds Average 
Navier–Stokes equation is introduced, thus, two equations are as below. 
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where iu , ju  are velocity components, ix , jx  are coordinate direction, t  is time, p  is 

pressure, μ  is dynamic viscosity, iF  is gravity force and ''
jiuuρ−  is Reynolds stress. 

To close the time-averaged equations, the turbulent model is added. The Re-
normalization Group (RNG) ε−k   turbulent model has been widely used in the 
numerical simulation of the pump passage and gained good calculation results [37,38], so 
the RNG ε−k  turbulent model is adopted in this paper. The transport equations and 
corresponding coefficient to solve k  and ε  are as below. 
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In Equation (7), the corresponding coefficients and variables are as below. 
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2.2.2. Machine Learning Algorithms 

Gaussian Process Regression 
The Gaussian process (GP) is a set of any finite number of random variables with a 

joint Gaussian distribution, and its properties are entirely determined by the mean 
function and covariance function, 

 ൜ 𝑚(𝑥) = 𝐸ሾ𝑓(𝑥)ሿ                                                       𝑘(𝑥, 𝑥ᇱ) = 𝐸ሾ(𝑓(𝑥) − 𝑚(𝑥))(𝑓(𝑥ᇱ) − 𝑚(𝑥ᇱ))ሿ (11)

where 𝑥, 𝑥ᇱ ∈ 𝑅ௗ are random variables. 
Therefore, the GP  can be defined as 𝑓(𝑥) ~ GP ( 𝑚(𝑥), 𝑘(𝑥, 𝑥ᇱ) ). For regression 

problems, the following regression can be considered, 𝑦 = 𝑓(𝑥) + 𝜀  (12)

where 𝑥 is input value, 𝑓(𝑥) is true value, 𝜀 is error term and 𝑦 is observed value. 
Further, assume that the error 𝜀  satisfies 𝜀~𝑁(0, 𝜎ଶ) , the prior distribution of the 

observed value 𝑦 can be obtained as 𝑦~𝑁(0, 𝐾(𝑋, 𝑋) + 𝛿௡ଶ𝐼௡)  (13)

The joint prior distribution of observed and predicted values is ቂ𝑦𝑓∗ቃ ~𝑁 ൬0, ൤𝐾(𝑋, 𝑋) + 𝛿௡ଶ𝐼௡ 𝐾(𝑋, 𝑥∗)𝐾(𝑥∗, 𝑋) 𝑘(𝑥∗, 𝑥∗)൨൰  (14)

where 𝐾(𝑋, 𝑋)  is 𝑛 × 𝑛  symmetric positive definite covariance matrix, 𝐾(𝑋, 𝑥∗) =𝐾(𝑋, 𝑥∗)୘ is 𝑛 × 1 covariance matrix between the test point 𝑥∗ and the input of training 
set 𝑋 , 𝑘(𝑥∗, 𝑥∗)  is the covariance matrix of the test point 𝑥∗  and 𝐼௡  is the 𝑛  identity 
matrix. 

Therefore, the posterior distribution of the predicted values can be calculated as 𝑓∗ ∣ 𝑋, 𝑦, 𝑥∗ ~ 𝑁൫𝑓∗̅, 𝑐𝑜𝑣(𝑓∗) ൯ (15)

where 𝑓∗̅ = 𝐾(𝑥∗, 𝑋)ሾ𝐾(𝑋, 𝑋) + 𝛿௡ଶ𝐼௡ሿିଵ𝑦 (16)𝑐𝑜𝑣(𝑓∗) =  𝑘(𝑥∗, 𝑥∗) −  𝐾(𝑥∗, 𝑋) × ሾ𝐾(𝑋, 𝑋) + 𝛿௡ଶ𝐼௡ሿିଵ 𝐾(𝑋, 𝑥∗) (17)

Then, 𝜇̂∗ = 𝑓∗̅ and 𝜎ො௙∗ଶ = 𝑐𝑜𝑣(𝑓∗) are the mean and variance of the predicted values 𝑓∗ corresponding to the test points 𝑥∗, respectively. 

Feedforward Neural Network 

A feedforward neural network (FNN) performs well in the regression of nonlinear 
functions. It consists of an input layer, one or more hidden layers and an output layer. 
Each layer of the FNN contains several neurons. In the FNN, the relationship between the 
input and output of each neuron is 𝐼௝௞ = ∑  𝜔௝,௜௞ 𝑂௜௞ିଵ + 𝑏௝௞௡௜ୀଵ   (18)𝑂௝௞ = 𝑓൫𝐼௝௞൯ (19)

where 𝐼௝௞ is the input of the 𝑗th neuron in the 𝑘th layer, 𝑂௝௞ is output of the 𝑗th neuron 
in the 𝑘th layer, 𝑂௜௞ିଵ is output of the 𝑖th neuron in the (𝑘 − 1)th layer, 𝑛 is the number 
of neurons in the (𝑘 − 1)th layer, 𝜔௝,௜௞  is the connection weight between 𝑖th neuron in the 
(𝑘 − 1)th layer and 𝑗th neuron in the 𝑘th layer, 𝑏௝௞ is the bias of 𝑗th neuron in the 𝑘th 
layer and 𝑓 is the activation function. 
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The learning process of the FNN consists of the forward propagation of signals and 
back propagation of errors. When the output of forward propagation does not reach the 
true value, the error between the predicted value and the true value is backpropagated to 
correct connection weights and biases. Through repeated iterations of forward 
propagation and back propagation, the error L is minimized. The error L is 𝐿 = ଵଶ ∑ (𝑦௔ − 𝑦ො௔)ଶ௠௔ୀଵ   (20)

where 𝑚 is the number of neurons in output layer, 𝑦௔ is the true value and 𝑦ො௔ is the 
predictive value. 

The corrected connection weight 𝜔௝,௜௞ ᇱ and bias 𝑏௝௞ᇱ are calculated according to the 
following formulas, 𝜔௝,௜௞ ᇱ = 𝜔௝,௜௞ − 𝜂 𝜕𝐿𝜕𝜔௝,௜௞  (21)

𝑏௝௞ᇱ = 𝑏௝௞ − 𝜂 𝜕𝐿𝜕𝑏௝௞ (22)

where 𝜔௝,௜௞ ᇱ is the corrected connection weight between the 𝑖th neuron in the (𝑘 − 1)th 
layer and 𝑗th neuron in the 𝑘th layer, 𝑏௝௞ᇱ is corrected bias of the 𝑗th neuron in the 𝑘th 
layer and 𝜂 is the learning rate. 

Support Vector Regression 

Support Vector Regression (SVR) is a regression method based on Support Vector 
Machine (SVM). The SVR uses the kernel function to nonlinearly map the raw data to a 
high-dimensional space and finds a hyperplane in that space to minimize the difference 
between the projection of the input data on the hyperplane and the target value. This 
hyperplane is a regression function of SVR, and the SVR can be formalized as follows: minఠ,௕ ଵଶ ‖𝜔‖ଶ + 𝐶 ∑ 𝑙ఢ(𝑓(𝑥௜) − 𝑦௜)௠௜ୀଵ   (23)

𝑙ఢ(𝑓(𝑥௜) − 𝑦௜) = ൜ 0, if|𝑓(𝑥௜) − 𝑦௜| ≤ 𝜖|𝑓(𝑥௜) − 𝑦௜| − 𝜖, otherwise  (24)

where 𝐶  is regularization constant and 𝑙ఢ is 𝜖-insensitive loss. 
By introducing the relaxation variables 𝜉௜ and 𝜉መ௜, Equation (25) can be obtained, minఠ,௕,క೔క෠೔ ଵଶ ‖𝜔‖ଶ + 𝐶 ∑ ൫𝜉௜ + 𝜉መ௜൯௠௜ୀଵ   (25)

𝑠. 𝑡. ቐ 𝑓(𝑥௜) − 𝑦௜ ≤ 𝜖 + 𝜉௜ 𝑦௜ − 𝑓(𝑥௜) ≤ 𝜖 + 𝜉መ௜  𝜉௜ ≥ 0, 𝜉መ௜ ≥ 0 , 𝑖 =  1,2, … , 𝑚 (26)

By introducing Lagrange multipliers, the dual formula of SVR is obtained, maxఈ,ఈෝ ∑ 𝑦௜(𝑎ො௜ − 𝛼௜) −௠௜ୀଵ  𝜖(𝑎ො௜ + 𝛼௜) − ଵଶ ∑ ∑ (𝑎ො௜ − 𝛼௜)൫𝑎ො௝ − 𝛼௝൯𝑥௜்௠௝ୀଵ௠௜ୀଵ 𝑥௝  (27)

𝑠. 𝑡. ൜ ∑ (𝑎ො௜ − 𝛼௜) = 0௠௜ୀଵ0 ≤ 𝛼௜, 𝑎ො௜ ≤ 𝐶   (28)

The Karush–Kuhn–Tucker (KKT) condition needs to be met during the above 
process, that is, 
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⎩⎪⎨
⎪⎧ 𝛼௜(𝑓(𝑥௜) − 𝑦௜ − 𝜖 − 𝜉௜) = 0 𝛼ො௜൫𝑦௜ − 𝑓(𝑥௜) − 𝜖 − 𝜉መ௜൯ = 0 𝛼௜𝛼ො௜ = 0 , 𝜉௜𝜉መ௜ = 0 (𝐶 − 𝛼௜)𝜉௜ = 0, (𝐶 − 𝑎ො௜)𝜉መ௜ = 0 (29)

The function used to predict new values can be expressed as 𝑓(𝑥) = ∑ (𝑎ො௜ − 𝛼௜)𝜅(𝑥,  𝑥௜) + 𝑏௠௜ୀଵ   (30)

where 𝑏 is constant and 𝜅(𝑥,  𝑥௜) is the kernel function. 

2.2.3. Genetic Algorithm 

The genetic algorithm is an adaptive and global probability search algorithm that 
simulates the genetic and evolutionary process of survival of the fittest in the natural 
environment. It starts with a population representing the potential solution set of the 
problem, first mapping the phenotype to the genotype, i.e., encoding, thereby mapping 
the solution space to the encoding space, with each encoding corresponding to a solution 
of the problem, called a chromosome or individual. After the initial population is 
generated, according to the principles of the fittest survival, it evolves its generation to 
produce increasingly better approximate solutions. In each generation, individuals are 
selected based on their fitness in the problem domain, and natural genetic operators are 
used for combination crossover and mutation to generate a population representing a new 
solution set. This process makes the population evolve like natural evolution, and the 
offspring population is more adapted to the environment than the previous generation, 
and the optimal individual in the last generation population can be decoded as an 
approximate optimal solution to the problem. 

3. Verification of Numerical Simulation Result 
3.1. Numerical Simulation 

3.1.1. Boundary Conditions and Calculation Settings 

The boundary conditions of calculation domains are shown in Figure 5. The 
calculation domains consisted of the inlet sump, inlet passage and outlet straight pipe. 
The mass-flow inlet boundary condition (0.038 m3/s) was set at the inlet of the inlet sump, 
and it was 1.5 m away from the inlet of the inlet passage. The outflow boundary condition 
was set at the outlet of the outlet straight pipe, and the distance between the outflow 
boundary and the outlet of the inlet passage was twice the diameter of the outlet straight 
pipe to ensure the fully developed flow at the outlet of the calculation domains. Based on 
the rigid-lid approximation, the free water surface of the inlet sump was set as a symmetry 
boundary condition. Except for the above surfaces, all other surfaces of the calculation 
domains were set as wall boundary conditions, and the no-slip wall condition was 
adopted. 

The calculation medium was set to water, the water density was set to 998.2 kg/m3 
and the water dynamic viscosity was set to 0.001 kg/(m·s). The magnitude of the 
gravitational acceleration was set to 9.81 m2/s, with a vertical downward direction. The 
solving algorithm for the control equations adopted the SIMPLEC algorithm. The discrete 
method adopted the second-order upwind algorithm. The residual of the numerical 
calculation was set to 10−6. 
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Figure 5. Boundary conditions and grid generation of calculation domains. 

3.1.2. Grid Independence Analysis 

To achieve a balance between computational accuracy and computational resource, 
a grid independence analysis was conducted on the inlet passage. According to previous 
research on the inlet passage [39,40], the initial number of grids was set to 0.8 million, and 
the number of grids added each time was 50% of the previous number of grids. The 
hydraulic loss of the inlet passage is an important indicator for measuring the hydraulic 
performance of the inlet passage, so it was selected for grid independence analysis. The 
hydraulic loss of inlet passage with six different grid numbers are shown in Table 1 and 
Figure 6. The calculation results indicate that with the increasing of the grid number, the 
loss-grid curve gradually decreases and tends to be horizontal. The relative error of 
hydraulic loss for grid numbers of 2.7 million and 4.05 million was 0.16% and less than 
1%; therefore, the grid number of 2.7 million was selected as the grid for subsequent 
optimization calculations. 

Table 1. Hydraulic loss of inlet passage with six different grid numbers. 

Grid Number  
(Million) 0.8 1.2 1.8 2.7 4.05 6.08 

Hydraulic loss 
(m) 0.0688 0.0657 0.0633 0.0624 0.0623 0.0622 

 

Figure 6. Relationship between hydraulic loss and grid number. 

The grid generation of calculation domains is shown in Figure 5. In this research, the 
software completing the CFD calculations and simulations was Ansys Fluent, and the 



J. Mar. Sci. Eng. 2025, 13, 274 10 of 24 
 

 

finite volume method (FVM) was used in Ansys Fluent. The characteristics of the finite 
volumes are as follows: (1) The grids in the front and middle parts of the inlet sump and 
in outlet straight pipe are hexahedral grids with eight nodes. (2) The grids in the rear part 
of the inlet sump and in the inlet passage includes the prismatic grids with six nodes near 
the wall and tetrahedral grids with four or five nodes far from the wall. The type of 
turbulence in the inlet passage is mechanical turbulence, and it is caused by the friction of 
water flow with solid wall. The grid near the wall was densified, the distance between the 
first layer of grid and the wall was 0.4 mm, the number of prismatic layers used for the 
boundary layers was eight and the grid growth rate of prismatic layers was 1.2. The grid 
distribution is shown in Figure 7. The maximum skewness of the grid was 0.73, and the 
grid quality met the requirement of numerical calculation. For each fluid particle moving 
in three-dimensional space, the degrees of freedom were three [41]. 

 

Figure 7. Grid distribution of computational domains. 

3.2. Model Test 

3.2.1. Model Test Rig Setup 

The hydraulic performance of inlet passage was test in a model test rig. The model 
test rig is a vertical circulation system and relevant apparatuses are labeled in Figure 8. 
The vertical circulation system consisted of an inlet sump, an inlet passage, a water supply 
pump, an electromagnetic flowmeter, piezometers and pipes. The model of 
electromagnetic flowmeter is LDY-S and it was manufactured by Shanghai Guanghua 
Instrument Co. Ltd. The piezometer consists of a transparent rubber hose and a scale ruler. 
The inlet sump and inlet passage were made of transparent perspex, and it was convenient 
to observe the flow state of water. The flow rate in the circulation system was changed by 
adjusting the rotation speed of the water supply pump. The flow rate in the circulation 
system was measured by an electromagnetic flowmeter. The static pressure of water 
inside the pipe was measured through the piezometer. The relevant apparatuses of the 
circulation system were connected by pipes. 

The inlet pressure measuring the cross-section was located 800 mm in front of the 
inlet cross-section of the inlet passage. The outlet pressure measuring the cross-section 
was located 200 mm behind the outlet cross-section of the inlet passage. According to 
Bernoulli’s equation, the flow resistance of the inlet passage was calculated by the 
following formula. ∆ℎ = 12𝑔 ൫𝑣ଵതതതଶ − 𝑣ଶതതതଶ൯ + (𝐻ଵ − 𝐻ଶ) − ∆ℎୱ୮ (31)

where ∆ℎ is the hydraulic loss of inlet passage, 𝑣ଵതതത and 𝑣ଶതതത are, respectively, the average 
velocity of the inlet pressure measuring cross-section and outlet pressure measuring 
cross-section, 𝐻ଵ  and 𝐻ଶ  are, respectively, the piezometer heads of inlet pressure 
measuring cross-section and outlet pressure measuring cross-section and ∆ℎୱ୮  is the 
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hydraulic loss between the outlet cross-section of the inlet passage and outlet pressure 
measuring cross-section. 

The uncertainty of flow rate measurement was ±0.5%. The uncertainty of static 
pressure measurement was ±0.94%. Thus, the total uncertainty of hydraulic loss of the 
inlet passage was ±1.06%, which meets the specification requirements [42]. 

 

Figure 8. Photo of model test rig. 

3.2.2. Model Test Result 

Through the model test of the inlet passage, the hydraulic loss of the inlet passage 
was obtained to be 0.0620 m, and the photo of the flow state of the inlet passage model 
test is shown in Figure 9. The hydraulic loss of numerical simulation was 0.0624 m, the 
hydraulic loss between numerical simulation and model test was close and the relative 
error was 0.65%, which is less than 1%, indicating that the numerical calculation results of 
the inlet passage are reliable. 

 

Figure 9. Photo of flow state of inlet passage. 

4. Establishing Regression Model 
4.1. Building Dataset 

4.1.1. Formulating Calculation Scheme 

Due to the contraction movement of the water flow in the inlet passage, the 
contraction angle has a significant impact on the hydraulic performance of the inlet 
passage [43]. Therefore, this paper selected three contraction angles including the 
contraction angle of the circular segment on the horizontal plane (𝜃ଵ ), the contraction 
angle of the square to circular segment on the horizontal plane (𝜃ଶ) and the contraction 
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angle on the vertical plane (𝜃ଷ) as independent variables to explore their impact on the 
hydraulic performance of the inlet passage and search the optimal hydraulic performance 
inlet passage scheme. If the contraction angles of the inlet passage are too large, the zone 
near the sidewalls will produce flow separation, resulting in vortices and affecting the 
hydraulic performance of the inlet passage. In combination with the design requirements 
of the pump station [44], the subsequent optimization schemes will be adjusted according 
to the following constraints: ① the bottom surface of the square segment and the square 
to circular segment will be kept horizontal; ② the square segment length 𝑙ଵ ≥ 120mm; ③ the contraction angle of the circular segment on the horizontal plane 0° ≤ 𝜃ଵ ≤ 30°; ④ 
the contraction angle of the square to circular segment on the horizontal plane 20° ≤ 𝜃ଶ ≤70° ; and ⑤ the contraction angle on the vertical plane 0° ≤ 𝜃ଷ ≤ 8° . On the basis of 
satisfying the constraint conditions, this paper made the inlet passage profile change 
uniformly in three-dimensional space as much as possible and perform a free combination 
of three factors and five levels for each factor to obtain 125 schemes. The numerical 
simulation calculations were performed on 125 schemes, and the calculation results of 
hydraulic performance of inlet passage were obtained. 

4.1.2. Objective Function of Inlet Passage Hydraulic Performance 

The hydraulic efficiency of the pump system is one of the core indicators to measure 
the hydraulic performance of the pump station. The inlet passage affects the hydraulic 
efficiency of the pump system from two aspects [45]. On the one hand, the smaller the 
hydraulic loss of the inlet passage is, the higher the hydraulic efficiency of the pump 
system is. On the other hand, the better the flow state at the outlet of the inlet passage is, 
the higher the hydraulic efficiency of the pump is, and the higher the hydraulic efficiency 
of the pump system is. Therefore, the hydraulic loss of the inlet passage, the uniformity 
of flow velocity distribution and the average angle of water flow entering the pump at the 
outlet cross-section of the inlet passage are usually selected as quantitative evaluation 
indicators for the hydraulic performance of the inlet passage [46]. This paper also selects 
these three evaluation indicators as objective functions. 

Hydraulic loss is one of the important indicators for measuring the hydraulic 
performance of the inlet passage. A small hydraulic loss indicates a smooth flow state in 
the inlet passage, without flow separation and other adverse flow states. The calculation 
formula for hydraulic loss in the inlet passage is shown in (32), in which subscripts 1 and 
2 represent the inlet and outlet cross-sections of the inlet passage, respectively. ℎ = 𝑧ଵ − 𝑧ଶ + 𝑝̅ଵ𝜌𝑔 − 𝑝̅ଶ𝜌𝑔 + 𝑢തଵଶ2𝑔 − 𝑢തଶଶ2𝑔 (32)

where ℎ is hydraulic loss, 𝑧ଵ and 𝑧ଶ are the elevation heads, 𝑝̅ଵ and 𝑝̅ଶ are the average 
pressure, 𝑢ଵ and 𝑢ଶ are the average velocity, 𝜌 is water density and 𝑔 is gravitational 
acceleration. 

The uniformity of flow velocity distribution is used to measure the uniformity of flow 
velocity at the outlet cross-section of the inlet passage. The higher the uniformity of flow 
velocity distribution is, the better the inlet flow condition of the water pump is. The 
highest uniformity of flow velocity distribution is 100%. The formula for calculating the 
mass-weighted uniformity of flow velocity distribution is shown in (33). 𝑉௨ = ෌ ሾ(|௩ೌ೔ି௩തೌ೘|)(|ఘ௩ሬ⃗ ೔஺೔|)ሿ೙೔సభ|௩തೌ೘| ෌ ሾ(|ఘ௩ሬ⃗ ೔஺೔|)ሿ೙೔సభ × 100%  (33)

where 𝑉௨  is uniformity of flow velocity distribution, 𝑖  is the number of facets on the 
surface, 𝑛 is the total number of facets on the surface, 𝑣௔௜ is axial flow velocity on the 𝑖th 
facet, 𝑣̅௔௠ is the average flux of the axial flow velocity through the surface, 𝑣⃗௜ is the facet 
velocity vector on the 𝑖th facet and 𝐴௜ is the facet area on the 𝑖th facet. 
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The average angle of water flow entering the pump is used to measure the direction 
of water flow movement at the outlet cross-section of the inlet passage. The closer the 
average angle of water flow entering the pump is to 90°, the better the inlet flow condition 
of the water pump is. The highest average angle of water flow entering the pump is 90°. 
The formula for calculating the mass-weighted average angle of water flow entering the 
pump is shown in (34). 

𝜃 = ෎ ൤൬ฬଽ଴°ିୟ୰ୡ୲ୟ୬(ೡ೟೔ೡೌ೔)ฬ൰(|ఘ௩ሬ⃗ ೔஺೔|)൨೙
೔సభ ෌ ሾ(|ఘ௩ሬ⃗ ೔஺೔|)ሿ೙೔సభ   (34)

where 𝜃 is average angle of water flow entering the pump and 𝑣௧௜ is projection velocity 
of resultant velocity on the 𝑖th facet. 

4.1.3. Comprehensive Objective Function Based on the Information Weight Method 

There are three evaluation indicators for the hydraulic performance of the inlet 
passage: hydraulic loss, uniformity of flow velocity distribution and average angle of 
water flow entering the pump. Based on previous research results [47], this paper adopted 
the information weight method to synthesize three objective functions into a 
comprehensive objective function. The weight of the information weight method is 
determined by quantifying the difference in evaluation objectives based on the amount of 
information distinguished by evaluation indicators. It can compare the advantages and 
disadvantages of different evaluation indicators and is used to handle multi-objective 
decision-making problems. It has the advantages of a simple method and calculation. The 
optimization problem in this paper has three objective functions 𝑋௞ (𝑘 = 1,2,3) , with 𝑛 (𝑛 = 125)  samples for each objective function, and 𝑋௞௝ (𝑗 = 1,2, ⋯ , 𝑛)  represents the 𝑗 th sample of the 𝑘 th objective function. The steps to calculate the comprehensive 
objective function using the information weight method are as follows: 

(1) Normalize the samples of each objective function by min-max normalization to 
obtain the three normalized objective functions samples 𝑋௞ᇱ  , and 𝑋௞௝ᇱ  represents the 𝑗th 
sample of the 𝑘th objective function in the normalized samples. 

𝑋௞௝ᇱ = 𝑋௞௝ − ൫𝑋௞௝൯௠௜௡൫𝑋௞௝൯௠௔௫ − ൫𝑋௞௝൯௠௜௡ (35)

(2) Calculate the mean value 𝑋௞തതത and standard deviation 𝑆௞ of the samples of each 
objective function. 𝑋௞തതത = ଵ௡ ∑ 𝑋௞௝ᇱ௡௝ୀଵ   (36)

𝑆௞ = ට ଵ௡ିଵ ∑ ൫𝑋௞௝ᇱ − 𝑋௞തതത൯ଶ௡௝ୀଵ   (37)

(3) Calculate the coefficient of variation 𝑉௞ for the samples of each objective function. 𝑉௞ = 𝑆௞ 𝑋௞തതത⁄   (38)

(4) Normalize the coefficient of variation to obtain the information weight 𝑊௞  of 
samples of each objective function. 𝑊௞ = 𝑉௞ ∑ 𝑉௞ ଷ௞ୀଵ⁄   (39)

(5) Calculate comprehensive objective function 𝑌. 𝑌 = 𝑊ଵ ∙ (1 − 𝑋ଵᇱ) + 𝑊ଶ ∙ 𝑋ଶᇱ + 𝑊ଷ ∙ 𝑋ଷᇱ  (40)

In Equation (40), 𝑋ଵᇱ   represents the normalized hydraulic loss, 𝑋ଶᇱ   represents the 
normalized uniformity of flow velocity distribution and 𝑋ଷᇱ   represents the normalized 
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average angle of water flow entering the pump, 𝑊ଵ represents the weight of normalized 
hydraulic loss, 𝑊ଶ represents the weight of uniformity of flow velocity distribution and 𝑊ଷ represents the weight of average angle of water flow entering the pump. The closer 
the comprehensive objective function (𝑌) is to 1, the better the hydraulic performance of 
the inlet passage. 

4.2. Dataset 

Numerical simulation calculations were conducted on 125 sets of inlet passage 
schemes to obtain corresponding hydraulic loss, uniformity of flow velocity distribution 
and the average angle of water flow entering the pump. Then, the comprehensive 
objective function values were calculated through the information weight method. The 
three contraction angles (𝜃ଵ , 𝜃ଶ  and 𝜃ଷ ) and corresponding comprehensive objective 
function values (𝑌) of the inlet passage are shown in Figure 10, in which the larger the 
objective function value is, the larger the dot diameter is and the closer the dot color is to 
red. 

 

Figure 10. Contraction angles and comprehensive objective function values of inlet passage. 

4.3. Hyperparameter Optimization 

The hyperparameter is a manually configurable parameter that has already been set 
before machine learning. For the machine learning regression models, different 
hyperparameters lead to different learning performance, so hyperparameter optimization 
is a necessary task [48]. The hyperparameter optimization method used in this paper was 
Bayesian optimization, which is a probability-based optimization method and more 
efficient than the traditional grid search and random search method. In order to reduce 
the impact of randomness of splitting the dataset on the regression model and improve 
the generalization ability of the regression model, the method of splitting the dataset 
adopted the 10-fold cross validation method. Optimal hyperparameters of different 
regression models are listed in Table 2. 
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Table 2. Optimal hyperparameters of different regression models. 

Regression Models Types of Hyperparameters Values 

Gaussian Process 
Regression 

(GPR) 

Sigma 0.463 
Basis function 0 

Kernel function Isotropic squared exponential 
Kernel scale 856.26 

Standardize data true 

Feedforward Neural 
Network 

(FNN) 

Number of fully connected layers 1 
First layer size 259 

Activation Tanh 
Regularization strength  0.0007378 

Standardize data True 

Support Vector 
Regression 

(SVR) 

Kernel function Gaussian 
Box constraint 23.8196 
Kernel scale 4.3335 

Epsilon 0.0434 
Standardize data true 

4.4. Selecting Regression Model 

To check the generalization ability of different regression models, the relationship 
between the predicted response and actual response of different regression models in the 
test set is shown in Figure 11. A perfect regression model has a predicted response equal 
to the true response, so all the points of perfect regression lie on a diagonal line. The 
vertical distance from the line to any point is the error of the prediction for that point. For 
the three regression models, the response points are randomly distributed on both sides 
of the diagonal line. When the response is closer to 1, the response error is smaller. When 
the response is around 0.5, the error is relatively larger. As a whole, the points of the GPR 
model were closer to the diagonal line than the points of the FNN and SVR model, which 
indicates that the GPR model has the minimum error and the best generalization ability. 

 
(a) GPR model 
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(b) FNN model 

 
(c) SVR model 

Figure 11. Relationship between predicted response and actual response of different regression 
models. 

To quantify the generalization ability of different regression models, the coefficient 
of determination (R2) was used. The closer the value of R2 is to 1, the better the 
generalization ability of the model is. The R2 values of different regression models are 
shown in Figure 12. The R2 values of the GPR, FNN and SVR were, respectively, 0.958, 
0.948 and 0.948 in the test set. The R2 value of the GPR model was maximum in the test set 
during the three models, which indicates that the GPR model has the best predictive 
ability among the three regression models, so the GPR model was used in this paper to 
regress the three contraction angles (𝜃ଵ, 𝜃ଶ and 𝜃ଷ) and comprehensive objective function 
(𝑌). 



J. Mar. Sci. Eng. 2025, 13, 274 17 of 24 
 

 

 

Figure 12. R2 values of different regression models. 

5. Sensitivity Analysis 
To investigate the impact of different input parameters (contraction angles) on the 

output results (comprehensive objective function) of the GPR model, Sobol sensitivity 
analysis was conducted on the contraction angle parameters. The global sensitivity 
coefficient of the three contraction angles is shown in Figure 13. We can see that the 
ranking of first-order global sensitivity coefficient and total global sensitivity coefficient is 𝜃ଷ > 𝜃ଶ > 𝜃ଵ, which indicates that 𝜃ଷ had the greatest impact on the objective function 
value, followed by 𝜃ଶ, and 𝜃ଵ had the smallest impact. For each contraction angle, the 
total global sensitivity coefficient was greater than the first order sensitivity coefficient, 
indicating that there was interaction between the three contraction angles. 

 

Figure 13. Global sensitivity coefficient of three contraction angles. 

6. Genetic Algorithm Optimization 
The genetic algorithm was used to search the optimal objective function value of the 

GPR model and corresponding contraction angles of the inlet passage. The parameter 
settings of genetic algorithm are listed in Table 3. 
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Table 3. Parameter settings of genetic algorithm. 

Parameter Name Population Size 
Crossover 
Fraction Migration Fraction 

Fitness 
Tolerance 

Value 50 0.8 0.2 10−6 

The variation in the three constraint angles and objective function values with 
generations is shown in Figure 14. We can see that with the increase in genetic generations, 
the objective function values gradually increased, and then the objective function values 
remained unchanged with the increase in genetic generations. In addition, the values of 
the three contraction angles remained unchanged with the increase in genetic generations. 
Finally, the maximum objective function value was 0.963 and the corresponding 
contraction angles were 𝜃ଵ = 13.34°, 𝜃ଶ = 28.36°and 𝜃ଷ = 3.64°, respectively. 

 

Figure 14. Variation in three constraint angles and objective function values with generations. 

7. Numerical Simulation Results 
7.1. CFD Verification of Optimal Scheme 

Numerical simulation calculation was performed on the optimal scheme; the results 
are hydraulic loss hopt =0.061 m, uniformity of flow velocity distribution 𝑉௨௢௣௧ =99.10%, 
average angle of water flow entering the pump 𝜃௢௣௧=88.13°and objective function value 𝑌௢௣௧=0.953. The optimal objective function value obtained through the GPR model was 
0.963; the relative error between the GPR model objective function value and the CFD 
objective function value was 1.0%, which indicates that the optimization results based on 
the GPR model are reliable. 

7.2. Comparison of Numerical Simulation Results 

7.2.1. Comparison of Hydraulic Performance Indicators 

The values of various hydraulic performance indicators of the original scheme and 
optimal scheme are shown in Figure 15. We can see that the hydraulic loss h of the optimal 
scheme was 2.4% smaller than that of the original scheme, the uniformity of flow velocity 
distribution 𝑉௨ of the optimal scheme was 0.1% larger than that of the original scheme, 
the average angle of water flow entering the pump 𝜃 of the optimal scheme was 0.2% 
smaller than that of the original scheme and, finally, the objective function value 𝑌 of the 
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optimal scheme was 8% larger than that of the original scheme, indicating that the 
hydraulic performance of the optimal scheme was better than that of the original scheme. 

 

Figure 15. Values of various hydraulic performance indicators of original scheme and optimal 
scheme. 

7.2.2. Location of Control Planes 

In order to visually demonstrate the difference in interior characteristics between the 
original and optimal schemes, the distribution of velocity and the turbulent dissipation 
rate were displayed on plane 1 (Z = 0); the distribution of velocity was displayed on plane 
2 (x = 0). Plane 1 and plane 2 are shown in Figure 16. 

 

Figure 16. Location of control planes. 

7.2.3. Comparison of Flow State 

The flow state on plane 1 of the inlet passage of the original scheme and optimal 
scheme is shown in Figure 17. We can see that, for two schemes, the water flows into the 
inlet passage and the vortices are generated near the both side walls of the inlet section of 
inlet passage because of the separation of inlet flow. With the contraction of inlet passage, 
the vortices disappear and the flow velocity gradually increases. In summary, the flow 
state of the original scheme and optimal scheme is basically similar, and the main 
difference between the two schemes is that the vortex zone of the original scheme is larger 
than that of the optimal scheme, so it indicates that the flow state of the optimal scheme 
is better than that of the original scheme. 
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(a) Original scheme  (b) Optimal scheme 

 

Figure 17. Flow state on plane 1 of inlet passage of original scheme and optimal scheme. 

7.2.4. Comparison of Turbulent Dissipation Rate 

The turbulent dissipation rate on plane 1 of the inlet passage of the original scheme 
and optimal scheme is shown in Figure 18. In the picture, the larger the turbulent 
dissipation rate is, the redder the color of the zone is, and the greater the hydraulic loss is. 
As can be seen from Figure 18, the larger hydraulic loss zones were mainly concentrated 
on both sides of the inlet section and near the side walls of the inlet passage because of the 
friction inside the vortex zones and the friction between the water flow and the inlet 
passage wall. By comparing the two pictures, the red zones at both sides of the inlet 
section and near the wall of the outlet section of the optimal scheme are smaller, so the 
hydraulic loss of the optimal scheme is smaller than the original scheme. 

  
(a) Original scheme  (b) Optimal scheme 

 

Figure 18. Turbulent dissipation rate on plane 1 of inlet passage of original scheme and optimal 
scheme. 

7.2.5. Comparison of Velocity Distribution 

Velocity distribution on plane 2 of the inlet passage of the original scheme and 
optimal scheme is shown in Figure 19. The more uniform the velocity distribution is, the 
better the flow state of the pump inlet is. As can be seen from Figure 19, for both schemes, 
the flow velocity was distributed in an annular pattern from low to high along the outer 
ring to the inner ring on plane 2, and the main difference between the two schemes is that 
there are the local low-speed zones in the lower part on plane 2 of the original scheme, so 
the flow state on plane 2 of the optimal scheme is better than the original scheme. 
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(a) Original scheme  (b) Optimal scheme 

 

Figure 19. Velocity distribution on plane 2 of inlet passage of original scheme and optimal scheme. 

8. Conclusions 
(1) Three machine learning regression models (GPR, FNN and SVR) were used to 

regress the relationship between the three contraction angles (θ1, θ2 and θ3) of the inlet 
passage and the comprehensive objective function (𝑌). By using the Bayesian optimization 
algorithm and 10-fold cross validation method to perform hyperparameter optimization 
on three regression models, the coefficients of determination (R2) of the three optimized 
models were compared, and the order of R2 of the three regression models in the test set 
from large to small was as follows: 𝑅ୋ୔ୖଶ >𝑅୊୒୒ଶ =𝑅ୗ୚ୖଶ . The GPR model had the highest R2 
in the test set, indicating its strongest generalization ability. Therefore, the GPR model 
was selected as the regression model for this study. 

(2) To investigate the impact degree of different input parameters (contraction 
angles) on the output results (objective function) of the GPR model, Sobol sensitivity 
analysis was conducted on the contraction angle parameters. The rankings of the first-
order global sensitivity coefficient and total global sensitivity coefficient were both 𝜃ଷ >𝜃ଶ > 𝜃ଵ, which indicated that 𝜃ଷ had the greatest impact on the objective function value, 
followed by 𝜃ଶ, and 𝜃ଵ had the smallest impact. In addition, for each contraction angle, 
the total global sensitivity coefficient was greater than the first-order sensitivity 
coefficient, indicating that there is interaction between different contraction angles. 

(3) The genetic algorithm was used to search the optimal objective function value of 
the GPR model. The maximum comprehensive objective function value was 0.963 and the 
corresponding three contraction angles were 𝜃ଵ = 13.34° , 𝜃ଶ = 28.36° and 𝜃ଷ = 3.64° , 
respectively. The comprehensive objective function value of the optimal scheme was 8% 
larger than that of the original scheme, indicating that the hydraulic performance of the 
optimal scheme is better than that of the original scheme. From the perspective of the flow 
state and turbulent dissipation rate on plane 1 of the inlet passage and velocity 
distribution uniformity on plane 2 of the inlet passage, the reasons why the hydraulic 
performance of the optimal scheme is superior to the original scheme were analyzed. The 
results of this study can provide reference for the optimization of inlet passages of coastal 
drainage pump systems. 
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Abbreviation Definition 
AI Artificial Intelligence 
CFD Computational Fluid Dynamics 
FNN Feedforward Neural Network 
GA Genetic Algorithm 
GP Gaussian Process 
GPR Gaussian Process Regression 
KKT Karush–Kuhn–Tucker 
ML Machine Learning 
PAT Pump As Turbine 
RNG Re-normalization Group 
SVR Support Vector Regression 
SVM Support Vector Machine 
TLV Tip Leakage Vortex 
Y Comprehensive Objective Function 
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