
Academic Editor: Paolo Silvestri

Received: 26 December 2024

Revised: 26 January 2025

Accepted: 28 January 2025

Published: 31 January 2025

Citation: Li, C.; Hu, Z.; Zhang, D.;

Wang, X. System Identification and

Navigation of an Underactuated

Underwater Vehicle Based on LSTM. J.

Mar. Sci. Eng. 2025, 13, 276. https://

doi.org/10.3390/jmse13020276

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

System Identification and Navigation of an Underactuated
Underwater Vehicle Based on LSTM
Changhao Li , Zetao Hu , Desheng Zhang and Xin Wang *

School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China;
22s153203@stu.hit.edu.cn (C.L.) ; 23s153110@stu.hit.edu.cn (Z.H.); 22b353008@stu.hit.edu.cn (D.Z.)
* Correspondence: wangxinsz@hit.edu.cn

Abstract: Modeling and system identification are critical for the design, simulation, and
navigation of underwater vehicles. This study presents a six degree-of-freedom (DoF) non-
linear model for a finless underactuated underwater vehicle, incorporating port-starboard
symmetry and cross-flow terms. Then, hydrodynamic damping parameters are identified
using an optimized Extended Kalman Filter (EKF), establishing a steady validation frame-
work for computational fluid dynamics (CFD) simulation coefficients. Additionally, system
identification is further enhanced with a Long Short-Term Memory (LSTM) neural network
and a comprehensive dataset construction method, enabling time-series predictions of
linear and angular velocities. To mitigate position divergence in dead reckoning (DR)
caused by LSTM, a Nonlinear Explicit Complementary Filter (NECF) is integrated for
attitude estimation, providing accurate yaw computation and reliable localization without
dependence on acoustic sensors or machine vision. Finally, validation and evaluation
are conducted to demonstrate model accuracy, EKF convergence, and the reliability of
LSTM-based navigation.

Keywords: autonomous underwater vehicle (AUV); system identification; extended
Kalman filter (EKF); long short-term memory (LSTM); dead reckoning (DR)

1. Introduction
Underwater vehicles are classified based on their control methods into remotely oper-

ated underwater vehicles (ROVs), and autonomous underwater vehicles (AUVs). These
vehicles are influenced by hydrodynamic forces and moments, as well as environmental
disturbances such as waves and currents, leading to strong coupling, nonlinearity, and
significant uncertainty [1]. Consequently, the modeling and identification of underwater
vehicles have been significant research topics for an extended period.

The mathematical models for underwater vehicles are similar to those for ships, di-
vided into integrated and separated structure models. The integrated model, introduced
by Abkowitz [2] in the 1960s, treats the entire vehicle as a single unit. Chislett [3] further
developed this using a planar motion mechanism (PMM) for mariner ship simulations. In
the 1970s, the Japanese Towing Tank Committee developed the separated (MMG) model [4],
which considers the hull, propeller, and rudder independently, allowing for detailed inter-
action calculations. Modern underwater vehicle modeling builds on these foundational
approaches. As detailed in [1], hydrodynamic damping encompasses dissipative forces
arising from forced oscillation, surface friction, lift, and vortices. In [5], Gertler and Hagen
provided simplified equations for the standard motion dynamics of over 25 submarines,
reflecting practical physical behaviors. Once theoretical models are established, the focus
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often shifts to applying these dynamic models to underwater vehicles [6,7]. Studies on
ocean currents [8] underscore the importance of model accuracy for navigation assistance.
However, accurately determining parameters for complex underwater dynamic models
poses significant challenges, compounded by uncertainties from payload variations. To
tackle this, [9] proposed a machine learning-based exploration method, but its reliability
remains unverified. Underwater vehicle models are essential for control, simulation, and
autonomous navigation, broadly categorized as linear or nonlinear. Linear models offer
basic approximations suitable for simpler control strategies, while nonlinear models, often
in state-space form, provide more accuracy, albeit with complex computations. Regard-
less of the model type, the key challenge lies in selecting the most suitable model and
reliably identifying parameters to enhance physical fidelity, typically achieved through
system identification.

Underwater vehicle physical models contain numerous unknown hydrodynamic
parameters [10,11]. Traditional model-based control methods rely on these models, ne-
cessitating system identification or parameter identification to determine the unknown
hydrodynamic terms. This often involves conducting experiments in towing tanks or
PMM with full-scale robots or scaled-down models [12,13]. However, such experiments are
time-consuming, requires specialized test platforms, and can be impractical for researchers
lacking experimental facilities. Additionally, measurement errors in collected data can
be substantial, sometimes reaching 50% [14]. To tackle these challenges, sensor-based
identification methods have emerged as simpler, more convenient, and cost-effective alter-
natives. Goheen and Jefferys pioneered sensor-based system identification for underwater
vehicles [15]. Subsequent research proposed an Extended Kalman Filter (EKF) method for
identifying surge direction in AUVs using a simplified model [16]. Other studies validated
least squares (LS) identification for nonlinear models on specific underwater vehicle [17].
Combining LS and EKF for system identification showed improved results in [18]. Further
developments included LS identification for the ROMEO ROV’s four-degree-of-freedom
model [19] and improved ROV modeling by considering thruster–body interactions [20].
Smallwood and Whitcomb introduced online adaptive identification, showing its superior-
ity over LS but limited to single-degree-of-freedom dynamics [21]. As traditional methods
became standard, the focus shifted to modern approaches. Neural network-based auxiliary
system identification methods were introduced to enhance accuracy [22]. The use of total
least squares (TLS) for multi-degree-of-freedom models provided robust identification
results [23]. An improved multi-output Gaussian orocess (MOGP) was used to effectively
model the dynamics of an underactuated AUV, enabling the system to provide confidence
measurements [24]. Validation of the modified dual unscented Kalman filter (MDUKF)
demonstrated its feasibility for online parameter estimation [25]. Least square support
vector machines (LS-SVM) were introduced for effective hydrodynamic parameter esti-
mation [26]. An adaptive identification method was proposed for fully actuated ROVs,
requiring only thrust, position, and velocity data [27]. Comprehensive measurement of
hydrodynamic parameters using EKF offered more detailed results compared to simplified
measurements [28]. A few-shot identification method that combines RMAS with neural net-
works, significantly improving the accuracy of stochastic dynamical system identification
using minimal samples, can be adapted for underwater vehicle modeling [29].

As identification methods have proliferated, selecting the optimal algorithm for effi-
ciency and accuracy is crucial. Research indicates that the unscented Kalman filter (UKF)
and transformed UKF outperform EKF, especially when dealing with nonlinear viscous
drag [30,31]. Radial basis function (RBF) neural networks have been used for ROV model
identification [32], while a PSO-based SVM algorithm was proposed to address multi-
collinearity in hydrodynamic term identification within the Abkowitz model [33]. The
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symbolic regression (SR) algorithm has been shown to offer higher fitting accuracy for
underwater robot system identification [34]. The extended Kalman particle filter (EKPF)
demonstrated a smaller standard deviation in offline identification compared to traditional
methods [35], and an optimized UKF showed slight improvements over standard UKF,
though with minimal impact on control precision [36]. In the domain of online identification
for AUVs, various deep learning methods have been assessed, including neural networks
(NN), support vector regression (SVR), Gaussian process regression (GPR), and kernel
ridge regression (KRR), with their performance evaluated across different data volumes
and computational complexities [37]. Enhanced algorithms like weight distance squared
exponential SVR (WDSE-SVR) have shown superior performance in identifying 3 degree-
of-freedom (DoF) coupled dynamics models compared to standard TLS and SVR [38].
Dynamic state changes were accurately predicted by altering the AUV’s dynamics and em-
ploying incremental SVR (IncSVR) and a data update method, focusing on the decoupled
drag term [39,40]. A combined approach using WDSE, IncSVR, and data update strategies
led to the development of a method based on Long Short-Term Memory (LSTM) for online
identification of nonlinear, coupled and dynamically changing AUV models, achieving
precision close to offline identification [41]. Additionally, nonlinear model identification
and validation were achieved using orthogonal forward regression (OFR) with ultra-short
baseline (USBL) and a Doppler log [42], while a universal adaptive stabilizer (UAS)-based
algorithm was developed for parameter identification without relying on position informa-
tion [43]. A universal adaptive stabilizer (UAS)-based algorithm was also developed for
parameter identification without the need for position information [43]. Gaussian process
learning (GPL) was employed in [44] to develop nonparametric vehicle dynamics.

To expand the application of system identification and highlight the advantages of
non-parametric models, this study integrates system identification with state estimation
and onboard sensors to achieve accurate underwater navigation through dead reckon-
ing (DR). To mitigate error accumulation from velocity predictions, a Nonlinear Explicit
Complementary Filter (NECF) is adopted [45]. NECF combines gyroscopic measurements
with accelerometer and magnetometer data for angle correction, introducing two key
improvements: (1) filtering magnetic field components susceptible to interference; and
(2) dynamically adjusting weighting coefficients based on sensor confidence, enhancing
flexibility. This approach is effective for near-horizontal motion. Its application in si-
multaneous localization and mapping enables 3D reconstruction [46]. Furthermore, [47]
compares 15 positioning algorithms, demonstrating that NECF-based methods achieve
minimal error across diverse motion patterns, making them robust for both terrestrial
and underwater environments. Methods like the improved Kalman filter for real-time
joint denoising of gravity and gravity gradient data can also be applied to underwater
navigation [48].

Despite significant advancements in underwater vehicle system modeling and iden-
tification, several challenges persist. These include inaccuracies in identification models,
insufficient data collection, issues with model updating and adaptability, multi-sensor
integration, performance optimization, and the application of machine learning. The un-
derwater environment is highly variable and often unpredictable, making it difficult for
existing models to accurately reflect real conditions. GPS is not viable underwater, station-
ary beam detection like USBL typically limits operation to specific areas, and DVL cannot
acquire reliable velocity measurements beyond its bottom track altitude range(middle
water or a trench) or when the bottom is obstructed or consists of sound-absorbing material.
Accurate system identification of underwater vehicles is crucial for maintaining the stability
and robustness of the entire system. Addressing these issues, this paper focuses on apply-
ing a modified EKF method to identify hydrodynamic coefficients of a small underwater
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vehicle without the need for heavy-duty professional measuring equipment. Additionally,
a dead reckoning method based on LSTM is proposed to achieve long-term navigation
without DVL. This study integrates several advanced techniques in system identification
and attitude estimation to offer a comprehensive solution for underwater navigation, even
under DVL failure conditions or for small/swarm vehicles lacking navigation equipment.
We present a cost-effective and efficient method for underwater vehicle system identifica-
tion and navigation, applicable to a wide range of underwater vehicles in both restricted
indoor pools and sea trials. The results confirm the expected performance of the proposed
methods. The main contributions of this work are as follows:

(1) We develope a simplified port/starboard symmetry model incorporating sway and
yaw cross-flow damping effects based on Fedyaevsky–Sobolev model. This model
retains dynamic features for an underactuated, low-speed, small underwater vehicle
without control fins.

(2) We provide a hydrodynamic parameter identification method based on improved non-
augmented EKF, identifying 26 hydrodynamic damping coefficients as the state vector
for computational fluid dynamics (CFD) experiment validation. We design a deep
LSTM network and a general dataset construction method to enhance non-parametric
system identification accuracy for 6-DoF models.

(3) We address the challenge of localizing small underwater vehicles lacking necessary
sensors such as GPS, DVL, and USBL. By integrating an inertial measurement unit
(IMU), a magnetometer, and a depth sensor, we have introduced an NECF-aided,
LSTM-based dead reckoning method that does not rely on external positioning sensors,
successfully achieving reliable position prediction.

This paper is organized as follows: Section 2 outlines the methodology for underwater
vehicle kinematics and dynamics modeling, presenting a coupled 6-DoF nonlinear model.
Section 3 details the application of the proposed model to an EKF-based approach for
estimating hydrodynamic parameters. Section 4 introduces the LSTM architecture for
both dynamic and dead-reckoning models, and describes the maneuvering tests necessary
for the LSTM dataset. Section 5 discusses the experimental results and introduces NECF
for attitude estimation. Finally, Section 6 summarizes the findings and discusses future
directions for research.

2. Underwater Vehicle Modeling
There are two aspects of numerical modeling to consider: kinematics and dynamics.

To provide a clear explanation, we define two reference coordinate systems: the earth-fixed
NED frame ON-XNYN ZN and the body-fixed (sensor) frame ob-xbybzb as shown in Figure 1.
In this paper, the physical variables adhere to Fossen’s vectorial representations [1].

η=
[
ηT

1 , ηT
2

]T
, η1=

[
x, y, z

]T
, η2=

[
ϕ, θ, ψ

]T

ν=
[
νT

1 , νT
2

]T
, ν1=

[
u, v, w

]T
, ν2=

[
p, q, r

]T

τ=
[
τT

1 , τT
2

]T
, τ1=

[
X, Y, Z

]T
, τ2=

[
K, M, N

]T

(1)

where η denotes the position and orientation vector in the earth-fixed frame, with η1 ∈ R3

representing the NED position and η2 ∈ S3 representing the Euler angles. The vector ν

denotes the linear and angular velocities in the body-fixed frame, where ν1 ∈ R3 is the
linear velocity and ν2 ∈ R3 is the angular velocity. The vector τ represents the forces and
moments in the body-fixed frame, with τ1 ∈ R3 for external forces along the vehicle’s axes,
and τ2 ∈ R3 for external moments on the vehicle body.



J. Mar. Sci. Eng. 2025, 13, 276 5 of 25

Figure 1. Body-fixed and earth-fixed reference frames.

The 6-DoF equations of motion follow the framework established by Fossen [1]:

η̇ = J(η)ν (2)

Mv̇ + C(ν)ν + D(ν)ν + g(η) = τ (3)

where, M is the inertia matrix, the sum of the rigid body inertia MRB and added mass
inertia MA: M = MRB + MA; the Coriolis and centripetal matrix C(ν) combines rigid
body and added mass components: C(ν) = CRB + CA; the damping matrix D(ν) includes
potential damping, skin friction, wave drift damping, and vortex shedding; and g(η) is the
hydrostatic restoring force and moment vector.

2.1. Vehicle Kinematics

J(η) =

[
J1(η2) 03×3

03×3 J2(η2)

]
(4)

The 6-DoF kinematic equations for an underwater vehicle can be derived by expanding
J1(η2) and J2(η2) into Equation (4). Here, J1(η2) = RT

z,ψRT
y,θ RT

x,ϕ represents the transforma-
tion matrix for linear velocity from the body-fixed frame to the earth-fixed frame, following
the common zyx-sequence used in navigation. J2(η2) represents the transformation matrix
for the angular velocity vector.

2.2. Vehicle Dynamic

The proposed dynamic model of the underwater vehicle in this article is simplified
based on the following assumptions:

• The vehicle is symmetrical port/starboard.
• Damping terms higher than second order are neglected.
• Buoyancy B = ρVg and gravity W = mg of the vehicle are equal.
• The center of buoyancy OB = [xB, yB, zB]

T and gravity OG = [xG, yG, zG]
T are verti-

cally aligned on the body-fixed z-axis, i.e., xG = xB = 0, yG = yB = 0 and zG > zB.
• The vehicle moves at a low speed.
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Without loss of generality, set OG = [0, 0, 0]T , and OB = [0, 0, ZB]
T . By rewriting

Equation (3), we derive Equation (5):

MRB ν̇ + CRB(ν) ν︸ ︷︷ ︸
Rigid Body Dynamics

+ MA ν̇ + CA(ν) ν + D(ν) ν︸ ︷︷ ︸
Hydrodynamics

+ g(η)︸︷︷︸
Hydrostatics

= τ (5)

2.2.1. Rigid Body Dynamic

MRB = diag
{

m m m Ix Iy Iz

}
(6)

CRB(ν) =



0 0 0 0 mw −mv
0 0 0 −mw 0 mu
0 0 0 mv −mu 0
0 mw −mv 0 Izr −Iyq

−mw 0 mu −Izr 0 Ix p
mv −mu 0 Iyq −Ix p 0


(7)

2.2.2. Hydrostatic Forces and Moments

Since we analyze forces and moments applied to the vehicle in the body-fixed co-
ordinate system, g(η) represents the effect of weight and buoyancy transformed from
the earth-fixed coordinate to the body-fixed coordinate. To further simplify the vehicle’s
representation, let BGz = zG − zB. The restoring forces and moments can then be expressed
by Equation (8):

g(η) =



0
0
0

BGzWcosθsinϕ

BGzWsinθ

0


(8)

2.2.3. Hydrodynamic Forces and Moments

When moving in a fluid, the hydrodynamic forces acting on an underwater vehicle
are generally comprised of three components: added mass-induced inertia forces, damping
forces, and environmental disturbance forces. To develop an accurate hydrodynamic
simulation model for an underwater vehicle (operating in deep sea or areas less affected
by wind and waves), the assumption of MA = MT

A > 0 as proposed by [1] is not adopted.
The reason is, in real marine environments, there are often unexpected currents and wave
influences. Furthermore, [49] demonstrated that the acceleration terms in the added mass
matrix can be calculated with considerable precision using theoretical methods.

MA = −



Xu̇ 0 Xẇ 0 Xq̇ 0
0 Yv̇ 0 Yṗ 0 Yṙ

Zu̇ 0 Zẇ 0 Zq̇ 0
0 Kv̇ 0 K ṗ 0 Kṙ

Mu̇ 0 Mẇ 0 Mq̇ 0
0 Nv̇ 0 Nṗ 0 Nṙ


(9)

Typically, the added mass coefficients are assumed to be constant. The added mass
terms are calculated using fluid kinetic energy theory. As the vehicle moves through a fluid,
the surrounding fluid is displaced and then closes in behind the vehicle. This interaction
passively generates added kinetic energy TA, where TA = 1

2 νT MAν. This represents the
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kinetic energy possessed by the fluid due to the vehicle’s motion, which would not exist if
the vehicle were stationary.

a1 = Xu̇ × u + Xẇ × w + Xq̇ × q

a2 = Yv̇ × v + Yṗ × p + Yṙ × r

a3 = Zu̇ × u + Zẇ × w + Zq̇ × q

b1 = Kv̇ × v + K ṗ × p + Kṙ × r

b2 = Mu̇ × u + Mẇ × w + Mq̇ × q

b3 = Nv̇ × v + Nṗ × p + Nṙ × r

(10)

CA =



0 0 0 0 −a3 a2

0 0 0 a3 0 −a1

0 0 0 −a2 a1 0
0 −a3 a2 0 −b3 b2

a3 0 −a1 b3 0 −b1

−a2 a1 0 −b2 b1 0


(11)

D(ν) = −



Xu + Xu|u||u| 0 0
0 Yv + Yv|r||r|+ Yv|v||v| 0
0 0 Zw + Zw|w||w|
0 Kv 0
0 0 Mw

0 Nv + Nv|r||r|+ Nv|v||v| 0

0 0 0
Yp 0 Yr + Yr|v||v|+ Yr|r||r|
0 Zq 0

Kp + Kp|p||p| 0 Kr

0 Mq + Mq|q||q| 0
Np 0 Nr + Nr|v||v|+ Nr|r||r|



(12)

Our model enhances Abkowitz’s nonlinear model by incorporating truncated Taylor-
series expansions for odd-order terms, following the approach of Fedyaevsky and Sobolev
to alternate the third-order terms of Abkowitz’s model into second-order modulus. This
adjustment is particularly suitable for low-speed field operations and simplifies parameter
complexities. Additionally, we introduce cross-flow drag resulting from the coupling
motion of sway and yaw, denoted as Y|r|v, Y|v|r, N|r|v, and N|v|r, following SNAME notation.
These terms, derived from a 3D implementation of two 2D strip theory formulas, account
for nonlinear damping forces from each hull section [50], aiding in handling currents
not aligned with the heading ψ. Fitting these formulas without integrals yields second-
order terms, resembling a maneuvering model akin to that of Fedyaevsky and Sobolev.
Cross-flow drag, as described in [11], refers to damping forces perpendicular to the x-axis
resistance. Understanding and simulating cross-flow drag offer detailed insights into the
mathematical model, potentially improving hydrodynamic performance, vehicle motion
analysis, and state estimation accuracy. While many of these effects are relatively small,
their inclusion can refine the model’s accuracy, although some may be ignored based on
specific engineering considerations.

2.2.4. Thruster Forces and Moments

In the context of underwater vehicle dynamics, the force vector τ in Equation (3)
primarily represents the thruster forces and any environmental forces acting on the vehicle.



J. Mar. Sci. Eng. 2025, 13, 276 8 of 25

Neglecting environmental influences like wind, waves, and currents, τ is the thruster forces.
This relationship is expressed as, τ = Bu, where B denotes the thrust distribution matrix,
and u = [Tp, Ys, Tpv, Tsv]T represents the input forces vector of all the thrusters.

B =



1 1 0 0
0 0 0 0
0 0 1 1
0 0 −Yvt Yvt
0 0 0 0

Yht −Yht 0 0


(13)

2.3. Six-DoF Nonlinear Equations of Motion

Combining Equations (2) and (3), we obtain Equation (14):[
ν̇

η̇

]
=

[
−M−1(C(ν) + D(ν)) 06×6

J1(η2) J2(η2)

][
ν

η

]
+

[
M−1

06×6

][
τ − g(η)

]
(14)

All the hydrodynamic parameters of AUV-shark are obtained from our previous
work [51,52], with relevant physical parameters listed in Table 1. Compared to Fossen’s
unsimplified vectorial model (non-symmetry, MA positive definite), our model, as shown
in Equations (9)–(12), simplifies about the XOZ plane. Consequently, the hydrodynamic
parameters in MA and D(ν) can be reduced from 36 and 48 to 18 and 26, respectively. This
reduction approximately halves the number of unknown hydrodynamic parameters, from
84 to 44.

As mentioned, compared to damping terms, added mass inertial terms are more
accurately computed theoretically. Therefore, identifying damping terms has been the
primary focus of hydrodynamic computation. In this paper, we will focus on identifying
all 26 damping terms in D(ν), which encompass linear, nonlinear, and coupling effects.

Table 1. Physical characteristics of AUV-shark.

Parameters Symbol Value Unit

Vehicle mass m 23.2 kg
Body length L 0.7615 m
Hull diameter d 0.22 m
x-axis moment of inertia Ix 0.256 kg · m2

y-axis moment of inertia Iy 1.882 kg · m2

z-axis moment of inertia Iz 1.9432 kg · m2

Vertical center of buoyancy zB −0.01 m
Horizontal thruster lever Yht 0.167 m
Vertical thruster lever Yvt 0.167 m

3. Kalman Filter Hydrodynamic Parameters Identification
Mathematical models for underwater vehicles must incorporate realistic physical as-

sumptions and simplifications. Model-based identification primarily targets damping terms
with substantial errors, while identification methods based on nonlinear function fitting can
more accurately capture underwater system characteristics. The selection of identification
methods and the number of parameters greatly affect the accuracy of the identification
results. In this section, the EKF algorithm for hydrodynamic parameter identification is
introduced, with a focus on the damping terms in the underwater vehicle model.
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3.1. Extended Kalman Filter

Real-world systems often exhibit nonlinear characteristics, necessitating the use of
nonlinear approaches for state fusion algorithms. A prime example of such an algorithm is
the EKF. The EKF linearizes nonlinear functions through a Taylor series expansion, ignoring
higher-order terms to create a linearized model, thereby facilitating filtering for nonlinear
systems. It balances the estimated values from the system model with the corrected
values from actual measurements by utilizing a covariance matrix, which proportionally
combines both to enhance data accuracy. The computational process for applying EKF to
system identification follows [53]. First, it is necessary to obtain the discrete system and
measurement equations:

xk = fk−1(xk−1, uk−1, wk−1)

yk = hk(xk, vk)

wk ∼ (0, Qk)

vk ∼ (0, Rk)

(15)

where, xk represents the state vector, and yk denotes the measurement vector. wk−1 and
vk are zero mean Gaussian white system noise vector for process and measurement, re-
spectively. The covariance matrices of the system noise and measurement noise are Qk

and Rk, respectively. The Jacobian matrices for the system and measurement equations are
indicated by Fk and Hk. The EKF algorithm involves three steps: initialization, time update,
and measurement update, as detailed in [36].

3.2. Kalman Filter Setting

The augmented state space method utilized by [31,36] encounters convergence chal-
lenges in our application. Analysis reveals that continuous updating of the robot’s state
variables [νT , ηT ]T within the state propagation equation, due to inconsistencies between
computed and predicted results, acts as an unnecessary filter for hydrodynamic parameter
identification. This results in the algorithm compensating for prediction errors, leading to
premature convergence of non-hydrodynamic state variables. Consequently, this hinders
the accurate convergence of hydrodynamic parameters and increases the likelihood of
divergence. This issue is particularly pronounced when dealing with a large number of
hydrodynamic parameters. In this study, we aim to identify a 6-DoF system with up to
26 hydrodynamic parameters, which exacerbates the limitations of the Kalman filter.

To address these convergence challenges, the problem is simplified by following the
approach outlined in [54]. We define the state vector x as a column vector consisting of
26 damping hydrodynamic parameters to be identified and the observation vector y as
the vehicle’s linear velocity, angular velocity, position, and attitude. To derive the discrete
system and measurement equations, we employ numerical integration techniques like the
forward Euler method, backward Euler method, and fourth-order Runge–Kutta (4th-RK).
Initially, we selected the 4th-RK due to its high accuracy and convergence ability. However,
its complexity, resulting from the combination of four slopes over four-time steps, leads to
a complicated state space update equation and a large, intricate Jacobian matrix in the EKF
(a 38 by 38 matrix with some complex elements), making the process very time-consuming.
Consequently, to compromise between computational accuracy and efficiency, we opted
for the backward Euler method instead.

According to Equation (3), the derivative of the speed vector ν can be derived as
follows:

ν̇k = −M−1{[C(νk−1) + D(νk−1)]νk−1 + g(ηk−1)− τk−1} (16)
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To derive the system measurement equation, we substitute Equations (2) and (16)
into Equation (18). As a result, the Jacobian matrix F becomes an identity matrix, and the
Jacobian matrix H becomes a 12 by 26 matrix. During sea trial, GPS signals attenuate rapidly
in water, making accurate horizontal positioning for underwater vehicles unattainable.
Therefore, the position elements x and y of observation vector yk are set to zero, resulting
in yk = [u, v, w, p, q, r, 0, 0, z, ϕ, θ, ψ]Tk .

xk = xk−1 + ωk−1 = Θ26×1 + ωk−1 (17)

yk =

[
νk

ηk

]
=

[
νk−1

ηk−1

]
+

[
ν̇k

η̇k

]
dt + vk−1 (18)

Θ26×1 =
[

Xu Xuu Yv Y|r|v Yv|v| Yp Yr Y|v|r Y|r|r Zw Zww Zq Kv

Kp Kp|p| Kr Mw Mq Mq|q| Nv N|r|v N|v|v Np Nr N|v|r Nr|r|

]T (19)

where Θ is the state vector of hydrodynamic parameters, dt is the observation interval, and
k ∈ [1, n] represents the processing time step.

The process noise covariance matrix Qk and measurement noise covariance matrix Rk

are both set as constant matrices, as shown in Equations (20) and (21):

Q26×26 = diag{σXu , σXu|u| , . . . , σN|r|r}
2 (20)

R12×12 = diag{σu, σv, σw, σp, σq, σr,

σx, σy, σz, σϕ, σθ , σψ}2 (21)

The σ values represent standard deviations. The standard deviation in the measure-
ment noise covariance matrix R can be calculated by sampling data from different sensors.
However, determining the standard deviations in the process noise covariance matrix Q
is more complex. We initialize Q as an identity matrix I and adjust its diagonal element
according to the sampling time step length, hydrodynamic parameter magnitude, and iden-
tification results. As noted by [55], there are no direct methods to accurately determine the
values of the process noise covariance matrix Q. Hence, the values of Q are usually based
on experiences and are specific to the context, lacking transferability and generalizability.

4. Long Short-Term Memory System Identification
Except for hydrodynamic parameter identification, there are other ways to obtain an

underwater vehicle model, like analytical and semi-empirical (ASE) [56], and nonlinear
regression [37]. Here, a special recurrent neural network, LSTM, is introduced. The LSTM
network uses time-series information to capture the complex relation between input and
output variables, which perfectly aligns with the complex dynamics equations of the
underwater vehicle. Unlike traditional neural networks, LSTM are specifically designed to
handle sequential data using a cell structure chain-like loop, enabling LSTM to memorize
temporal features with reduced complexity. This makes LSTM-based methods widely used
in time-series analysis. To understand the mechanism of LSTM network, we need to start
from the core unit—the LSTM cell—which acts as the regulator of information flow within
the network and plays a crucial role in managing its internal memory. Equation (22) shows
the mathematical design of the cell [57]:
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f (l)t = σ(W(l)
x f xt + W(l)

h f ht−1 + b(l)f )

i(l)t = σ(W(l)
xi xt + W(l)

hi ht−1 + b(l)i )

c̃(l)t = tanh(W(l)
xc xt + W(l)

hc ht−1 + b(l)c )

o(l)t = σ(W(l)
xo xt + W(l)

ho ht−1 + b(l)o )

c(l)t = f (l)t ⊙ c(l)t−1 + i(l)t ⊙ c̃(l)t

h(l)t = o(l)t ⊙ tanh(c(l)t )

(22)

An LSTM cell is capable of addressing the long-term dependency problem by changing
the cell state according to its forgot gate, input gate, and output gate in four steps. The first
step is to discard unwanted information, which is realized by a sigmoid layer output f that
ranges from 0 to 1. The second step is to include new cell state information by a selector i
that chooses what information to update and a hyperbolic tangent function output c̃ that
relates to the potential new cell state. Then combining above three outputs to obtain the
updated cell state c. Finally, we can derive the filtered cell output ht after a scaling tanh
layer from current input xt, last output ht−1, and c. W denotes different weight matrixes,
b is bias vector, and ⊙ denotes the elementwise product. The subscript t denotes time
step, and the superscript l denotes the lth LSTM layer. By interconnecting LSTM cells, we
create an LSTM layer. Stacking LSTM layers alongside other hidden layers, such as fully
connected and dropout layers, allows us to construct deep LSTM networks.

4.1. LSTM Network Structure

Space robots benefit significantly from a 6-DoF dynamic model, offering superior
controllability compared to limited actuator designs. This comprehensive controllability
translates to enhanced robustness in tasks requiring precise manipulation and position-
ing. Additionally, 6-DoF non-parametric models facilitate the development of algorithms
for synthetic fault diagnosis and dead reckoning, leading to improved mission success
rates. Inspired by these benefits, a deep LSTM network is proposed for identifying the
coupled 6-DoF nonlinear underwater vehicle model. This approach stands in contrast to
underactuated models, such as the horizontal models presented in [41,58]. Since there
are no unknown terms in the vehicle’s kinematics equation(ϕ, θ, ψ can be observed) and
Equation (2) is brief and clear, we simply consider the dynamics of vehicle. As Equation (16)
shows, the dynamic features can be seen as a multi-input multi-output nonlinear function,
as shown in Equation (23):

ν̇ = F(ν, η, τ) (23)

According to Equation (23), our dynamic system utilizes 18 input variables, includ-
ing velocity, position, attitude, control forces, and moments, to predict the system’s 6-
dimensional speed derivatives. Notably, only τ is an independent variable, whereas all
other terms are measurable. After developing a deep LSTM structure, the sequence data
used for prediction should be prepared first. The required dataset contains both input and
output data. Following the principles of LSTM, the input data must be a three-dimensional
array in the form of samples, time steps, and features [59]. Samples represent the number of
time sequences from different operations, with each sample corresponding to one sequence.
Time steps denote the span of observation in a specific sample sequence, with each time
step representing one step length. Features indicate the number of observations, with each
feature corresponding to one observed quantity. Similarly, the output data has the same
array structure. The LSTM model typically has eighteen inputs and six outputs, meaning
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the features of the input data and output data are 18 and 6, respectively. The operating
principle of LSTM system identification with established features is illustrated in Figure 2.
Selecting the number of samples and time steps is complex and depends on the experiment
type, desired model accuracy, sensor data update frequency, and expected training duration.
We will discuss samples and time steps further in data acquisition section.

Figure 2. Schematic diagram of Long Short-Term Memory (LSTM) data processing. Each plane
stacked on the left represents a sampled maneuver trial reshaped into the desired format. The LSTM
cell is visualized using distinct colors to represent its gates: forget gate (navy blue), input gate (dark
blue), and output gate (magenta).

Our LSTM network architecture consists of two LSTM layers, two fully connected (FC)
layers, and several dropout modules, as illustrated in Figure 3. The final fully connected
layer employs a linear activation function to directly output the required values. Each
intermediate layer allows for independent hyperparameter tuning, which significantly
affects the recognition performance on a given dataset. The optimization of these hyperpa-
rameters directly influences the system’s recognition performance. Currently, the LSTM
network is trained exclusively using simulation data, which includes four samples for the
training set, one for the validation set, and one for the test set. Due to the limited learnable
dynamic features in the simulated dataset compared to the variable dynamics of sea trials,
the number of units in the LSTM layers has been increased to 300, with a corresponding
dropout rate of 5%. The fully connected layers also have 300 units each. To ensure the
output aligns with the required six-degrees-of-freedom information, the final fully con-
nected layer is configured with six neurons. We use the coefficient of determination (R2)
to quantify the model’s prediction accuracy. The R2 metric can be viewed as an L2 loss
function normalized by the variance of the true values, essentially measures the model’s
ability to fit the data and predict unseen examples. During training, the R2 swiftly rise
above 0.95 after a few dozens of epochs, demonstrating that our model maintains excellent
tracking capability.

Figure 3. Architectures of LSTM networks.
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4.2. Dataset Acquisition

The dataset is one of the critical factors influencing the model’s prediction accuracy. It
must adequately capture the unique coupling and nonlinearity characteristics of under-
water vehicle. To construct a dataset encompassing a wide range of system characteristics,
we run kinds of simulation experiments including acceleration-deceleration test, turning
test, spiral test, zigzag test, variable-period sinusoidal input test, and 3-2-1-1 test. It has
been proved that the zigzag maneuver experiments with varying control values contain
more dynamic characteristics [60]. Compared with standard maneuver dataset, a dataset
including zigzag tests can memorize and provide essential information about multi-DoF
coupling and nonlinearity needed in identification. In addition, an appropriate dataset
can alleviate the issue of parameter drift caused by collinearity of independent variables
in data. We also use the 3-2-1-1 method proposed by [61], which was originally used for
aircraft parameter identification. The meaning of 3-2-1-1 is that the input variable should
be separated into four proportional periods in length of 3, 2, 1, and 1, and the sign of input
changes after every period. It is a commonly employed technique due to its capability
to stimulate the comprehensive frequency spectrum of the system’s dynamic response.
Similar to the 3-2-1-1 test, the sinusoidal test aims to expand the state space response of
sampled data by varying the amplitude and period. The findings of [38,41] even suggest
that solely conducting the sinusoidal experiment suffices to create a high-performing LSTM
dataset. In summary, various types of experiments are required to establish the dataset.
The specific experimental designs are detailed in Table 2.

Table 2. AUV shark design of experiments.

Maneuver kind DOF Guideline Target

Step Thrust all 6 DOF F = 1 ∼ 5 N
T = 15 ∼ 50 s D

Zigzag Pitch u and q θ = 5◦/10◦/20◦

T = 10 ∼ 30 s Du, Dw, Dq

Zigzag Yaw u and r ψ = 5◦/10◦/20◦ Du, Dv, Dr

Zigzag Sway u and v y = 1/2/3 m Dv

3-2-1-1 Test all 6 DOF F = 1 ∼ 5 N
T = 35/42/49 s D

Turning Test u and r D = 1 ∼ 5 m Model validation

Spiral Motion u, w and r Fw = 1 ∼ 10 N Model validation

Sinusoidal Thrust all 6 DOF T = 20 ∼ 70 s D

In this study, we collected five time-series samples for the dataset, each encompassing
all experimental types. To ensure integration accuracy, we set the sampling frequency to
20 Hz and the sampling time to 2500 s. Each sample contains 50,000 points, resulting in
three-dimensional input–output datasets of [5, 50,000, 18] and [5, 50,000, 6]. The dataset
was split 80–20% into training (four samples) and validation (one sample) sets. Before each
training iteration, we randomly shuffled the samples to enhance the diversity of temporal
information and prevent the model from overfitting to specific sequences. Additionally,
we designed a test set with a sampling duration of up to 2000 s to reflect real-world
operational scenarios, including straight-line navigation, spiral ascents and descents, and
yaw movements. The test set’s numerical configuration differs from the training and
validation sets, which can be used to effectively demonstrate the LSTM’s ability to learn
underwater vehicle dynamics and predict performance.
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4.3. LSTM Dead Reckoning

A good way to evaluate the performance of the LSTM model is by using it to predict
position through the DR method. According to [62], the main sources of error in DR are
water currents. For our purposes, we assume operations occur in still water conditions.
However, when estimating NED position η1 using predicted ν̇ with DR, the results show
significant time delays and drift errors after double integration. This undesired bias pri-
marily arises from the continuous error accumulation in η2. While the output preserves
all motion features, they are distorted by incorrect attitude estimates. Additionally, ob-
taining accurate body-fixed acceleration data ν̇ is challenging [63]. We typically derive ν̇

by differentiating the velocity provided by DVL or using IMU data. Both methods have
significant drawbacks: differentiating velocity amplifies sensor noise and heavily depends
on sampling frequency, while IMU data suffer from considerable noise and drift due to
temperature and time. Given these issues, we use Equation (24) instead of Equation (23) to
address these challenges.

νk = F(νk−1, η2, τk−1, ∆t) (24)

Here, k represents the time step, ∆t is the time interval. By applying Equation (24) to
LSTM-based system identification, we can predict the velocity at time step tk given the
input at tk−1, enabling real-time speed prediction. The discrete velocity recursion formula
reduces one integration step, significantly diminishing drift and time delay in position
reckoning, and helps prevent error accumulation from integration. However, in theory, the
slight discrepancies in LSTM predictions can be amplified through the intrinsic coupling
relationship in the coordinate transformation matrix J(η2), potentially causing divergence
in the position and orientation η. This issue is particularly evident when calculating the
attitude η2. In practice, even small non-zero errors in predicted angular velocities can, over
time, lead to significant deviations in angles due to prolonged integration. Such deviations,
similar to the effects of uncertainty in hydrodynamic parameters, cause non-zero off-
diagonal elements in J(η2) that should be zero near zero values. This introduces unintended
coupling in the calculation of position acceleration, ultimately leading to attitude instability.
The result is oscillatory divergence in roll and pitch angles, deviating from the true trajectory.
Therefore, achieving accurate dead reckoning requires more reliable methods for obtaining
precise attitude. To address this, we obtain η2 using the NECF method proposed by [45] and
then use the estimated attitude to calculate the transformation matrix J(η2). This attitude
estimation method, which relies on filtered acceleration and horizontal magnetic field data,
is especially effective for underwater vehicles. The most influential factor affecting NECF is
magnetic distortion, which arises from hard and soft iron effects as well as non-horizontal
vibrations caused by hydrodynamics, resulting in fluctuating inclined planar magnetic
field. To address this, we apply the random sample consensus (RANSAC) algorithm [64]
during the magnetic data plane fitting phase to eliminate outliers.

Assuming reliable η2 is available, we use the backward Euler discrete integration
expressed in Equation (25) as DR method. Alternative methods, such as trapezoidal
integration or Simpson’s rule, are also viable. The optimal method should be chosen by
balancing computational efficiency and precision.

ηk = ηk−1 + J(η2)νk−1 × dt (25)

J(η2) is identical to J(η) in Equation (4) since J(η) solely depends on attitude. How-
ever, according to Equation (8), we don’t need ψ, which allows us to reduce the LSTM input
from 18 to 14.
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5. Simulation Evaluation and Experiment Setup
The proposed EKF identification approach and LSTM architecture are both tested and

compared with the previously designed 6-DoF numerical model of the AUV shark. EKF and
LSTM utilize different datasets generated by substituting simulation τ into Equation (14),
with the 4th-RK integration method used to solve the system state space ordinary differ-
ential equation. In the LSTM dataset, the amplitude and period of each input variable
change with every sample to broaden the sampled state space. Notably, the AUV shark is
an underactuated vehicle, allowing control in only 4-DoF, which means we deliberately
minimize the lateral force Y and vertical moment M. However, this does not imply that the
vehicle should not move in all degrees of freedom, on the contrary, we encourage as many
maneuvering situations as possible. Because of limited motility, the derived datasets lack
certain active motion characteristics, leading to non-negligible misalignment in v, y, q, and
θ sometimes. Although this issue can be mitigated by introducing observable additional
current disturbances, this method is not discussed in this article. The validation of our
study depends on the sensors installed on AUV-Shark, with their specifications outlined
in Table 3. These sensors are synchronized with the update rate of DVL, operating at
approximately 10 Hz, corresponding to the bottom track altitude.

Table 3. Sensor specification of AUV shark.

Sensor Measurement Precision Update Rate

Xsens MTi-G-710 attitude R/P: 0.2◦ RMS
Y: 0.8◦ RMS 400 Hz

StarNeto HG-98S FOG yaw rate 0.02◦/h 400 Hz

Water Linked A125 DVL velocity ±1.01% ± 0.1% 2–15 Hz

MS5837-30BA pressure sensor depth ±200 mbar 400 Hz

5.1. Model Performance

Given the high cost of underwater operating systems, it is crucial to avoid unnecessary
losses and enhance the accuracy of predicting the motion state of underwater vehicles. This
necessitates a dynamic model that closely reflects actual physical characteristics. There
are various physical models for underwater vehicles based on different assumptions,
such as the Nomoto model, Whitcomb–McFarland model [27], Gertler–Hagen model, and
Fedyaevsky–Sobolev (FS) model [50]. This paper focuses on analyzing and comparing
the proposed port/starboard model with the second-order FS hydrodynamic model. The
FS model, based on three-plane symmetry, is a commonly used model that requires only
eighteen hydrodynamic parameters, including six acceleration terms and twelve damping
terms, all of which are distributed along the diagonal of the parameter matrix.

The hydrodynamic parameters derived from CFD simulations and empirical formu-
las can be applied to Equation (14) to develop models that adhere to these simplified
constraints. By employing 4th-RK, the model’s stability and dynamic behavior can be
verified. As illustrated in Figure 4, both systems stabilize within 15 s under the initial
conditions [νT

0 , ηT
0 ]

T = [1, 0.3, 1, 50, 50, 30, 0, 0, 0, 20, 20, 20]T , without accounting for external
disturbances such as currents, waves, and wind.
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Figure 4. Six-DoF nonlinear coupled model simulation result.

The comparison between the two models reveals significant differences. The weakly
coupled model, based on the three-plane symmetry assumption, differs markedly from the
strongly coupled model proposed in this paper. For instance, in the x-direction displace-
ment, the rapid decline of the strongly coupled model slows down after t = 0.5. This is
because the negative angular rate q and positive depth speed w at this moment in the AUV
simulation model cause the velocity u to have a changing component due to CA and J(η).
When combined with the damping matrix D(ν), this leads to complex coupling effects.
However, this critical phenomenon is not captured in the weakly coupled FS model, which
lacks sufficient coupling effects to account for the relationships between different DoF,
thereby missing the actual motion changes along the x-direction. Similar situations can
also be observed in the depth turning point at t = 5.6, caused by pitch and heave coupling,
and oscillatory behavior in pitch and yaw directions due to off-diagonal hydrodynamic
parameters.

Hence, the strongly coupled model, which assumes only port/starboard symmetry,
better captures the actual motion coupling dynamics and provides more valuable simula-
tion data. In contrast, weakly coupled models like the FS model have greater errors. The
simulation results closely match actual experimental phenomena, particularly in surge,
heave, and heading directions, accurately reflecting the dynamic characteristics of the
underwater robot in a controlled environment.

5.2. EKF Hydrodynamic Parameters Identification

Achieving precise accuracy for all damping terms can be challenging. To facilitate EKF
convergence, we implemented phases involving one or two movements lasting around
20 s each. Without time constraints for offline computation, we set the total sampling
duration to 190 s. The EKF-identified results are depicted in Figure 5 and summarized in
Table 4. In most estimations, the EKF maintains relatively small absolute error and exhibits
high reliability in identifying hydrodynamic parameters compared to CFD results. This
enables experimental tests using EKF-identified parameters instead of traditional towing
tank measurements, significantly reducing time and cost. Additionally, EKF-derived linear
velocity can train the LSTM model and access sensor data.
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Figure 5. Extended Kalman Filter (EKF)-estimated hydrodynamic coefficients. Disregard parameters
near zero; certain coefficients associated with sway velocity fail to converge initially due to model
properties.

Table 4. Error analysis of EKF-predicted hydrodynamic damping parameters.

Coefficient
Value

Percentage of SSE RMSE
CFD EKF

Xu −20.4 −20.424 0.116 2.038
Xu|u| −18.2 −18.233 0.180 0.989

Yv −13.51 −13.735 1.663 0.433
Yv|v| −34.25 −32.597 4.828 3.521
Kv 0 0.010 / /
Nv 4.31 4.212 2.263 0.524

Nv|v| 2.14 1.893 11.554 0.737
Zw −42.88 −41.775 2.577 0.737

Zw|w| −87.33 −89.391 2.360 5.199
Mw −12.41 −12.508 0.790 1.103
Yp 0.1 0.101 1.171 0.005
Kp −17.08 −17.051 0.170 1.697

Kp|p| 0 0.702 / /
Np 0.01 0.012 15.967 1.480
Zq −17.08 −16.316 4.471 3.528
Mq −6.03 −5.960 1.156 0.740

Mq|q| 0 −0.208 / /
Yr −9.39 −9.658 2.853 6.335

Yr|r| 0.15 0.146 2.516 0.015
Kr 0 −0.015 / /
Nr −1.55 −1.620 4.547 2.239

Nr|r| −8.24 −7.743 6.033 6.645
Yv|r| 111.87 109.690 1.949 1.994/
Yr|v| 0 0.006 / /
Nv|r| −56.88 −54.341 4.463 2.867
Nr|v| 0 0.654 / /

Analysis of the EKF identification results reveals major errors in the hydrodynamic pa-
rameters associated with lateral velocity v and yaw rate r. These errors predominantly arise
from uncertainties regarding the sign of the parameters rather than values. Notably, when
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different hydrodynamic parameters affecting the same DoF exhibit opposite signs, their
respective impacts on the system’s dynamic characteristics contradict each other, exacerbat-
ing the nonlinear coupling between the v and r DoF in underwater vehicle. Despite efforts
to minimize prediction errors, the EKF algorithm often struggles to simultaneously track
all converging factors, leading to substantial deviations or even divergence in the identified
hydrodynamic parameters. Furthermore, this challenge is particularly pronounced for
hydrodynamic parameters approaching zero. Leveraging both model outputs and sensor
measurements, the Kalman filter enables underwater vehicle to compensate for multiple
sensor data, predict unknown variables, and impose constraints. Currently, apart from
Nv|v|, most hydrodynamic parameters exhibit promising convergence trends, converging
to within 10% steady-state error after appropriate adjustments to the process covariance
matrix Q. Parameters such as Xu, Xu|u|, and Kp demonstrate rapid convergence, minimal
error, and negligible oscillations, indicating less coupling. In contrast, parameters show-
ing slow convergence, pronounced oscillations, and fluctuating errors suggest significant
internal coupling and pose challenges for convergence. Importantly, some convergence
outcomes of the system identification method based on the Kalman filter are heavily influ-
enced by the Q matrix, for which there is no universally applicable determination method.
During sensitivity analysis, sway and yaw-related damping coefficients were found to be
more sensitive than other DoF. Specifically, coefficients such as Yr, Yr|r|, Yv|r|, Nr|r|, and Nv|r|
are difficult to match to their true values due to their sensitivity to velocity changes, covari-
ance matrix variations, and complex internal coupling effects. To enhance the accuracy of
these parameters, their initial values were set close to known values, and the proportion of
single-DoF maneuvering data in the samples was increased.

5.3. LSTM Model Validation

During training, we use a batch size of 1 for independent gradient calculation and
parameter updates, theoretically supporting online identification. The LSTM and FC layer
weights are initialized with the Glorot uniform initializer, and biases are set to zero. We
employ the Adam optimizer to speed up convergence, training for 500 epochs with a
learning rate of 0.001 and decay of 0.0001 to minimize the mean squared error (MSE) loss
function. Data is pre-scaled to the [−1, 1] range and shuffled before each epoch to reduce
variance. The model’s performance is validated after each epoch using the validation set.
Training is conducted on a Linux PC with a 4-core Intel Core i7-4790K CPU and an NVIDIA
GTX 1080Ti GPU using TensorFlow and the Keras library.

The predicted 6-DoF velocity information from the proposed deep LSTM network
architecture is illustrated in Figure 6. The model’s accuracy and robustness are further
demonstrated through the normalized error distribution of 40,000 predicted data points, as
shown in Figure 7. Most velocity prediction errors are centered around zero, with larger
errors being relatively rare. This indicates that the LSTM effectively captures the complex
dynamics of underwater vehicle, showing great promise for state prediction in autonomous
underwater vehicles. However, it is important to note that the current model, which
trained on the existing dataset, exhibits major errors in angular velocity predictions due
to a lack of corresponding features. Despite adhering to the experimental design process
for system identification of underwater vehicle, the model still struggles with angular
velocity accuracy. Angular velocity predictions contain more outliers than linear velocity
predictions. Inaccurate angular rate predictions by the LSTM can significantly impact the
accuracy of dead reckoning, leading to quicker deviations from the true position during
long-term complex missions.
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Figure 6. LSTM prediction results of 6-DoF velocity.

Figure 7. Error normal distribution of test dataset.

While pure LSTM-based dead reckoning provides sufficient short-term accuracy,
it cannot compensate for the unbounded errors introduced by continuous integration.
When LSTM-predicted angular velocities are used in J(η2) calculations, the predictions
begin to diverge around 400 s, eventually resulting in significant errors, aligning with
our analysis. A similar issue is highlighted in [65], where using only the LSTM output
for navigation estimation causes rapid localization error growth during rotation on the
horizontal plane. This error accumulation becomes significant during long-duration and
long-distance operations, especially with frequent steering maneuvers. Therefore, this
paper seeks a solution to mitigate integration errors in pure LSTM-based methods. To
improve prediction precision, one solution is to increase the amount of training data
related to specific maneuvering tests. However, this approach could burden computational
efficiency. Therefore, we opted to use NECF to estimate attitude directly. The LSTM-
predicted ν2 can still serve as a backup metric in case of sensor failure or overwhelming
magnetic distortion. Additionally, when combined with the EKF state space equation, the
LSTM can be viewed as another reliable data source for velocity prediction.

To provide NECF attitude estimation for DR, we implement a test using the Xsens MTi-
G-710 IMU. To evaluate the performance of attitude estimation in simulated underwater
operations, we rotated the x-axis of a magnetometer through a full circle, starting and
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ending aligned with the magnetic north, on a plane with non-horizontal rotations less than
15◦. As shown in Figure 8, the estimated yaw angle matches the true value, with deviations
toward magnetic north at the beginning and end mostly under 0.25◦.
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Figure 8. Schematics of Nonlinear Explicit Complementary Filter (NECF) yaw estimation. (a) Esti-
mates of NECF, IMU, and magnetic data about yaw angle in true north frame (NED). (b) Yaw error
comparison.

Notably, the magnetic declination has an uncertainty of 0.3◦ according to the World
Magnetic Model (WMM, 2019–2024). The maximum error occurs after a rapid turn of the
magnetometer, caused by the filter’s inherent delay. Designed for stability and robustness,
the filter responds slowly to rapid changes. Despite of this, the tested average error of
1.13◦ is sufficient for most underwater operations where the vehicle typically moves slowly
and steadily. The applied filter demonstrates superior corrective ability compared to the
Xsens magnetic field filter. Both filters lag behind the magnetic field during rapid changes,
but the applied filter quickly corrects the error based on a pre-designed regulator that
relates the estimated direction to the fixed magnetic north. In contrast, the IMU filter
shows an irreversible bias after a significant jump of 7.92◦. When the vehicle returns to the
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original position, the IMU’s filter maintains a bias of 2.7◦ with a rising trend, while NECF
corrects the error to near zero as soon as the rotation rate drops to a manageable range.
This indicates that the applied filter has a superior ability to correct errors caused by swift
turns and magnetic distortion.

For the preliminary validation of the NECF-aided LSTM-based dead reckoning
method, we assume the attitude angles are observable and accurate. The position es-
timation results, using Equations (24) and (25), are shown in Figure 9. The predicted
position closely matches the true path. The box plot illustrates error distributions for each
specific direction, with low median errors across all three axes, signifying precise dead
reckoning. Compact box structures indicate concentrated errors with narrow whiskers,
highlighting the accuracy of position estimation. This study has validated the feasibility
of a DR method that does not rely on positioning sensors like DVL, sonar, or GPS, using
the LSTM system identification algorithm, IMU, and a magnetometer. In an undisturbed
simulation environment, the system successfully maintained position prediction errors
within 1 m across three degrees of freedom over a continuous operation of 2000 s. The
predicted positions closely match the actual positions, with the largest errors typically
occurring in the surge and sway directions. Depth errors are usually minimal compared to
the overall depth change and can be considered negligible with depth gauge compensation.
Errors in x and y are primarily caused by inaccuracies in yaw angle ψ and the surge and
sway velocities u and v. Over extended periods, position prediction may diverge due to
fluctuations in these variables.

(a)

(b)

Figure 9. LSTM-based AUV shark position prediction result. (a) AUV 3D trajectory. (b) Position error
box diagram.
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Velocity and attitude estimation are critical for underwater navigation via dead reck-
oning, particularly when positioning sensors are malfunction or unavailable. The NECF
method employs acceleration filtering, magnetometer calibration, correction term optimiza-
tion, and dynamic weighting to enhance attitude estimation performance cost-effectively.
Experiments demonstrate that NECF outperforms Xsens in accuracy, offering superior
resistance to magnetic interference and robustness. NECF resolves angle divergence in
LSTM-based velocity prediction models for passive localization, validating the effectiveness
of the proposed NECF-aided LSTM dead reckoning method for navigation.

6. Conclusions
This study provides a comprehensive solution to the challenges of system identifica-

tion and navigation for underwater vehicles by integrating advanced dynamic modeling,
parameter identification, data-driven system identification, and attitude estimation-based
navigation techniques. A novel 6-DoF fully coupled nonlinear dynamic model is derived
from the Fedyaevsky–Sobolev framework, incorporates cross-flow drag effects in sway
and yaw while considering port-starboard symmetry. Unlike standard models, it avoids
relying on low-precision assumptions and accurately captures the coupled dynamics of un-
deractuated, finless, and low-speed AUVs, showing improved stability and controllability.
Validation is carried out using benchmark CFD simulation data. A model-based EKF hydro-
dynamic parameter identification method is developed, enabling estimation of all damping
coefficients using sensor measurements without specialized equipment. This approach en-
hances stability and accuracy by extracting system state variables from the augmented state
vector while excluding horizontal positions prone to significant errors, thus avoiding diver-
gence in parameter estimation. This approach provides a reliable validation framework
for CFD simulations. Additionally, a non-parametric deep LSTM network is introduced
for navigation without DVL. By focusing on input–output relationships, the LSTM model
eliminates the need for complex hydrodynamics and ideal assumptions. A generalized
dataset construction method is proposed to capture the unique coupling and nonlinear
dynamics of underwater vehicles. This method integrates various experimental scenarios,
including acceleration-deceleration, turning, spiral, zigzag, sinusoidal, and 3-2-1-1 maneu-
vers, ensuring effective dataset coverage even with limited samples. To address angular
velocity error accumulation and position divergence in LSTM-based dead reckoning, an
NECF-aided navigation method is proposed. By integrating IMU, magnetometer, and the
LSTM model, this method enables robust attitude estimation and passive localization in
GPS-denied or sensor failure conditions, achieving favorable accuracy over 2000 s. This
paper highlights the potential for parameter identification without reliance on towing tank,
planar motion mechanism, and rotating arm experiments, as well as navigation without
localization sensors, which are particularly beneficial for small underwater vehicles with
extended mission durations and demanding maneuvering needs. Future works will focus
on online applications of LSTM to adjust estimated models adaptively, and integrate EKF,
LSTM, and NECF for a reliable navigation system without sensor reliance.
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