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Abstract: The technologically advanced learning ocean system—wave energy converter
(TALOS-WEC) project addresses the urgent need for sustainable and efficient energy solu-
tions by leveraging the vast potential of wave energy. This project presents a pioneering
approach to wave energy capture through its unique multi-axis and omnidirectional point
absorber design. Featuring a fully enclosed power take-off (PTO) system, the TALOS-WEC
harnesses energy across six degrees of freedom (DoFs) using an innovative internal reaction
mass (IRM) mechanism. This configuration enables efficient energy extraction from the
relative motion between the IRM and the hull, aiming for energy conversion efficiencies
ranging between 75–80% under optimal conditions, while ensuring enhanced durability
in harsh marine environments. The system’s adaptability is reflected in its versatile geo-
metric configurations, including triangular, octagonal, and circular designs, customised for
diverse marine conditions. Developed at Lancaster University, UK, and supported by inter-
national collaborations, the TALOS-WEC project emphasises cutting-edge advancements
in hydrodynamic modelling, geometric optimisation, and control systems. Computational
methodologies leverage hybrid frequency-time domain models and advanced panel codes
(WAMIT, HAMS, and NEMOH) to address non-linearities in the PTO system, ensuring
precise simulations and optimal performance. Structured work packages (WPs) guide the
project, addressing critical aspects such as energy capture optimisation, reliability enhance-
ment, and cost-effectiveness through innovative monitoring and control strategies. This
paper provides a comprehensive overview of the TALOS-WEC, detailing its conceptual
design, development, and validation. Findings demonstrate TALOS’s potential to achieve
scalable, efficient, and robust wave energy conversion, contributing to the broader advance-
ment of renewable energy technologies. The results underscore the TALOS-WEC’s role as a
cutting-edge solution for harnessing oceanic energy resources, offering perspectives into
its commercial viability and future scalability.

Keywords: technologically advanced learning ocean system (TALOS); wave energy con-
verter (WEC); power take-off (PTO); multi-axis point absorber; hydraulic cylinders; condi-
tion monitoring

1. Introduction
The global energy demand is projected to rise by 20–30% by 2040, underscoring the

urgent need to transition from fossil fuels, which currently account for 78.5% of global
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energy consumption, to renewable energy sources (RES), which contribute only 12.6% [1–6].
Ocean energy is a promising type of RES due to its abundance, predictability, and envi-
ronmental benefits. Systems harnessing power from waves, tides, currents, and thermal
gradients can enhance energy security and sustainability [7–11].

Wave energy, in particular, stands out for its high energy density, 24/7 availability, and
greater predictability compared to wind [12–14]. With a global potential of 32,000 TWh/year
and approximately 2 TW of extractable power, wave energy has the capacity to meet a
substantial share of global energy demand [15]. In Europe, wave energy resources, such
as those off the coasts of Ireland and Scotland ( 70 kW/m), could generate 50 TWh/year,
covering 16% of the UK’s annual electricity consumption [16,17].

Wave energy converters (WECs) are essential for extracting this energy and come in
various designs, such as point absorbers, oscillating water columns, and overtopping de-
vices, deployed across onshore, nearshore, and offshore locations [18,19]. The development
of commercial systems like the Islay LIMPET, the first grid-connected wave energy device
in the UK, highlights progress in this field [20,21].

Despite their potential, WECs face significant challenges, including high costs, low
conversion efficiency, and vulnerability to extreme weather [22,23]. To address these issues,
innovative designs are essential to enhance efficiency, reliability, and survivability. Over
100 WEC designs have been proposed, with some achieving grid connection and proving
feasibility after extensive testing. Research efforts focus on areas such as hydrodynamic
performance [24], power take-off (PTO) optimisation [25–28], and advancements in control
strategies [29,30]. The point absorber WEC, characterised by its small size relative to the
wavelength, has been widely studied. Examples include Lancaster University’s PS Frog [31],
Oregon Limited’s multi-resonant chamber [32], and prototypes from Carnegie Wave Energy
Limited. Other notable designs include attenuators, oscillating wave surge converters,
oscillating water columns, and terminators. However, most of these are single-axis systems,
extracting energy from one direction of motion [33,34]. This inherently limits their energy
capture efficiency, as wave motion spans six degrees of freedom (DoFs), including heave,
pitch, surge, roll, sway, and yaw.

In response, multi-axis WECs have garnered interest for their ability to utilise mul-
tiple motion modes, such as surge, heave, and pitch, to enhance energy extraction ef-
ficiency [35,36]. Despite their promise, research and development on multi-axis WECs
remain limited compared to single-axis designs due to the complexities of modelling, con-
trol, and integration [33,37]. A notable example of a multi-axis WEC is Pelamis, featuring a
snake-like structure with interconnected tubes linked by hydraulic rams [35]. The device
aligns with wave propagation, and the relative motion between its segments drives the
hydraulic rams to generate electricity. Deployed off the coasts of Scotland and Portugal,
Pelamis successfully supplied electricity to national grids. However, financial and opera-
tional challenges ultimately halted its development when the company became insolvent
in 2015.

To the best knowledge of the authors at the time of authorship, the TALOS-WEC is
the only existing multi-axis and omnidirectional WEC. It builds on earlier work conducted
at Lancaster University, such as the PS Frog, a device designed to capture energy through
pitching and surging motions, and subsequent developments like the GAIA multi-axis
concept. Elements of the PS Frog were later adopted by École Centrale de Nantes (ECN)
in their SeaREV device, which focused solely on pitching motion [32,38,39]. The TALOS-
WEC, however, advances the field by incorporating a multi-axis PTO system capable of
harnessing energy across all six degrees of freedom. This system consists of a heavy mass
ball housed within the hull, connected via springs and hydraulic cylinders (see Figure 1).
As waves induce motion in the hull, significant relative movement occurs between the ball
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and the hull, driving the hydraulic cylinders to pump fluid through a hydraulic circuit to
generate electricity. This fully enclosed design not only maximises energy absorption but
also enhances durability in harsh marine environments, a feature shared by other advanced
enclosed WECs like the Lancaster University PS Frog and SeaREV.

Figure 1. TALOS six DoFs mechanism (Reproduced with permission from [40]. 2024, Wu, Y., et al.).

The TALOS-WEC leverages a multi-axis design and a fully enclosed PTO system
to maximise energy absorption across six degrees of freedom, ensuring durability in
harsh marine environments. Developed at Lancaster University, UK, it adopts a novel
point absorber-style design. Its PTO system is centred around a heavy internal reaction
mass (IRM), strategically housed within the hull and supported by spring dampers. This
configuration enables TALOS to capture energy from the relative motion between the IRM
and the hull, which remains stable under wave excitations. This versatility allows TALOS
to extract energy from multiple motion modes, such as surge, heave, and pitch, significantly
enhancing overall efficiency. The fully enclosed PTO system protects moving parts from the
corrosive marine environment, making TALOS a robust solution for long-term deployment.

The TALOS project, also known as NHP-WEC, was selected by UK Research and
Innovation (UKRI) as part of efforts to advance wave energy technologies and harness
oceanic energy resources. The project emphasises refining the TALOS design and PTO
system while driving innovations in control systems, monitoring, and resource forecast-
ing. A collaboration in 2023 between Lancaster University and the National Renewable
Energy Laboratory (NREL), under the U.S. Department of Energy’s TEAMER programme,
further supported the development of numerical models to enhance the system’s reliabil-
ity and performance. Figure 2 illustrates the various configurations of the TALOS-WEC,
highlighting its structural adaptability. The models include triangular, octagonal, and
circular configurations, showcasing the system’s versatility in accommodating diverse
marine environments.

One of the primary challenges of the TALOS-WEC is modelling the flexible connections
between the hull and the IRM, which introduce significant non-linearities in the PTO
system. Advanced computational techniques, including an in-house hybrid frequency-time
domain modelling approach, are employed to address these complexities. Hydrodynamic
parameters are calculated using panel codes such as WAMIT, HAMS, and NEMOH, with
results transformed into Cummins’ time-domain equations for precise simulations [41,42].
This approach ensures optimal performance across diverse wave conditions, reinforcing
TALOS’s role as a cutting-edge wave energy solution.
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(a) Circular (b) Octagonal

(c) Triangular

Figure 2. Various TALOS models.

The TALOS-WEC project tackles critical challenges through structured work packages
(WPs). WP1 focuses on concept development, covering hydrodynamic studies, geometric
optimisation, and PTO design to enhance energy capture and structural integrity [43–48].
WP2 emphasises reliability and control, integrating smart sensors, artificial intelligence (AI)-
based predictive maintenance, and adaptive control systems to optimise performance under
variable sea states [40,49–53]. WP3 addresses resource evaluation, including mapping wave
energy potential, testing efficiency, and optimising array layouts for maximum energy
capture [40,54]. Lastly, WP4 involves validation and cost analysis, ensuring commercial
viability through real-world testing, scalability studies, and levelised cost of energy (LCOE)
assessments [55,56].

The main purpose of this paper is to provide a comprehensive overview of the TALOS-
WEC project, highlighting its innovative design, advanced hydrodynamic modelling, and
multi-axis energy extraction capabilities. Specifically, the paper aims to detail the devel-
opment and validation of the system, address the challenges of wave energy conversion,
and present the outcomes of its structured WPs. These efforts underline the system’s
potential as a scalable and efficient solution for renewable energy production, contributing
to advancements in sustainable ocean energy technologies.

The remainder of this paper is organised as follows: Section 2 explores WPs detailing
the TALOS-WEC’s conceptual design, validation, and optimisation. The details of the four
WPs are presented in Sections 3–6. Key findings and results are presented in Section 7.
Finally, Sections 8 and 9 discuss the broader implications of the TALOS-WEC within the
renewable energy sector, main challenges faced, and future directions.

2. Work Packages (WPs)
The TALOS-WEC project adopts a pioneering approach to wave energy conversion, ad-

dressing critical challenges in efficiency, survivability, and economic viability. Its structured
WPs encompass the entire development process, from conceptual design to deployment
and validation, ensuring a comprehensive strategy for advancing wave energy technol-
ogy. Each WP targets specific objectives, integrating advanced engineering solutions and
complementary technologies to achieve project goals.
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WP1 focuses on concept development, combining experimental and numerical hydro-
dynamic studies, geometric optimisation, and PTO system design. These efforts define
hydrodynamic parameters critical for energy capture, balance efficiency with structural
integrity, and create a robust PTO capable of delivering reliable power output [43–48].

WP2 addresses survivability, reliability, and control to ensure operational efficiency
in harsh marine environments. Key tasks include integrating smart sensors for real-time
health monitoring, deploying AI algorithms for predictive maintenance, and implementing
adaptive control systems to optimise energy capture under variable wave conditions.
Collectively, these measures enhance system reliability, minimise downtime, and extend
the device’s operational lifespan [40,49–53].

WP3 centres on sea state forecasting and resource evaluation, crucial for identifying
high-energy deployment zones and assessing WEC performance in controlled environ-
ments. This includes resource characterisation to map wave energy potential, efficiency
testing in wave tanks to establish performance benchmarks, and studying array effects to
optimise layouts for multiple WECs [40,54].

Finally, WP4 emphasises validation and cost analysis, involving real-world perfor-
mance testing, scalability studies for WEC arrays, and a comprehensive levelised cost
of energy (LCOE) assessment. These efforts aim to ensure the commercial viability and
competitiveness of the TALOS-WEC system [55,56].

Table 1 provides a detailed breakdown of the WPs, their objectives, and expected
outcomes.

Table 1. Overview of TALOS-WEC work packages (WPs), objectives, and outcomes.

WP & Objective Sub-Package Ref. Description Outcome

WP1: Concept
Development
Establish the
foundational design
and concept of the
WEC.

WP1.1—
Experimental and
Numerical Hydrody-
namics

[43,45–48] Study WEC interaction with
wave dynamics through wave
tank testing and CFD modelling.

Define hydrodynamic parame-
ters for optimal energy capture.

WP1.2—Geometric
Optimisation

[44] Refine the WEC’s geometry us-
ing simulation and testing.

Achieve a balance between en-
ergy efficiency and structural in-
tegrity.

WP1.3—PTO Design
and Optimisation

[44] Design an efficient PTO system. A robust PTO design ensuring
reliable power output.

WP2: Survivability,
Reliability, and
Control
Ensure operational
reliability in harsh
marine environments.

WP2.1—Smart Sen-
sors

N/A Integrate sensors for real-time
monitoring.

Comprehensive data on health
and environmental performance.

WP2.2—Condition
Monitoring

[40,51] Use AI algorithms to assess sys-
tem health and predict mainte-
nance needs.

Minimised downtime and ex-
tended lifespan.

WP2.3—Predictive
Maintenance

[40,51] Develop models to anticipate
failures.

Improved reliability and re-
duced costs.

WP2.4— Optimised
Control

[49,50,52,
53]

Implement adaptive controls for
varying sea conditions.

Enhanced energy capture and
safe operation.

WP3: Sea State
Forecasting and
Resource Evaluation
Analyse and predict
wave resources for
optimised deployment.

WP3.1—Resource
Characterisation

[40,54] Map wave energy potential in de-
ployment areas.

Identify high-energy zones for
WEC operation.

WP3.2—Efficiency
Testing

[54] Test WEC performance in wave
tanks.

Establish performance bench-
marks for marine conditions.

WP3.3—Array Effects N/A Study the interactions between
multiple WECs in arrays.

Optimise array layout to max-
imise energy capture.
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Table 1. Cont.

WP & Objective Sub-Package Ref. Description Outcome

WP4: Validation and
Cost Analysis
Validate performance
and assess economic
feasibility of the WEC.

WP4.1—Validation
and Demonstration

N/A Conduct real-world testing to
validate performance.

Verified data for commercialisa-
tion.

WP4.2—Array De-
ployment

N/A Test scalability of WEC arrays. Awarenesses into large-scale de-
ployment challenges.

WP4.3—LCOE As-
sessment

[55,56] Calculate the LCOE. Cost analysis to ensure commer-
cial competitiveness.

3. WP1: Concept Development
WP1 establishes the foundational design and concept of the TALOS-WEC by address-

ing critical aspects of system performance and design through three sub-packages. WP1.1
focuses on validating hydrodynamic models and studying wave–structure interactions via
laboratory experiments and numerical simulations. WP1.2 emphasizes geometric optimisa-
tion to enhance energy capture and hydrodynamic stability across varying wave conditions.
WP1.3 develops efficient PTO systems, ensuring alignment with the WEC’s hydrodynamic
and geometric configurations.

3.1. WP1.1—Experimental and Numerical Hydrodynamics

WP1.1 develops a comprehensive hydrodynamic framework for evaluating and opti-
mising the TALOS-WEC. It establishes the theoretical basis of hydrodynamic modelling,
including key equations, force components, and numerical approaches, and provides de-
tailed analyses of hydrodynamic coefficients critical to performance. Validation studies
using CFD results benchmark numerical tools, while additional intutions explore mooring
effects and power absorption trends.

3.1.1. Hydrodynamic Modelling Framework

The TALOS-WEC faces challenges from dynamic wave–structure interactions, requiring
optimisation of energy absorption, stability, and structural integrity in harsh marine environ-
ments [43,45]. Accurate hydrodynamic modelling is crucial for predicting system responses
to varying sea conditions, supporting the optimised design and operational strategies.

• Governing equations

The TALOS-WEC adopts a multibody configuration comprising a primary floater
(hull) and an internal reaction mass (sphere, also referred to as the ball) connected via a
PTO system. These components are dynamically coupled through the PTO system and
the restoring spring force, enabling energy extraction from their relative motion. The
dynamics of each component are governed by distinct yet interdependent equations, as
described below.

Dynamics of the Hull: The hull’s motion is influenced by wave-induced forces, hydro-
dynamic effects, and the PTO system. Its dynamic response is governed by the Cummins
time-domain equation [43,45]:

(Mhull + m∞,hull)ẍhull(t) +
∫ t

0
B(t − τ)ẋhull(τ) dτ + Cxhull(t) + Kxhull(t)

= Fexc(t) + FPTO,res(t),
(1)

where Mhull represents the structural mass of the hull (in kg), m∞,hull accounts for the
added mass due to hydrodynamic effects at infinite frequency, and B(t − τ) is the radiation
damping kernel that captures energy dissipation through radiated waves. xhull(t), ẋhull(t),
and ẍhull(t) represent the displacement (location), velocity, and acceleration of the hull as
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functions of time t, respectively. The coefficient C describes the hydrostatic restoring forces
acting on the hull, while K is the mooring stiffness coefficient providing stability. The terms
Fexc(t) and FPTOres(t) represent the wave excitation force caused by incident waves and
resistive force generated by the PTO system, respectively. Fexc(t)is expressed as follows:

Fexc(t) =
∫ t

0
Kexc(t − τ)η(τ) dτ, (2)

where Kexc(t) is the excitation impulse response function (IRF), and η(τ) represents wave
elevation. For the k-th degree of freedom (e.g., surge, heave, or pitch), the wave excitation
force, Fexc,k(t), can be further expressed in terms of the response amplitude operators
(RAOs) as follows:

Fexc,k(t) = RAOk · Aw · Fwave,k(t), (3)

where RAOk is the RAO for the k-th mode, Aw is the wave amplitude, and Fwave,k(t)
represents the wave-induced force specific to that degree of freedom. RAOs provide a
critical link between wave-induced forces and the dynamic response of the TALOS-WEC,
enabling a deeper understanding of system performance. RAOs are defined as the ratio of
the displacement amplitude of a specific motion mode ξk to the wave amplitude Aw:

RAOk =
ξk
Aw

. (4)

The resistive force generated by the PTO system, FPTOres(t), extracts energy from the
relative motion between the hull and the internal reaction mass and is given by [57]:

FPTOres(t) = −BPTO · (ẋball(t)− ẋhull(t)) = −BPTO · Vrel, (5)

where BPTO is the PTO damping coefficient, and Vrel represents the relative velocity between
the floater and the internal reaction mass. The variables xball denotes the position of the ball.

Under realistic conditions, the hull’s dynamics are influenced by additional forces
arising from buoyancy, drag, friction, viscous damping, mooring forces, nonlinear hydro-
dynamics, and the restoring spring force. The extended governing equation for the hull’s
motion is given by [49]:

mhull ẍhull(t) = Fexc(t) + Fhs(t)− Frad(t)− Fbuoy(t)− Fdrag(t)− Ffric(t)− Fv(t)− Fm(t)+

Fnh(t) + Frest(t)− FPTOres (t), (6)

where Fv, Fm, and Fnh are viscous damping force, mooring force, and nonlinear hydrody-
namic force, respectively. Fhs(t) represents the hydrostatic restoring force, expressed as
follows:

Fhs = Kh∆q, (7)

where Kh is the hydrostatic stiffness matrix, and ∆q is the displacement. The radiation force
Frad(t) accounts for energy radiated through outgoing waves and is given by [58]:

Frad(t) =
∫ t

0
Krad(t − τ)ẋ(τ) dτ, (8)

where Krad(t) is the radiation IRF, and ẋ(τ) is the velocity of the structure. Additional forces
include Fv, the viscous damping force, Fm, the mooring force, and Fnh, which represents the
nonlinear hydrodynamic force acting on the system. Fbuoy(t) represents buoyancy force
acting on the hull, expressed as [49]:
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Fbuoy = πρgR2
b

(
1 − |xhull|xhull

3R2
b

)
xhull, (9)

where ρ is the fluid density (approximately 1025 kg/m3), g is the gravitational acceleration,
and Rb represents the characteristic radius of the hull.

Fdrag(t) is the drag force due to relative motion with the fluid, given by

Fdrag = 0.5ρAwCd|ẋhull − v f |(ẋhull − v f ), (10)

where Aw is the wetted area, Cd is the drag coefficient, and v f is the fluid velocity.
Frest(t) represents the restoring Spring Force and is given by

Frest(t) = KPTO · (xball(t)− xhull(t)), (11)

where KPTO is the spring stiffness coefficient between the ball and the hull. FPTOmech(t)
refers to the mechanical-hydraulic PTO force acting on the ball, given by

Lastly, ffric(t) represents the friction force, expressed as follows:

Ffric = Fnµd tanh(αẋhull) + µs ẋhull + Fn(µs − µd)e−(|ẋhull|/vs)2
tanh(αẋhull), (12)

where Fn is the normal force, µd and µs are the dynamic and static friction coefficients,
respectively, α is a scaling parameter, and vs is a velocity threshold.

Dynamics of the Ball: The internal reaction mass (ball) is connected to the hull via
a spring and the PTO system. Its motion is influenced by the relative displacement and
velocity between the ball and the hull. The equation governing the ball’s dynamics is

Mball ẍball(t) = −Frest(t)− FPTOres(t)− FPTOmech(t), (13)

where Mball is the mass of the internal reaction mass (ball).

FPTOmech(t) = |PA − PB| · Acyl · sign(ẋball(t)− ẋhull(t)), (14)

where PA and PB are the pressures in the hydraulic cylinder chambers, Acyl is the piston
area, and the sign function ensures the force direction depends on the relative velocity.

The interactions between FPTOres , FPTOmech , and Frest allow efficient harvesting of energy
from the relative motion.

The governing equations include boundary conditions to enhance simulation realism,
applying dynamic and kinematic constraints at the free surface, linking velocity potential
to structural motion for fluid–structure interactions, and enforcing a no-flow condition at
the seabed to reflect real-world environments [44].

• Hydrodynamic coefficients

Hydrodynamic coefficients are crucial in defining the interaction between the WEC and
the surrounding fluid, governing added mass, damping, and excitation forces. Added mass
(Aij) quantifies increased inertia from water movement, with TALOS showing the highest
values in heave (4.2 · 106 N/m) due to strong vertical interaction. Radiation Damping
(Bij) capture energy dissipation, also highest in heave (7.8 · 104 N/m), emphasising the
importance of radiation effects. Wave excitation forces (Fexc) drive structural motion, with
heave experiencing the largest forces (8.6 · 105 N/m), highlighting TALOS’s efficiency in
vertical energy capture [59].

Derived from potential flow theory, the velocity potential ϕ satisfies Laplace’s equation
∇2ϕ = 0, decomposed into components for incident (ϕI), diffraction (ϕD), and radiation
(ϕR) interactions. The TALOS-WEC’s hydrodynamic behaviour was analysed across six
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degrees of freedom (surge, sway, heave, roll, pitch, yaw), with specific motions influenced
by geometry, mooring systems, and PTO configuration [60].

Table 2 summarises the hydrodynamic coefficients across all six degrees of freedom
(shown in Figure 1). Notable findings include higher added mass in sway compared to
surge due to lateral wave interactions, significant radiation damping in roll stabilising rota-
tional motion, and sensitivity of sway, roll, and yaw to oblique wave angles, emphasising
dynamic coupling in multi-directional sea states.

Table 2. Hydrodynamic coefficients for TALOS-WEC across six degrees of freedom [43,45,46].

Coefficient Surge
(kg)

Sway
(kg)

Heave
(kg)

Roll
(kg·m2)

Pitch
(kg·m2)

Yaw
(kg·m2)

Added
Mass Aij

2.5 · 106 3.0 · 106 4.2 · 106 1.7 · 106 1.3 · 106 8.5 · 105

Coefficient Surge
(Ns/m)

Sway
(Ns/m)

Heave
(Ns/m)

Roll
(Nms/rad)

Pitch
(Nms/rad)

Yaw
(Nms/rad)

Damping
Bij

5.3 · 104 6.1 · 104 7.8 · 104 5.6 · 103 4.1 · 103 3.0 · 103

Coefficient Surge (N) Sway (N) Heave
(N)

Roll
(Nm)

Pitch
(Nm)

Yaw
(Nm)

Wave
Excitation
Force Fexc

1.1 · 105 1.3 · 105 8.6 · 105 4.0 · 104 3.7 · 104 2.8 · 104

• Frequency-domain and time-domain analyses

The frequency-dependent hydrodynamic coefficients and exciting forces for the
TALOS-WEC demonstrate distinct behaviours across surge, heave, and pitch motions.
Added mass in surge is higher at low frequencies due to larger fluid volumes engaged,
while heave exhibits a sharper decrease as oscillation frequency increases, reflecting reduced
fluid coupling. Radiation damping shows moderate values for surge and pronounced reso-
nance peaks for heave at intermediate frequencies, highlighting its sensitivity to oscillatory
behaviour. Excitation forces are most significant in surge and heave at low frequencies,
while pitch forces display more complex trends due to rotational dynamics.

The time-domain impulse response functions (IRFs) provide intuitions into transient
behaviours. Surge IRFs emphasize radiation damping and decay, heave IRFs highlight
vertical responses, and pitch IRFs capture rotational dynamics. Coupled interactions, such
as between surge and pitch, illustrate energy transfer across motion modes. These analyses
employ complementary computational methods to ensure robustness and consistency,
reflecting the system’s multi-modal interactions and dynamic responses [61,62].

3.1.2. Numerical Tools for Hydrodynamic Analysis

Hydrodynamic modelling of the TALOS-WEC utilises numerical tools to predict key
parameters, such as added mass, radiation damping, and wave excitation forces. This
study evaluates three boundary element method (BEM)-based tools: WAMIT, NEMOH,
and HAMS [63–65]. Each tool was chosen for its unique strengths in addressing specific
modelling challenges, such as handling thin structures, overlapping panels, and multi-
body dynamics.

These tools solve the velocity potential ϕ which satisfies Laplace’s equation (∇2ϕ = 0)
subject to boundary conditions defined by free surface interactions, seabed constraints, and
structure geometry.
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Table 3 summarises the functionalities of WAMIT, HAMS, and NEMOH, highlighting
their suitability for TALOS-WEC applications. While WAMIT excels in accuracy and
advanced capabilities, it is computationally intensive and costly. HAMS offers a balance
between precision and runtime efficiency, making it suitable for most TALOS applications.
NEMOH, as an open-source tool, is a cost-effective choice for initial studies but struggles
with complex configurations, such as overlapping panels and thin structures.

Table 3. Comparison of WAMIT, HAMS, and NEMOH functionalities [45,63–65].

Feature/Capability WAMIT HAMS NEMOH

Runtime (125 frequencies) 1395 s 1076 s 5620 s

Multi-core support Yes Yes No

Thin structures handling Effective Effective Limited

Overlapping panels Effective Effective Limited

Impulse response functions Yes Yes Yes

Irregular frequency removal Yes Yes No

RAO computation Yes Yes Limited

Accuracy (based on validation) High High Moderate

Mesh sensitivity Low Low High

Cost (Licensing/Usage) High Moderate Open-source

User interface Moderate
(command-
line)

Moderate
(command-
line)

Moderate (command-line
with MATLAB wrapper)

Applications for TALOS Excellent Excellent Adequate

• Validation and Accuracy of Numerical Tools

The numerical tools (i.e., WAMIT, HAMS, and NEMOH) were validated by comparing
key hydrodynamic parameters, such as added mass, radiation damping, and wave exci-
tation forces, for surge motion across various frequencies (Figure 3). WAMIT and HAMS
demonstrated consistent accuracy across all frequencies, effectively handling complex
geometries, while NEMOH showed reliability only at lower frequencies, with deviations
at higher frequencies due to its limitations in modelling overlapping panels and thin
structures [45].

(a) Added mass (b) Radiation damping (c) Wave excitation force

Figure 3. Hydrodynamic coefficients for surge motion of the TALOS device across various frequencies
using different numerical tools (i.e., WAMIT, HAMS, and NEMOH) (Reproduced with permission
from [45]. 2022, Sheng, W., et al.).

For sway motion, WAMIT and HAMS maintained robust accuracy, but NEMOH’s
reliability diminished at higher frequencies. Heave motion, critical for vertical energy
absorption, showed strong agreement between WAMIT and HAMS, whereas NEMOH
exhibited increasing deviations. Similarly, WAMIT and HAMS accurately predicted pitch
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motion, while NEMOH struggled with the complex rotational dynamics at higher frequen-
cies. For roll motion, WAMIT and HAMS effectively modelled dynamics across frequencies,
whereas NEMOH faced challenges due to its sensitivity to coupled interactions and geo-
metric intricacies.

3.1.3. Numerical Modelling

Numerical modelling is essential for assessing the dynamic behaviour of the TALOS-
WEC under varying wave excitations and PTO configurations. Numerical simulations
utilise WEC-Sim, which is an open-source tool developed in the MATLAB/Simulink
environment. WEC-Sim enables coupling between the hydrodynamic response of the
TALOS-WEC and the hydraulic PTO system for comprehensive system performance eval-
uation. Hydrodynamic coefficients (i.e., added mass, radiation damping, and excitation
forces) were pre-computed using linear potential flow solvers like WAMIT [47].

• Hydraulic PTO System Modelling

The hydraulic PTO comprises several key components: the hydraulic cylinder, which
serves as the core energy conversion device, transforms mechanical motion into hydraulic
power. Check valves ensure unidirectional fluid flow by rectifying hydraulic movement
for consistent operation. Hydraulic accumulators store pressurised fluid energy, stabilize
system dynamics, and regulate stiffness. The hydraulic motor converts pressurised fluid
into rotational mechanical energy, which the electric generator then transforms into electrical
power [66,67].

The hydraulic PTO system for the TALOS-WEC is designed with six symmetrically
distributed PTOs to balance forces and enhance energy transfer. The system has a total
power capacity of 2.4 MW, with each PTO unit capable of delivering 400 kW. It operates at
a maximum hydraulic pressure of 5000 psi and supports a maximum flow rate of 700 litres
per minute, ensuring efficient energy conversion and robust system performance [47].
Table 4 specifies the attachment locations for these PTOs.

Table 4. PTO attachment locations in the TALOS-WEC (relative to center of mass (CoM)).

PTO
Hull (m) Sphere (m)

x y z x y z

PTO1 5.00 0 8.66 2.50 0 4.33
PTO2 −2.50 4.33 8.66 −1.25 2.16 4.33
PTO3 −2.50 −4.33 8.66 −1.25 −2.16 4.33
PTO4 5.00 0 −8.66 2.50 0 −4.33
PTO5 −2.50 4.33 −8.66 −1.25 2.16 −4.33
PTO6 −2.50 −4.33 −8.66 −1.25 −2.16 −4.33

3.1.4. Validation of TALOS-WEC Numerical Models Using CFD

Accurate modelling of wave–structure interactions is critical for the performance
and reliability of WECs. To validate the HydroChrono numerical model for TALOS-
WEC applications, high-fidelity computational fluid dynamics (CFD) simulations were
conducted. These simulations provide a benchmark for assessing HydroChrono’s accuracy
and highlight its utility for advanced hydrodynamic analysis [43,68].

The CFD simulations of the TALOS buoy were performed using ANSYS® Fluent,
Release 2021R2, as an unsteady Reynolds-averaged Navier–Stokes (URANS) simulation.
Figure 4a illustrates the computational domain and overset mesh configuration used for the
CFD simulation setup. The rectangular domain spans dimensions of 1 km × 1 km × 200 m,
where the horizontal axes (X and Y) and vertical axis (Z) are shown in metres. The green fill
represents the initial location of the air–water interface, which is set as a constant baseline
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in the simulation. The grey surface at the bottom indicates the stationary wall boundary
condition, while symmetry boundary conditions are applied to the sides, and fixed pressure
is maintained at the top boundary. The spherical overset zone, highlighted in the magnified
insert, demonstrates mesh refinement near the TALOS buoy and the expected location of
the free surface. Table 5 summarises the CFD setup parameters, including time-stepping
and boundary conditions.

(a) (b)

Figure 4. CFD validation setup and HydroChrono simulation results for TALOS-WEC: the X-
axis represents the horizontal distance, the Y-axis represents the width, and the Z-axis represents
the vertical dimension. (a) CFD domain and overset mesh used for TALOS-WEC simulations.
(b) HydroChrono simulation of a floating body in irregular waves. (Reproduced with permission
from [43]. 2023, Ogden, D., et al.).

Table 5. CFD setup parameters for TALOS-WEC validation (Adopted with permission from [43].
2023, Ogden, D., et al.).

Parameter Value Description

Domain Size 1000 × 1000 × 200 m Defines the computational domain dimensions, ensuring suffi-
cient space to capture wave–structure interactions and minimise
boundary effects.

Mesh Type Overset Mesh Refined overlapping grids near the TALOS structure allow for
detailed resolution while enabling flexible simulation of large
wave domains.

Boundary Con-
ditions

Pressure outlet, symmetry
walls

Configures flow behaviour at domain boundaries, ensuring waves
and fluid exit the domain without reflections.

Time Step 0.05 s Specifies the temporal resolution for accurately capturing dy-
namic responses while maintaining numerical stability.

The CFD validation process compared the dynamic behaviour of TALOS-WEC under
regular and irregular wave conditions against HydroChrono predictions. The results
showed strong agreement, affirming HydroChrono’s reliability in predicting hydrodynamic
forces, motion responses, and energy capture efficiency. This validation established a solid
foundation for using HydroChrono in further design iterations of TALOS.

It is important to note that the CFD modelling presented in this study focuses ex-
clusively on decay tests and does not include wave conditions. These decay tests were
conducted to evaluate the natural oscillatory behaviour of the TALOS-WEC following
initial perturbations, serving as robust benchmarks for validating HydroChrono against
CFD results. Figures 5a and 5b present the outcomes for heave and pitch decay tests, respec-
tively. The results demonstrate that HydroChrono accurately replicates CFD observations,
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particularly in capturing buoyancy-driven stabilisation dynamics in heave and rotational
inertia effects in pitch. This agreement further reinforces HydroChrono’s capability to
model the complex nonlinear interactions critical to TALOS-WEC’s performance.

(a) Heave decay test (b) Pitch decay test

Figure 5. HydroChrono (LPFT) vs CFD test results (Reproduced with permission from [43]. 2023,
Ogden, D., et al.).

It must be mentioned that the vertical domain of 200 m (in simulations as outlined
in Table 5) was chosen to represent a realistic water depth that might be encountered
in real sea conditions. This depth is generally regarded as deep water for most wave
energy converters, providing a valid and practical testing environment for the TALOS buoy.
Although the fluctuations shown in Figure 5 appear to be −5 to 10 m, the additional vertical
space ensures numerical stability, prevents boundary effects, and supports high-fidelity
modelling of wave–structure interactions. It should also be noted that the domain shown
in Figure 5 represents a smaller section of the computational domain for improved visual
clarity, while the full dimensions are outlined in Table 5.

3.1.5. Mooring System Effects on Hydrodynamics

The mooring system plays a critical role in the hydrodynamic performance of the
TALOS-WEC, affecting motion responses, energy absorption, and overall stability [69,70].
This subsection examines the system’s behaviour under two mooring configurations: slack
(MLC1) and moderately slack (MLC2). Figure 6 illustrates the four-leg mooring system’s
geometry and layout, emphasising the spatial arrangement and interaction of the mooring
lines with the TALOS-WEC under wave conditions.

(a) (b)

Figure 6. Mooring system for TALOS-WEC. (a) Mooring line in the vertical plane. (b) Four-leg
mooring system for TALOS-WEC. (Reproduced with permission from [48]. 2024, Loukogeorgaki, E.,
et al.).
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Table 6 presents the key characteristics of the mooring lines, comparing the configura-
tions for MLC1 and MLC2. In this context, Lh represents the hanging length of the mooring
line, Lbot is the length of the mooring line on the seabed, Ttop denotes the pretension at the
fairlead, and Z f indicates the vertical position of the fairlead relative to the mean water
level (MWL).

Notably, MLC1 features a shorter hanging length and lower pretension, enabling
greater freedom of motion, while MLC2 employs a longer hanging length and higher
pretension to enhance stability. These configurations underscore the trade-offs between
energy absorption, motion control, and structural stability, which will be explored in greater
detail in subsequent sections.

Table 6. Characteristics of the examined mooring lines (Adopted with permission from [48]. 2024,
Loukogeorgaki, E., et al.).

Parameter MLC1 (Slack) MLC2 (Moderately Slack)

Hanging length, Lh (m) 134 199

Submerged weight, w (N/m) 1230 1230

Pretension, Twet
top (kN) 174.1 314.9

Figure 7 shows the motion responses of the TALOS-WEC floater under regular wave
conditions for different mooring configurations. MLC1 exhibit larger surge displacements
due to lower restoring forces, while MLC2 reduce displacements, enhancing stability and
horizontal motion control. Heave and pitch motions remain consistent across config-
urations, highlighting the significant influence of mooring setups on dynamic stability
and overall system performance. These results underscore the trade-off between motion
freedom and restoring forces in determining the TALOS-WEC’s stability and efficiency.

(a) Surge (b) Heave (c) Pitch

Figure 7. Floater’s motion responses under regular wave conditions (Reproduced with permission
from [48]. 2024, Loukogeorgaki, E., et al.).

• Power Absorption Analysis for Single-Mode and Multi-Mode PTOs

The analysis of power absorption under slack (MLC1) and moderately slack (MLC2)
mooring configurations was performed for single-mode and multi-mode PTO systems,
with a focus on their effectiveness under varying wave conditions. The single-mode PTO
system primarily accounts for power absorbed in the heave mode, while the multi-mode
system considers power absorption contributions from both heave and surge motions. The
power absorption equations are defined as follows:

For the single-mode PTO system, the absorbed power is calculated as [48]:

Power = BPTO,heave(ẋhull,heave − ẋball,heave)
2, (15)



J. Mar. Sci. Eng. 2025, 13, 279 15 of 54

where BPTO,heave represents the PTO damping coefficient in the heave mode, and ẋhull,heave

and ẋball,heave denote the heave velocities of the hull and the ball, respectively.
For the multi-mode PTO system, the absorbed power is given by [48]:

Power = BPTO,surge(ẋhull,surge − ẋball,surge)
2 + BPTO,heave(ẋhull,heave − ẋball,heave)

2, (16)

where BPTO,surge is the PTO damping coefficient for the surge mode, while ẋhull,surge and
ẋball,surge are the surge velocities of the hull and ball.

Table 7 summarises the mean power and power standard deviation for regular wave
conditions for both mooring configurations. The results highlight that MLC1 achieves
slightly higher mean power due to greater motion freedom but exhibits higher standard de-
viations, signifying more variability and less consistent performance. MLC2, while slightly
less efficient in mean power absorption, ensures more stable operation with reduced stan-
dard deviations, emphasising the trade-off between energy capture and structural stability.

Table 7. Power absorption for MLC1 and MLC2 under regular waves (with incident wave angle
β = 0◦) (Adopted with permission from [48]. 2024, Loukogeorgaki, E., et al.).

Configuration Wave Period (s) Mean Power (kW) Power Std. Dev. (kW)

MLC1 (Slack) 7.0 15.3 1.2

MLC2 (Moderately Slack) 7.0 14.8 0.9

MLC1 (Slack) 8.5 16.8 1.5

MLC2 (Moderately Slack) 8.5 15.2 1.0

MLC1 (Slack) 10.0 15.0 1.1

MLC2 (Moderately Slack) 10.0 14.9 0.8

3.2. WP1.2: Geometric Optimisation

Building on the hydrodynamic modelling perspectives from WP1.1, sub-package
WP1.2 focuses on optimising the geometry of the TALOS-WEC to enhance energy absorp-
tion and stability across different wave conditions. This phase explores design modifi-
cations aimed at improving hydrodynamic performance while balancing efficiency and
structural integrity. By analysing configurations ranging from simplified axisymmetric
to refined multi-axis designs, WP1.2 seeks to identify geometries that maximise energy
capture, improve stability, and ensure practicality for real-world deployment.

3.2.1. Baseline Geometry Studies for Optimisation

Hydrodynamic modelling is essential for optimising WECs to maximise energy ab-
sorption and stability, with geometry playing a critical role in hydrodynamic parameters
and wave–structure interactions. This study evaluated four baseline geometries for optimi-
sation [46]:

• A truncated cylinder, an axisymmetric design with well-documented hydrodynamic
properties, serves as a baseline for validation and numerical tool testing.

• A truncated cylinder with a heave plate, which enhances vertical stability by increas-
ing added mass and radiation damping.

• The original TALOS-WEC, a multi-axis point absorber optimised for energy absorp-
tion but characterised by its complex thin structures and overlapping panels.

• A simplified circular version of TALOS, designed to address numerical modelling
challenges while retaining critical hydrodynamic features and improving computa-
tional efficiency.
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Geometric modifications, including the shortened TALOS, tailless TALOS, and a
truncated hemisphere, were introduced to refine performance further. These modifications
aim to optimise energy capture, improve stability, and address structural and computational
constraints.

Figure 8 illustrates the studied geometries, facilitating an in-depth comparison of the
original and circular TALOS configurations and highlighting trade-offs between perfor-
mance and computational efficiency.

(a) Truncated Cylinder (b) Truncated Cylinder with Heave Plate

(c) TALOS-WEC (original) (d) TALOS-WEC (Circular)

Figure 8. Studied geometries for hydrodynamic modelling (Reproduced with permission from [46].
2022, Sheng, W., et al.).

Key hydrodynamic parameters, including added mass, radiation damping, wave
excitation forces, and RAOs, were analysed using numerical tools (WAMIT, HAMS, and
NEMOH) to explore the influence of geometry on energy capture and stability. The circular
TALOS configuration, due to its axisymmetric design, demonstrated higher added mass
at low frequencies, enhancing inertia, but both geometries converged in added mass at
higher frequencies (Figure 9a). Radiation damping trends showed smoother variations for
the circular design, reflecting its simplified geometry, while the original TALOS displayed
sharper changes, indicative of its complex structure (Figure 9b). Wave excitation forces
were generally higher for the circular TALOS, especially near resonance frequencies, due to
its symmetric interaction with waves (Figure 9c). The RAOs for surge motions revealed
broader resonance peaks for the original TALOS, indicating a distributed response, while
the circular TALOS exhibited narrower peaks, emphasising its concentrated resonance
behaviour (Figure 9d).

Heave and pitch motions further highlighted the differences in geometry. For heave,
the original TALOS had higher resonance peaks in RAOs, capturing energy across a
broader spectrum due to its intricate wave–structure interactions. The circular TALOS,
while achieving narrower peaks and higher excitation forces, offered more concentrated
performance around resonance frequencies. In pitch, the original TALOS demonstrated
greater variability in added mass and radiation damping, reflecting its non-axisymmetric
geometry and complex wave interactions. By contrast, the circular TALOS exhibited
smoother radiation damping trends and a more predictable pitch response, particularly
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at low frequencies. However, the circular design was less effective at capturing higher-
frequency interactions, where the original TALOS excelled [46].

(a) Added mass (b) Radiation damping coefficient

(c) Wave excitation force (d) RAOs

Figure 9. Comparison of hydrodynamic parameters and responses for surge motions (original vs.
circular TALOS) (Reproduced with permission from [46]. 2022, Sheng, W., et al.).

3.2.2. Geometric Modifications

Figure 10 illustrates the geometric modifications made to the TALOS-WEC to optimise
its performance and displacement. Three configurations are shown. In Figure 10a, the
tail-shortened TALOS reduces the length of the lower cylindrical section, leading to a
lower draft and a displacement of 2387 m3. Figure 10b presents the tailless TALOS, which
eliminates the lower cylindrical section entirely, achieving a displacement of 2969 m3 with
a more streamlined geometry. Finally, Figure 10c showcases the truncated hemisphere
configuration, characterised by a modified hemispherical structure that provides enhanced
stability with a displacement of 3046 m3 [44].

(a) Tail-shortened (b) Tailless (c) Truncated hemisphere
configurations

Figure 10. Geometric modifications of the TALOS-WEC (Reproduced with permission from [44].
2024, Sheng, W., et al.).

The displacement values and percentage reduction from the original TALOS configu-
ration are summarised in Table 8.
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Table 8. Displacement comparison between different TALOS geometries.

Configuration Displacement (m3) Reduction from Original (%)

Original TALOS 3755 —
Tail-Shortened TALOS 2387 36.4
Tailless TALOS 2969 20.9
Truncated Hemisphere TALOS 3046 18.9

Figure 11 illustrates the power curves for various TALOS geometries, including the
original, shortened, tailless, and hemispherical designs. The average power absorbed, Pavg,
is shown as a function of the energy period, Te, which represents the characteristic period
of ocean waves. The power absorption is defined by the equation P(t) = BPTO · Vrel(t)2.
This equation quantifies the resistance of the PTO system to motion and its role in energy
absorption. To isolate the effect of geometry on performance, the comparison was con-
ducted under fixed PTO parameters. The spring stiffness was set to KPTO = 500 kN/m,
and the damping coefficient was set to BPTO = 200 kNs/m. Additionally, the ball mass was
fixed at 800 tonnes, and the overall centre of gravity (CoG) was positioned at Zg = 0.0 m,
corresponding to the water surface.

As can be seen in Figure 11, the shortened TALOS achieves the highest power output,
with peak values exceeding 120 kW for moderate energy periods (Te ≈ 8 − 9 s). Similarly,
the tailless TALOS configuration performs comparably well, demonstrating robust absorp-
tion characteristics. The hemispherical design, while slightly less effective in peak power
absorption, still outperforms the original TALOS over the entire range of Te, showing
its potential as a viable alternative. The original TALOS configuration, indicated by the
blue curve, demonstrates significantly lower energy absorption, highlighting the need for
geometric optimisation.

Figure 11. Power curves comparing the optimised TALOS geometries with the original configuration
(under fixed PTO parameters with spring stiffness KPTO = 500 kN/m and damping coefficientBPTO =

200 kNs/m) (Reproduced with permission from [44]. 2024, Sheng, W., et al.).

3.2.3. Geometric Optimisation Strategies

To further enhance performance, the TALOS-WEC was optimised by varying the
centre-of-gravity (CoG) and panel configurations.

• CoG Adjustments

Adjusting the CoG influences how the system interacts with incident waves, which
directly impacts wave energy conversion efficiency [71,72]. Lowering the CoG below the
water surface enhances the stability of the system by reducing pitch and roll motions,
leading to improved energy absorption under operational conditions. However, practical
constraints, such as construction feasibility and buoyancy stability, must also be considered
when selecting the optimal CoG position.
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Figure 12a,b illustrate the energy absorption trends for short TALOS and tailless
TALOS configurations with varying CoG positions (Zg = 0.0 m, −1.25 m, and −2.5 m).
The results demonstrate that lowering the CoG significantly enhances energy absorption,
particularly for moderate wave energy periods Te = 8 − 9 s. It can be observed that a CoG
position of Zg = −1.25 m achieves wave energy conversion performance comparable to
Zg = −2.5 m, indicating diminishing returns for further lowering the CoG. For practical
purposes, positioning the CoG at Zg = −1.25 m is ideal, as it balances hydrodynamic
performance with construction feasibility and operational stability. By placing the CoG
near the water surface, the TALOS-WEC maintains sufficient stability without incurring
unnecessary design complexities.

(a) Short TALOS (b) Tailless TALOS

Figure 12. Wave energy absorption for different CoG configurations (K = 500 kN/m, BPTO =

200 kNs/m) with ball mass of 800 tonnes (Reproduced with permission from [44]. 2024, Sheng, W.,
et al.).

• Panel Configurations: Panel Gaps and Overlaps

Here, the effects of panel configurations, specifically panel gaps and overlaps, on the
hydrodynamic performance of the TALOS-WEC are evaluated. Panel gaps and overlapping
panels significantly affect hydrodynamic coefficients, influencing the added mass, radiation
damping, and excitation forces. The results provide visions into optimising the panel
designs for energy absorption and structural stability.

Figure 13 illustrates the two panel configurations: Figure 13a shows incomplete
(gapped) panels (x-direction) and Figure 13b demonstrates overlapping panels (10° overlap).
These configurations form the basis for hydrodynamic comparison, emphasising the effects
of design adjustments on performance.

(a) (b)

Figure 13. Panel configurations for circular TALOS. (a) Incomplete (gapped) panels by 10°. (b) Over-
lapping panels by 10°. (Reproduced with permission from [46]. 2023, Sheng, W., et al.).

A comparative analysis of TALOS-WEC configurations with 10° panel gaps and over-
lapping panels highlights the detrimental effects of gaps and the advantages of overlapping
panels. Gaps reduce displacement volume by up to 3.15% and roll restoring coefficients by
5.73%, negatively impacting stability and energy capture efficiency. In contrast, overlapping
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panels enhance hydrodynamic performance, with the 10° overlap configuration increasing
displacement volume by 2.30%, heave restoring coefficients by 2.40%, and roll restoring
coefficients by 4.55%, significantly improving stability and energy capture. However, a
slight decrease in pitch restoring coefficients is observed for both configurations, though
the reduction is minimal [46].

Figures 14 and 15 compare hydrodynamic coefficients and RAOs for surge motion
in gapped and overlapping panel configurations. The 10° gapped configuration exhibits
reduced added mass A11 and radiation damping B11, indicating lower energy absorption
and stability. Additionally, increased RAO amplitudes at resonant wave periods highlight
a compromise in surge motion stability. Conversely, the overlapping panel configuration
demonstrates improved hydrodynamic coefficients, enhancing performance and stability.

Figure 15 illustrates the overlapping panel configuration (10°), which exhibits en-
hanced hydrodynamic coefficients. The added mass and radiation damping values are
more aligned with the circular TALOS baseline, suggesting better energy capture and
motion control. The RAOs for the overlapping configuration show dampened response
amplitudes, highlighting improved stability under surge excitation.

(a) Added mass (b) Radiation damping coefficient

(c) Wave excitation force (d) RAOs

Figure 14. Comparison of hydrodynamic parameters and the response of surge: incomplete TALOS
(10 degrees) vs. circular TALOS (Reproduced with permission from [46]. 2023, Sheng, W., et al.).
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(a) Added mass (b) Radiation damping coefficient

(c) Wave excitation force (d) RAOs

Figure 15. Comparison of hydrodynamic parameters and response of surge: overlapped TALOS (10
degrees) vs. circular TALOS (Reproduced with permission from [46]. 2023, Sheng, W., et al.).

3.3. PTO Design and Optimisation for TALOS-WEC

The PTO system of the TALOS-WEC integrates damping and spring elements specifi-
cally optimised to enhance energy conversion and ensure operational stability. The TALOS-
WEC is modelled as a two-body system in terms of numerical analysis. The first body is
the hull (floater), which moves in six DoFs, as shown in Figure 1, as a rigid body under
wave excitation. The second body is the mass ball (sphere), located inside the hull, which
is linked to the hull through springs and PTO dampers. The interplay between these com-
ponents governs the energy absorption characteristics of the system. Figure 16 illustrates
this two-body system.

Figure 16. The two-body system for the TALOS multi-axis wave energy converter (Reproduced with
permission from [44]. 2024, Sheng, W., et al.).

3.3.1. Optimisation of the PTO System

The performance trends observed in the power curves shown in Figure 11 highlight
the critical interplay between geometry and PTO design. Geometries like the shortened and
tailless TALOS offered higher energy absorption potential, which can be further amplified
by tuning the PTO system’s damping coefficients BPTO and spring stiffness KPTO to align
with the dominant wave energy periods [73,74].
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• Role of PTO Damping Coefficients

Damping coefficients play a critical role in controlling the relative motion between the
floater and submerged sphere, influencing energy absorption and system stability. Softer
damping coefficients allow freer oscillations with wave motion, enhancing energy capture,
but excessively low damping can risk mechanical instability. For both the short TALOS
and tailless TALOS configurations (with constant spring stiffness of K = 250 kN/m), the
optimal PTO damping coefficient range lies between 100 kNs/m and 150 kNs/m, where
energy absorption is maximised without compromising system performance (see Figure 17).
While softer damping improves energy efficiency, care must be taken to avoid durability
issues or instability due to excessive oscillations, necessitating a balance between energy
capture and structural integrity.

(a) Short TALOS (b) Tailless TALOS

Figure 17. Energy absorption for varying damping coefficients with KPTO = 250 kN/m (Reproduced
with permission from [44]. 2024, Sheng, W., et al.).

• Influence of PTO spring stiffness

Spring stiffness significantly influences the resonance characteristics of the TALOS-
WEC by determining its natural frequency. Figure 18 compares energy absorption for the
short TALOS and tailless TALOS configurations with three spring stiffness values, KPTO =

500 kN/m (hard spring), KPTO = 350 kN/m (moderate spring), and KPTO = 250 kN/m
(soft spring), keeping the PTO damping coefficient constant at BPTO = 200 kNs/m.

Figure 18a,b reveal that energy absorption peaks are higher for softer (KPTO =

250 kN/m) and moderate (KPTO = 350 kN/m) springs, particularly for wave energy pe-
riods Te between 7 s and 10 s. The softest spring achieves the highest energy absorption,
demonstrating that optimising spring stiffness to moderate or soft values significantly
enhances performance within the operational wave period range of Te ≈ 7 − 10 s.

(a) Short TALOS (b) Tailless TALOS

Figure 18. Energy absorption for varying spring stiffness coefficients (Reproduced with permission
from [44]. 2024, Sheng, W., et al.).
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A key component of this evaluation is the wave power spectrum, which describes the
distribution of wave energy across different frequencies. For this analysis, the Bretschneider
spectrum was employed [44], which is a well-established model commonly used for
describing energy in wind-driven sea states. The Bretschneider spectrum is defined as
follows:

S(ω) =
5ω4

p

16ω5 H2
s exp

(
−

5ω4
p

4ω4

)
, (17)

where S(ω) is the spectral density of the wave energy as a function of circular frequency,
ω is the circular frequency, ωp is the frequency at the peak of the spectrum, Hs is the
significant wave height, representing the average height of the highest one-third of the
waves, and Tp = 2π

ωp
is the spectral peak period, corresponding to the peak frequency ωp.

The power matrices presented in Figure 19 compare the energy extraction capabilities
of three TALOS geometries (original, short, and tailless) under both hard and soft PTO
systems. In these matrices, Te, the energy period of irregular waves, represents an average
measure of wave energy distributed across all frequencies in the spectrum. In contrast,
Tp, the spectral peak period, focuses specifically on the energy at the peak frequency. The
relationship between Te and Tp depends on the wave spectrum shape and conditions. For
the Bretschneider spectrum, Te is generally close to Tp, although the exact ratio may vary.
Both parameters are widely used in wave energy analyses, with Te offering a broader
perspective on overall energy distribution, while Tp focuses on peak energy characteristics.

(a) Original with a hard PTO (b) Original with a soft PTO

(c) Short with a hard PTO (d) Short with a soft PTO

(e) Tailless with a hard PTO (f) Tailless with a soft PTO

Figure 19. Power matrix for different TALOS geometries. The color coding (red, yellow, and green)
highlights regions of higher and lower power extraction (Reproduced with permission from [44].
2024, Sheng, W., et al.).
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The original TALOS demonstrates limited energy conversion capacity, with the soft
PTO (see Figure 19b) improving the annual energy production (AEP) to 612 MWh compared
to 345 MWh for the hard PTO (see Figure 19a). In contrast, the short TALOS exhibits
significantly enhanced performance, achieving an AEP of 865 MWh with the hard PTO
(see Figure 19c) and 1.274 GWh with the soft PTO (see Figure 19d), representing a 47%
improvement. Similarly, the tailless TALOS shows comparable performance to the short
TALOS, achieving 846 MWh under the hard PTO (see Figure 19e) and a slightly higher
1.311 GWh under the soft PTO (see Figure 19f), marking a 3% improvement over the
short TALOS. The color coding in Figure 19 (e.g., red, yellow, and green regions) visually
highlights the regions of higher and lower power extraction.

The AEP values presented in this study were calculated based on probabilistic weight-
ing of wave conditions derived from the European Marine Energy Centre (EMEC) wave
scatter diagram, shown in Figure 20 [44]. This diagram represents the statistical distribution
of significant wave heights Hs and energy periods Te observed at the EMEC site. The power
matrices in Figure 19 were integrated across the range of wave states in this diagram, pro-
viding a realistic estimate of AEP that accounts for high-probability wave conditions. This
methodology ensures that the results are representative of typical operational scenarios,
rather than being based solely on extreme or maximum conditions.

Figure 20. Wave scatter diagram for the EMEC site, showing the distribution of significant wave
heights Hs and energy periods Te. The color coding (red, yellow, and green) highlights regions of
higher and lower power extraction (Reproduced with permission from [44]. 2024, Sheng, W., et al.).

4. WP2: Survivability, Reliability, and Control
WP2 focuses on enhancing the survivability, reliability, and operational efficiency

of the TALOS-WEC in extreme marine environments. This WP is divided into four sub-
packages: WP2.1 integrates smart sensors for real-time monitoring of system health and
environmental conditions. WP2.2 employs AI algorithms for condition monitoring and
predictive health assessment. WP2.3 develops predictive maintenance models to forecast
component failures and enhance reliability. Finally, WP2.4 implements adaptive control
strategies to optimise energy capture and ensure safe operation under varying and extreme
conditions.

4.1. WP2.1—Smart Sensors

This sub-package integrates smart sensors across the TALOS-WEC to monitor critical
parameters such as structural integrity, motion, and environmental conditions (e.g., wave
height, pressure, and temperature). Using technologies like strain gauges, accelerometers,
wave probes, ultrasonic level sensors, and the Internet of things (IoT) sensors, it ensures
continuous monitoring of structural, hydraulic, electrical, and mooring components, as
detailed in Table 9 [75,76].
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Table 9. Sensor types and detection targets for the TALOS-WEC subsystems [9,75,76].

Subsystem Detection Targets Types of Sensors

Structural

Humidity Relative humidity (RH) sensors, dew point sensors

Water leak detection Pressure sensors, radar sensors, acoustic emission sensors

Applied force Fibre optic strain gauge

Incoming waves Wave probes

Acceleration Accelerometers

Hydraulic
Oil leakage Pressure transducers, ultrasonic level sensors

Contamination Inline contamination monitor

Position Linear position sensors

Electrical

Electrical parameters Voltage transducers, current transducers, power transducers

Generator speed Absolute encoders

Generator torque Torque transducers

Temperature Thermocouples, infrared, and resistance temperature sensors

Mooring
Position Global Positioning System (GPS)

Entanglement Load shackles

Inertial Inertial measurement unit

Instrumentation Data collection and processing Remote diagnostic sensors

The framework illustrated in Figure 21 enables the collection and real-time processing
of data, which are essential for monitoring the WEC’s health and analysing its performance
under varying wave conditions.

Figure 21. Workflow for sensor integration: from selection to optimised placement and deployment.

4.2. WP2.2—Intelligent Condition Monitoring

Condition monitoring is crucial for the TALOS-WEC to mitigate mechanical, hydrody-
namic, and environmental stresses encountered in its challenging operating environment.
By continuously monitoring system conditions, it ensures early detection of anomalies,
prevents catastrophic failures, and minimises unplanned downtime, thereby maintaining
the efficient operation of interconnected subsystems such as structural, hydraulic, electrical,
and mooring components. The monitoring framework integrates advanced ML algorithms
and strategically deployed smart sensors to collect real-time data on key parameters like
forces, accelerations, pressures, temperatures, and wave conditions.

Advanced dual-model frameworks, namely ANN-LSTM and KPCA-LSTM, have
been developed to predict system performance and detect anomalies, leveraging the
strengths of machine learning techniques such as long short-term memory (LSTM) [77,78]
and artificial neural networks (ANNs) [79,80]. The ANN-LSTM framework combines the
sequential modelling capabilities of LSTM, which excels at capturing long-term trends in
time-series data, with an ANN, which refines predictions by addressing residual errors.
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This integrated approach directly operates on time-series data, achieving high accuracy by
effectively capturing both macro-level trends and short-term fluctuations.

In contrast, the KPCA-LSTM framework enhances prediction performance through
kernel principal component analysis (KPCA), which performs feature extraction and dimen-
sionality reduction [81,82]. By preprocessing input data, KPCA reduces redundancy and
retains nonlinear relationships, improving computational efficiency and enabling LSTM to
focus on modelling dynamic dependencies. Like the ANN-LSTM framework, KPCA-LSTM
incorporates ANNs for residual adjustments, ensuring refined and reliable predictions.
The key distinction lies in the use of KPCA in the KPCA-LSTM framework, making it
particularly advantageous for complex, high-dimensional datasets. In comparison, ANN-
LSTM offers a simpler implementation suitable for systems with fewer preprocessing
requirements [40,51].

4.2.1. ANN-LSTM Framework

The combined ANN-LSTM framework, depicted in Figure 22, integrates real-time
data preprocessing, feature extraction via KPCA, long-term trend prediction by LSTM, and
residual adjustment by ANNs. This dual-model framework leverages LSTM networks to
capture long-term dependencies and model overall power trends while employing ANNs
to adjust residual errors, addressing short-term variations and anomalies for enhanced
prediction accuracy [40].

Figure 22. Dual-model power generation prediction framework: LSTM for force prediction and ANN
for residual adjustment.

The TALOS-WEC operates through a 6-DOF PTO system (shown in Figure 1), where
wave forces induce relative motions between a central ball and the external hull connected
by PTO dampers. The theoretical mechanical power output based on forces in the PTO
system PPTO is calculated using PPTO = F2

λ , where λ is an empirically determined power
coefficient, set at λ = 250, 000. This equation establishes a theoretical benchmark linking
the mechanical forces generated by the PTO system to the overall output power PPTO,
which provides a foundation for evaluating the predictive accuracy of ML models.

Accurate predictions require comprehensive preprocessing of high-resolution time-
series data (sampled at 0.05 s intervals). Feature selection focuses on variables such as
water elevation, PTO forces, hull motions (heave, pitch, roll), and velocities. KPCA is
employed to reduce dimensionality, extracting dominant features while retaining nonlinear
relationships to enhance computational efficiency [40,51].

• LSTM for Primary Power Prediction

LSTM networks, a type of recurrent neural network (RNN), handle long-term depen-
dencies effectively by using memory cells regulated by forget, input, and output gates. For
the TALOS-WEC, LSTM predicts PTO forces and power trends over a five-wave horizon,
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suitable for real-time condition monitoring. The equations governing LSTM operation
are [40]: 

ft = σ
(
W f [ht−1, Xt] + b f

)
,

it = σ
(
Wi[ht−1, Xt] + bi

)
,

Ct = ft · Ct−1 + it · tanh
(
Wc[ht−1Xt] + bc

)
,

ht = Ot · tanh(Ct).

(18)

Here, the forget gate ft, input gate it, and cell state Ct collaboratively manage the flow
and retention of information within the memory cells. The hidden state ht represents the
output of the LSTM at each time step, while the input at time t, denoted as Xt, feeds the
network with time-series data. The computations rely on the weight matrices W f , Wi, Wc

and corresponding bias terms b f , bi, bc, which are learned during training. The sigmoid
activation function σ is utilised to scale values between 0 and 1, enabling effective gating
operations within the LSTM [40].

• ANN for Residual Adjustment

The ANN component refines the predictions from the LSTM model by addressing
residual errors, thereby enhancing overall accuracy through its ability to model fine-
scale variations. The ANN architecture consists of an input layer that accepts features
reduced through KPCA. Its hidden layers comprise two fully connected layers, each con-
taining 64 neurons, employing the rectified linear unit (ReLU) activation function, defined
as ReLU(z) = max(0, z), to introduce nonlinearity and effectively model complex pat-
terns [83]. The output layer includes a single neuron with a linear activation function,
specifically designed to compute and apply the residual corrections to the LSTM predic-
tions [40].

The total corrected power output is calculated as ŷtotal = ŷLSTM + ŷANN, where ŷLSTM

represents the power output predicted by the LSTM model, and ŷANN denotes the residual
correction provided by the ANN [43].

4.2.2. KPCA-LSTM Framework

The hybrid KPCA-LSTM framework is a powerful machine learning approach for
predicting PTO forces and power outputs, combining efficiency and accuracy. KPCA re-
duces data complexity by extracting dominant features while retaining critical nonlinear
relationships, enhancing computational efficiency. LSTM effectively models long-term
dependencies and sequential patterns, enabling accurate predictions of PTO forces and
power trends. Additionally, an ANN corrects residual errors, refining short-term variations
and improving prediction accuracy. This integrated framework offers robust feature ex-
traction, reliable sequential modelling, and efficient computational performance, making it
well-suited for condition monitoring and power prediction in the TALOS-WEC system [51].

• KPCA for feature extraction

KPCA is employed to preprocess and reduce the dimensionality of the input dataset
while preserving nonlinear relationships. The process involves standardising the data,
calculating the covariance matrix, and performing singular value decomposition (SVD) to
extract dominant principal components. Only components that account for at least 85%
of the variance are retained, significantly reducing computational load while maintaining

critical features for prediction. The standardised data Zij is obtained as Zij =
xij − x̄j

σxj

,

where xij is the raw input data, x̄j is the mean, and σxj is the standard deviation. The
covariance matrix σ and its eigen decomposition provide the principal components, which
are used as inputs to the LSTM model.
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The implementation of the KPCA-LSTM framework begins with reducing the dimen-
sionality of the input features using KPCA, which ensures computational efficiency while
retaining the most significant nonlinear relationships in the data. The reduced feature set
is then fed into the LSTM model, which predicts PTO forces and captures the primary
trends over a defined time horizon. To enhance the accuracy of these predictions, an ANN
is employed to adjust the residual errors, refining the LSTM outputs by accounting for
short-term variations and anomalies. Finally, the predicted PTO forces are used to compute
the power output.

4.2.3. Evaluation Metrics and Model Comparison

The performance of the KPCA-LSTM framework is evaluated using standard metrics,
root mean square error (RMSE), coefficient of determination R2, and mean absolute error
(MAE), which collectively assess predictive accuracy and reliability.

RMSE measures the square root of the average squared differences between the actual
yi and the predicted values ŷi, penalising large deviations more heavily. It is defined as [84]:

RMSE =

√
∑N

i=1(yi − ŷi)2

N
, (19)

where N is the number of observations. The coefficient of determination R2 evaluates how
well the model’s predictions fit the actual data by comparing the residual sum of squares
SSres to the total sum of squares SStot. It is given by

R2 = 1 − SSres

SStot
, (20)

where SSres = ∑N
i=1(yi − ŷi)

2 and SStot = ∑N
i=1(yi − ȳ)2, with ȳ representing the mean

of the actual values. MAE calculates the average magnitude of the absolute differences
between the actual and predicted values without considering the direction of the errors:

MAE =
1
N

N

∑
i=1

|yi − ŷi|. (21)

Table 10 presents a comparative analysis of KPCA-LSTM, LSTM, regression tree
(RT) [85,86], support vector regression (SVR) [87,88], and ANN across six PTO systems.
The table demonstrates that KPCA-LSTM consistently achieves the highest R2 values
and the lowest RMSE and MAE scores across all PTO systems, highlighting its ability to
balance long-term trend prediction with computational efficiency and short-term residual
refinement.

Table 10. Prediction accuracy metrics for different algorithms across PTO systems (Adopted with
permission from [40]. 2024, Wu, Y., et al.).

PTO Metric KPCA-LSTM LSTM RT SVR ANN

1st
R2 0.87 0.67 0.44 0.78 0.56

RMSE 0.12 0.13 0.17 0.13 0.16
MAE 0.09 0.10 0.13 0.11 0.12

2nd
R2 0.93 0.49 0.56 0.67 0.45

RMSE 0.08 0.15 0.16 0.14 0.17
MAE 0.07 0.12 0.13 0.10 0.15

3rd
R2 0.92 0.83 0.75 0.74 0.78

RMSE 0.09 0.11 0.14 0.13 0.13
MAE 0.08 0.09 0.11 0.10 0.10
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Table 10. Cont.

PTO Metric KPCA-LSTM LSTM RT SVR ANN

4th
R2 0.89 0.93 0.74 0.74 0.77

RMSE 0.11 0.08 0.13 0.13 0.13
MAE 0.10 0.06 0.11 0.10 0.09

5th
R2 0.85 0.92 0.52 0.81 0.83

RMSE 0.12 0.09 0.13 0.12 0.12
MAE 0.11 0.08 0.10 0.09 0.10

6th
R2 0.92 0.92 0.79 0.89 0.80

RMSE 0.09 0.09 0.13 0.11 0.12
MAE 0.08 0.07 0.09 0.09 0.10

4.2.4. PTO Power Output Prediction Comparison

Both frameworks exhibit high performance in power output prediction. As shown in
Figure 23, the integration of ANN compensation results in precise power output predictions,
outperforming direct prediction methods. This framework’s ability to adjust for short-term
deviations makes it highly effective for accurate power prediction under varying wave
conditions.

Figure 23. Comparison of direct power predictions with measured power (ANN-LSTM framework)
(Reproduced with permission from [40]. 2024, Wu, Y., et al.).

The KPCA-LSTM framework, on the other hand, utilizes KPCA to preprocess input
data, ensuring that the LSTM model focuses on the most relevant features. Figure 24
demonstrates the framework’s consistent performance across different PTO systems, with
minimal variability in prediction error.
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Figure 24. Comparison of direct power predictions with measured power (KPCA-LSTM framework)
(Reproduced with permission from [51]. 2024, Wu, Y., et al.).

4.3. WP2.3—Predictive Maintenance

The TALOS-WEC project leverages advanced predictive maintenance strategies to
address the challenges posed by its complex multi-axis design and harsh offshore operating
environments. These strategies are essential for ensuring reliability, minimising down-
time, and maintaining system efficiency over time. The hydraulic PTO system, coupled
with a heavy internal mass, operates across six DoFs and is subject to wear and degra-
dation, especially in components like hydraulic cylinders, accumulators, and valves [40].
The demanding ocean conditions exacerbate mechanical stresses, increasing the risk of
performance degradation and failures that can significantly reduce energy capture effi-
ciency. Predictive maintenance aims to preemptively detect and mitigate issues, such as
hydraulic system degradation or accumulator failure, aligning with TALOS’s broader goals
of integrating advanced control, optimisation, and survivability systems.

The PTO system operates within motion, force, and power constraints that, if violated
due to wear or degradation, can compromise energy output and system longevity. Offshore
maintenance costs are substantially higher than onshore systems, further highlighting
the importance of predictive strategies. Using sensor data from components monitoring
parameters like pressure, temperature, flow rates, and structural stresses, ML frameworks,
such as ANN-LSTM and KPCA-LSTM, play a pivotal role in identifying patterns indicative
of component wear [40,51]. Key indicators include accumulator pressure drops, hydraulic
fluid leaks, and changes in PTO damping or stiffness, which serve as inputs for predictive
models to forecast maintenance needs.

Simulation tools like WEC-Sim, discussed in Section 3.1.3, further enhance these predic-
tive capabilities by modelling failure scenarios and stress conditions to refine the algorithms.
By integrating condition monitoring systems, predictive maintenance frameworks ensure
TALOS-WEC operates reliably, safely, and efficiently, minimising unplanned interventions
and optimising maintenance schedules to reduce overall costs while extending the system’s
operational lifespan [40,51].

4.4. WP2.4—Optimised Control

Optimising energy capture in the TALOS-WEC system presents significant challenges
due to the irregular dynamics of wave energy and the complexity of its multi-axis design.
To tackle these issues, the TALOS project leverages model predictive control (MPC), a
sophisticated optimisation framework renowned for its real-time decision-making under
constraints [89,90]. MPC facilitates adaptive control strategies that enhance energy capture,
ensure system safety during extreme events, and adapt to varying sea conditions [14,20].
This section delves into linear and nonlinear MPC models, ML-driven wave predictions,
and multi-DOF hydraulic PTO systems, showcasing innovative approaches to WEC control.
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Table 11 summarizes these methodologies, outlining their novelties, advantages, and
limitations.

The analyses underscore MPC’s potential in optimising TALOS-WEC performance.
Nonlinear MPC achieves the highest energy capture efficiency but is computationally
intensive, making linear MPC a practical alternative for simpler scenarios [52]. The
inclusion of realistic constraints ensures a balance between energy optimisation and system
reliability, albeit with reductions in theoretical maximum outputs [50]. Multi-axis systems,
leveraging selective PTO actuation, enhance power output and computational efficiency but
face challenges in coupling effects and real-time implementation [53]. Bridging theoretical
advancements and practical implementation, the study in [49] provides a comprehensive
comparison of hydrodynamics-only MPC models with those incorporating PTO dynamics.
It further examines the effects of prediction horizons and operational constraints, offering
valuable perspectives into achieving scalable and efficient WEC control.

Table 11. Summary of MPC-based control strategies for TALOS-WEC.

Ref. Methodology Novelty Advantages Limitations

[49] Compared MPC with
hydrodynamics-only and PTO-
integrated models; analysed
prediction horizons.

Integrated PTO dynam-
ics; prediction horizon
analysis.

23% increase in power, better
constrained performance.

High computational cost,
limited nonlinear interac-
tion analysis.

[50] Incorporated constraints (position,
force, power) in MPC with nonlin-
ear PTO models.

Detailed study of realistic
constraints.

Improved reliability and con-
trol accuracy.

Increased computational
burden, reduced max out-
put power.

[52] Compared linear and nonlinear
MPC under constraints.

First comparison of linear
vs. nonlinear MPC for
TALOS.

Nonlinear improves power
by 10%; linear is computa-
tionally efficient.

Nonlinear is computa-
tionally heavy; sensitive
to wave prediction errors.

[53] Developed six-DOF WEC-Sim
model; evaluated PTO actuation
strategies.

Selective actuation for
multi-axis PTOs.

More energy capture, scal-
able, lower computation de-
mand.

Coupling effects compli-
cate control; real-time op-
timisation is prohibitive.

4.4.1. System Dynamics and State-Space Representation

Figure 25 provides a schematic of the two-DoF point absorber system with a hydraulic
PTO. The TALOS-WEC system harnesses wave energy through the coupled dynamics of
the primary floater and an internal reaction mass ball. These components are connected via
a hydraulic PTO system that converts their relative motion into usable energy. The PTO
system includes critical components such as an accumulator, check valves, and a hydraulic
generator, which together optimise energy capture and maintain system stability.

Figure 25. Two-DoF point absorber WEC system with hydraulic PTO (Reproduced with permission
from [49]. 2024, Hall, C., et al.).
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The system dynamics are driven by the interplay of hydrodynamic forces, mechanical
constraints, and PTO operations. Hydrodynamic effects include wave excitation, radiation,
and buoyancy forces, while mechanical interactions are governed by the relative motion
between the sphere and hull, mediated by a spring-damping mechanism. The PTO system
regulates energy extraction through resistive and hydraulic forces.

These dynamics are modelled using a comprehensive ten-state representation, captur-
ing the physical and hydrodynamic phenomena that govern energy extraction and motion.
The system’s behaviour under varying sea conditions is expressed in the state-space form
as ẋ = f (x, u), where the state vector is defined as follows:

x = [xsphere, ẋsphere, q1, q2, q3, q4, V, L, xhull, ẋhull]
T . (22)

This vector encapsulates the position x1 and velocity x2 of the reaction mass (sphere),
auxiliary states (x3 to x6) representing hydrodynamic radiation forces, and accumulator
dynamics x7 related to volume changes. Additionally, x8 models the hydraulic generator
shaft’s angular momentum, while x9 and x10 describe the position and velocity of the
primary floater (hull). The control input vector u = [FPTOmech ] represents the PTO forces
applied to the system.

The ten-state model is governed by the following equations:

ẋ1 = x2,

ẋ2 =
1

Mball

(
−Srs(x1 − x9)− FPTOmech

)
,

ẋ3 = Ar1 · x3 + Ar2 · x4 + Ar3 · x5 + Ar4 · x6 + x10,

ẋ4 = x3, ẋ5 = x4, ẋ6 = x5,

ẋ7 = −klh(x7)−
D
J

x8 + S(x2 − x10),

ẋ8 = Dηmh(x7)−
B
J

x8 − TG,

ẋ9 = x10,

ẋ10 =
1

Mhull + m∞,hull

(
− Cr1x3 − Cr2x4 − Cr3x5 − Cr4x6

+ KPTO(x1 − x10)− πρgR2
b

(
1 − |x9|x9

3R2
b

)
x9

− 0.5ρAwCd|x10 − v f |(x10 − v f ) − Fnµd tanh(αx10)− µsx10

− Fn(µs − µd)e−(x10/vs)2
tanh(αx10) + Fexc + FPTOmech

)
.

(23)

The model incorporates parameters such as the restoring spring stiffness Srs, radi-
ation damping coefficients (Ar1 to Ar4), and hydrodynamic restoring coefficients (Cr1 to
Cr4). These elements govern the interactions between the hydrodynamic and mechanical
subsystems. The hydraulic PTO system is modelled using the piston cross-sectional area S,
motor leakage coefficient kl , motor dynamics (D, J, B), and motor efficiency ηm. Nonlinear
dynamics of the hydraulic accumulator are represented by h(x7), while generator torque
TG reflects mechanical-to-electrical energy conversion. Together, these parameters enable
an accurate representation of the TALOS-WEC’s hydrodynamic, mechanical, and hydraulic
interactions. This state-space model forms the foundation for advanced control strategies,
such as MPC.
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4.4.2. MPC Control Framework

The TALOS-WEC employs a structured control framework to optimise energy ex-
traction from wave motion while ensuring system stability and adherence to physical
constraints. The three strategies summarised in Table 12 focus on regulating the PTO
system and hydrodynamic interactions under varying sea states.

Table 12. Summary of control approaches for TALOS-WEC.

Control Approach Description Advantages Limitations

Baseline Proportional
Control (Figure 26a)

Simple control where PTO force is propor-
tional to velocity. optimised for average
wave conditions and includes position con-
straints for stability.

Computationally effi-
cient; ensures system
stability.

Limited adaptability to
varying sea states and
nonlinear dynamics.

Reduced-State Linear
MPC (Figure 26b)

Focuses on hydrodynamic states using a
simplified linear model. Solves quadratic
programming to optimise energy capture
and enforce position/velocity constraints.

Balances computa-
tional efficiency and
adaptability to wave
states.

Excludes PTO dynam-
ics; may yield subopti-
mal results.

Full-State Linear MPC
(Figure 26c)

Incorporates hydrodynamic, mechanical,
and PTO dynamics for comprehensive con-
trol. Solves an optimisation problem with
physical constraints over a prediction hori-
zon.

Achieves superior en-
ergy output and en-
sures compliance with
constraints.

High computational
cost due to complexity.

(a) Baseline Proportional Control

(b) Reduced-State Linear MPC

(c) Full-State Linear MPC

Figure 26. Control frameworks for the TALOS-WEC system (Reproduced with permission from [49].
2024, Hall, C., et al.).
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• System Constraints

The TALOS-WEC system operates under critical constraints to ensure both safety
and efficiency, with particular focus on the PTO system and the relative motion between
the sphere and hull. These constraints include PTO force limits to prevent overpressure
and ensure proper hydraulic system operation, as well as relative position constraints
to maintain safe clearance and avoid collisions. These parameters are embedded within
the MPC framework, ensuring compliance with physical and operational limits. However,
achieving all constraints simultaneously, especially during extreme wave conditions, poses
significant challenges [49].

• Wave Prediction

Advances in wave prediction methods have significantly enhanced accuracy over time.
Traditional approaches, such as Fourier analysis and time-domain models, historically
provided reliable estimates of wave height and period. However, modern techniques,
including ML methods like LSTM networks, have introduced substantial improvements
in prediction accuracy. These advanced methods are particularly valuable for control
optimisation, enabling more precise forecasts of wave characteristics to support efficient
and adaptive system responses.

Wave data from the deployment site were collected over a year at hourly intervals.
Seasonal variations were represented by selecting February and July as test cases, cor-
responding to rough and calm sea states, respectively. Simulated wave forces based on
observed conditions were used as inputs for evaluating control strategies.

4.4.3. Results and Discussion

This section presents key results from the evaluation of control strategies for the
TALOS-WEC, focusing on the impact of constraints, the performance of full-state MPC,
and the influence of prediction horizons on energy capture.

• Impact of Constraints on Reduced-State MPC

Figure 27 illustrates PTO force and power output for reduced-state MPC under Febru-
ary wave conditions with different constraints. The inclusion of position constraints (e.g.,
0 m and 0.1 m limits) ensures safe operation by preventing excessive motion of the sphere
relative to the hull. Without constraints, the system exhibits large relative displacements,
leading to potential collisions and instability.

The constrained cases (0.1 m limit) demonstrate improved power output compared
to the unconstrained scenario, balancing safety and energy capture, which highlights the
importance of integrating realistic constraints into the control framework, particularly in
rough sea conditions.

• Performance of Full-State MPC

Figure 28 presents the results for full-state MPC under February wave conditions. The
advanced control strategy significantly outperforms reduced-state MPC by incorporating
all ten system states, including PTO dynamics, into the optimisation process. As can be
seen, the full-state MPC achieves smoother and more stable PTO force profiles, minimising
reactive oscillations and enhancing energy extraction. The ability to handle complex system
dynamics ensures robust performance, even under extreme wave conditions, achieving
higher power outputs compared to reduced-state MPC.
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(a) PTO force

(b) Power output for 0.1 m constraint

(c) Power output for the unconstrained and 0 m constraint cases

Figure 27. Results for reduced-state MPC under February wave conditions (Reproduced with
permission from [49]. 2024, Hall, C., et al.).

(a) PTO force

(b) Power output

Figure 28. Results for full-state MPC under February wave conditions (Reproduced with permission
from [49]. 2024, Hall, C., et al.).

The comparison of average power outputs across baseline, reduced-state MPC, and
full-state MPC strategies under rough (February) and calm (July) sea conditions highlights
the superiority of advanced control methods. Full-state MPC consistently achieves the
highest power output, delivering approximately 3.7 MW in February and 3.5 MW in July.
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Reduced-state MPC shows moderate performance, reaching 3 MW in February and 2.5 MW
in July. The baseline approach, however, performs significantly worse, generating less than
1 MW in both scenarios, underscoring the effectiveness of MPC strategies in optimising
energy capture under varying sea states.

5. WP3: Sea State Forecasting and Resource Evaluation
This WP focuses on analysing and predicting wave energy resources to optimise the

deployment of WECs. This work package encompasses three key tasks: resource characteri-
sation, efficiency testing, and array effects. WP3.1 involves mapping wave energy potential
in deployment areas to identify high-energy zones suitable for WEC operation. WP3.2
emphasizes testing WEC performance in controlled wave tanks to establish performance
benchmarks under various marine conditions. Finally, WP3.3 investigates the interactions
within WEC arrays to optimise their layout for maximising energy capture.

5.1. WP3.1—Resource Characterisation

This sub-package aims to map the wave energy potential in targeted deployment areas,
providing a comprehensive understanding of resource availability. This task focuses on
identifying high-energy zones where WECs can operate most effectively, ensuring optimal
energy capture and efficient deployment. By characterising wave resources, this subtask
lays the foundation for strategic planning and decision-making in the deployment of wave
energy technologies [91].

5.1.1. Wave Energy Resource Dynamics in the North-West European Shelf

The rising demand for renewable energy has spurred interest in marine resources,
with wave energy emerging as a promising option. Effective deployment of WECs requires
a detailed assessment of wave energy potential. This analysis examines wave energy dy-
namics in the north-west European shelf using a 42-year (1980–2021) hindcast dataset from
the Copernicus Marine Environment Monitoring Service (CMEMS). The study evaluates
key variables such as significant wave height Hs and energy period Te to assess wave
energy flux using the WAVEWATCH III (v.6.07) model with high spatial (0.017◦ × 0.017◦)
and temporal (3 h) resolution [92].

• Wave Power Calculation

Wave energy flux, Pwave, quantifies the transport of energy by waves per unit crest
length and is a critical parameter in assessing wave energy resources. For deep-water
conditions, where the water depth is significantly greater than the wavelength, Pwave is
calculated using the simplified equation [47]:

Pwave =
ρg2

64π
H2

s Te ≈ 0.49H2
s Te (kW/m). (24)

This formulation is widely used for initial assessments of wave power in deep-water
scenarios due to its simplicity and reliance on readily available parameters. However,
for shallow and intermediate water depths, wave energy flux is influenced by additional
factors, such as bathymetry and the complex interaction between wave characteristics
and seabed properties. To account for these effects, the general wave energy assessment
equation (GWEAE) provides an improved and more accurate formulation [56]:

PGWEAE =
πρgdH2

s
16Te

[
1
µ
+

2
sinh(2µ)

]
, (25)

where d is the water depth, and µ is a dimensionless parameter describing the wave’s
interaction with the seabed [46].
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For the data obtained from the Copernicus Marine Service (which includes numerical
and in-situ buoy data), specific formulas are necessary to derive energy metrics. While the
service provides variables such as significant wave height Hs and energy period Te, it does
not directly output energy flux per unit wave crest length. Equations (24) and (25) serve
as approximations to estimate the required energy metrics for calculations and are widely
used for initial assessments of wave power in deep-water scenarios due to their simplicity
and reliance on readily available parameters.

• Variability Metrics

Temporal variability is a key factor in evaluating the stability and reliability of WEC
deployments. Stable wave energy resources are essential for ensuring consistent power
generation and reducing the risk of system failures caused by extreme variability. Several
metrics were used to quantify and analyse wave energy variability across different time
scales, including coefficient of variation (COV), seasonal variability (SV), and monthly
variability (MV) [93,94]. COV is a statistical measure used to assess the relative variability
of wave power over time. It is defined as follows:

COV =
σP
µP

, (26)

where σP is the standard deviation of the wave power and µP is its mean. The COV provides
a normalised measure of variability, allowing comparisons across regions with differing
wave power magnitudes. A low COV indicates stable wave power with minimal fluctua-
tions, which is desirable for reliable WEC operation. Conversely, a high COV highlights
significant variability, which may pose challenges for energy production consistency. SV
quantifies the differences in wave power across the most and least energetic seasons within
a year. It is calculated using the following equation:

SV =
PSmax − PSmin

Pwaveyear

, (27)

where PSmax and PSmin represent the seasonal maxima and minima of mean wave power,
respectively, and Pwaveyear is the annual mean wave power. This metric helps identify sea-
sonal patterns, such as high wave power during winter and reduced levels during summer,
which are critical for scheduling maintenance and ensuring optimal device performance
during peak energy periods. MV measures the fluctuations in wave power between the
most and least energetic months within a year. It is expressed as follows:

MV =
PMmax − PMmin

Pwaveyear

, (28)

where PMmax and PMmin are the monthly maxima and minima of mean wave power,
respectively. MV offers a finer temporal resolution compared to SV, providing perspectives
into intra-annual variability. This is particularly useful for regions with significant monthly
fluctuations, enabling better planning for energy capture and device operation.

• Results

Temporal Variability: Understanding temporal variability is crucial for evaluating the
consistency and reliability of wave energy resources over different time scales. The three
key metrics, namely COV, SV, and MV, were used to quantify wave power fluctuations and
identify stable regions suitable for WEC deployment. COV analysis shown in Figure 29a
highlights regions with significant variability over the entire 42-year dataset. The North Sea
demonstrates higher variability compared to the more energetic western regions, where
wave power is more consistent. SV and MV analysis shown in Figure 29b,c provide
perspectives into shorter-term fluctuations. Coastal areas, including the Irish Sea and
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the English Channel, exhibit reduced variability in both seasonal and monthly metrics,
indicating more stable wave power conditions. These areas may be favourable for consistent
energy generation, despite their lower overall energy potential compared to the Atlantic-
facing regions.

(a) COV (b) SV (c) MV

Figure 29. Wave power temporal variability indexes (scaled to maximum) (Reproduced with permis-
sion from [91]. 2023, Rizaev, I. G., et al.).

Multifractal Spectra Analysis: For the first time, multifractal spectra of the COV were
Analysed to understand wave power variability across annual COVY, seasonal COVS, and
monthly COVM scales. The analysis revealed that annual variability COVY peaked in 2007,
while the lowest variability occurred in 1986 (see Figure 30a). Seasonal variability COVS

was highest in winter and summer, with spring and autumn showing moderate levels (see
Figure 30b). Monthly variability COVM highlighted significant differences between months,
with May being the least variable and April showing the greatest variation (see Figure 30c).

(a) Annual COVY (b) Seasonal COVS (c) Monthly COVM

Figure 30. Multifractal spectra of COV for different time periods(Reproduced with permission
from [91]. 2023, Rizaev, I. G., et al.).

5.1.2. Site-Specific Assessments and Optimisation

The site-specific wave climates were analysed for four locations: Isle of Islay, SW Irish
Coast, Cantabrian Sea, and West of Sardinia. These locations represent diverse marine
environments with varying wave conditions critical for the optimisation of the TALOS-
WEC. Figure 31 provides joint probability distributions of significant wave height Hs and
energy period Te at each site, offering a comprehensive overview of the most probable sea
states. The wave climate at Isle of Islay is characterised by relatively high energy conditions,
with Hs frequently exceeding 2.5 m and Te centred around 7.5 s, making this location ideal
for TALOS-WEC deployment due to its consistent wave energy availability. Similarly, the
SW Irish Coast exhibits high energy conditions, with Hs ranging from 2.0 to 3.0 m and
Te also peaking near 7.5 s, ensuring efficient energy capture and stable energy resources.
In contrast, the Cantabrian Sea demonstrates slightly longer energy periods averaging
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8.5 s and Hs between 1.5 and 2.5 m, requiring adjustments to the device’s dimensions,
such as increasing its width to 47 m, to optimise energy extraction. Finally, the West of
Sardinia features distinct wave conditions with shorter energy periods (3.5–4.5 s) and Hs

generally below 1.5 m, posing challenges for large-scale deployment. However, reducing
the TALOS-WEC’s width to 10 m can align its resonance frequency with the local wave
climate, enabling some energy capture despite the limited energy potential.

(a) Isle of Islay (b) SW Irish coast

(c) Cantabrian Sea (d) West of Sardinia

Figure 31. Probability of occurrence of a sea state for four wave climates (Reproduced with permission
from [54]. 2023, Oikonomou, C., et al.).

5.1.3. Uncertainty Mitigation and Reliability Improvement in Wave Energy Resource
Assessments

This subsection highlights efforts to quantify and reduce uncertainties in wave energy
resource assessments, addressing issues such as wind speed errors, modelling assumptions,
and inaccuracies in extreme wave conditions. Advanced statistical metrics and bias correc-
tion techniques were applied to improve the reliability of energy predictions and optimise
site selection, ensuring more effective deployment of WECs.

• Wave Energy Flux and Uncertainty Metrics

Wave energy flux per unit crest length Pwave in (24) is a critical parameter in assessing
wave energy resources. It quantifies the transport of energy by waves. Accurate estima-
tion of Hs and Te is essential for reliable wave energy assessments, as any error in them
propagates directly to errors in Pwave.

To quantify the uncertainties in the modelled data, several statistical metrics were
employed, including (1) bias, (2) root-mean-squared difference (RMSD), and (3) Pearson
correlation coefficient r.

Bias measures the systematic error between modelled Mi and observed Oi values. It is
calculated as follows:
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Bias =
1
n

n

∑
i=1

(Mi − Oi), (29)

where n is the total number of data points. A positive bias indicates an overestimation,
while a negative bias signals underestimation. RMSD evaluates the magnitude of deviations
between modelled and observed values, providing an aggregated measure of accuracy:

RMSD =

√
1
n

n

∑
i=1

(Mi − Oi)2. (30)

Unlike bias, RMSD captures both systematic and random errors, offering perspectives
into overall model performance. Pearson’s r assesses the linear relationship between
modelled and observed datasets:

r = ∑n
i=1(Mi − M̄)(Oi − Ō)√

∑n
i=1(Mi − M̄)2 ∑n

i=1(Oi − Ō)2
, (31)

where M̄ and Ō are the mean modelled and observed values, respectively. A high r
value (close to 1) indicates strong agreement between the datasets, while a low r suggests
discrepancies.

• Bias Correction Techniques

Two primary bias correction (BC) techniques were employed to improve model ac-
curacy, including (1) the delta-change (DC) method and (2) empirical quantile mapping
(EQM) [95,96]. The DC method applies a constant adjustment ∆ to the modelled data:

Ci = Mi + ∆, (32)

where Ci is the corrected value and ∆ = Oi − Mi. The EQM method adjusts modelled data
to align their statistical distribution with observed data:

∆(qj) = CDF−1
M (qj)− CDF−1

O (qj), (33)

where CDF−1 represents the inverse cumulative distribution function. Corrected values
are computed as C(qj) = M(qj) + f (∆(qj), nq).

To provide a comprehensive framework for addressing uncertainties in wave energy
resource assessments, the study integrated uncertainty exploration, evaluation techniques,
and mitigation measures into a structured process. This approach ensures systematic
identification and correction of errors in modelled data, particularly for critical parameters
such as significant wave height Hs and energy period Te.

• Comparison of Metrics and BC Efficiency

A summary of the performance of the modelled dataset against in situ observations
for significant wave height Hs and mean wave period Tm is presented here. Additionally,
the efficiency of bias correction methods, BC-DC and BC-EQM, is evaluated. Table 13
combines the key metrics for the original model and the bias-corrected datasets, allowing
for a streamlined comparison.

The table highlights that both DC and EQM effectively eliminate bias for both Hs and
Tm, with EQM demonstrating slightly superior performance in reducing RMSD for Tm

(0.43 s). Pearson correlation coefficients r remain consistent across all methods, indicating a
robust agreement between modelled and observed datasets. For Hs, EQM preserves the
observed 95th percentile values more accurately than delta-change, making it a preferable
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method for assessing extreme wave conditions. Similarly, for Tm, EQM achieves the lowest
RMSD and aligns closely with observed median and 95th percentile values.

Table 13. Comparison of observed, original model, and bias-corrected datasets for Hs and Tm.

Metric Observed Model (Original) Model (BC-DC) Model (BC-EQM)

Hs (m)

Mean 1.08 1.03 1.08 1.08

Bias − −0.04 0.00 0.00

RMSD − 0.23 0.22 0.22

50th Percentile 0.83 0.80 0.84 0.84

95th Percentile 2.69 2.56 2.60 2.69

Pearson r − 0.96 0.96 0.96

Tm (s)

Mean 4.07 3.83 4.07 4.06

Bias − −0.24 0.00 0.00

RMSD − 0.55 0.49 0.43

50th Percentile 3.91 3.65 3.89 3.91

95th Percentile 5.83 5.86 6.10 5.83

Pearson r − 0.89 0.89 0.89

5.2. WP3.2—Efficiency Testing

Efficiency testing is critical for assessing the TALOS-WEC’s performance under both
controlled and marine environments. This phase involves numerical modelling, experi-
mental validation, and performance metrics to optimise energy capture and hydrodynamic
efficiency.

The energy conversion efficiency is evaluated using the following equation:

η =
Pconverted

Pwave
=

∫ Te
0 FPTO(t) · vrel(t) dt

0.5ρgH2
s Cg Aw

, (34)

This equation highlights the proportional relationship between wave-induced motion
and energy conversion efficiency.

A comparison of numerical predictions and experimental results (wave tank testing)
underscored the dominance of surge and heave modes in energy capture. Laboratory
experimental results for RAOs closely matched numerical predictions, validating the
hydrodynamic model’s reliability for performance evaluations. Pitch modes, however,
remained less effective due to their narrow resonance bandwidths [54].

5.3. WP3.3—Array Effects

WP3.3 focuses on understanding and optimising the interactions between multiple
WECs in arrays to maximise energy capture. This involves mitigating destructive inter-
ference, enhancing constructive wave interactions, and optimising device spacing and
alignment to ensure efficient deployment and scalability of WEC technologies like the
TALOS-WEC.

TALOS-WEC project provides foundational perspectives into spatial and temporal
wave dynamics and validates the impact of alignment, spacing, and resonance tuning
on wave interference. The work in [54] offers the primary contribution to WP3.3, using
advanced frequency-domain simulations to analyse hydrodynamic interactions, including
radiation forces, added mass, and wave scattering. Key findings from [54] quantify the
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power enhancement coefficient (PEC) and identify optimal array layouts customised to
various wave climates.

WP3.3 establishes guidelines for WEC farm designs. For example, inter-device spacing
of 1.5–2 wavelengths minimises destructive interference and wave shadowing, while
alignment with dominant wave directions enhances power capture [54]. These strategies
are crucial for achieving energy efficiency and economic viability in real-world marine
environments.

6. WP4: Validation and Cost Analysis
WP4 aims to validate the performance and evaluate the economic feasibility of WECs

to ensure their commercial viability and scalability. It comprises three interconnected tasks:
WP4.1—Validation and Demonstration, which focuses on real-world testing to verify
performance against industry standards and benchmarks; WP4.2—Array Deployment,
addressing challenges in scaling up to multiple WEC arrays and understanding inter-device
interactions; and WP4.3—LCOE Assessment, developing robust techno-economic models
to calculate the LCOE and optimise cost structures, with detailed analyses in [55,56]. These
tasks collectively advance the commercialisation potential of WECs.

6.1. WP4.1—Validation and Demonstration

This sub-package focuses on validating the performance of the TALOS-WEC system
as it transitions from controlled experiments to real-world operational environments. The
primary objectives include rigorous evaluation of energy conversion efficiency, grid inte-
gration capabilities, and scalability, ensuring the system’s readiness for commercialisation.
Building on laboratory tests from WP3.2, which established benchmarks for hydrodynamic
efficiency and power conversion mechanisms, the dominance of surge and heave modes in
energy capture was demonstrated, along with the ability to replicate dynamic wave profiles
and generate consistent PTO forces.

To address commercialisation challenges, WP4.1 emphasises key aspects critical to the
TALOS-WEC’s success. These include modular PTO designs that ensure system scalability
and efficient energy extraction across diverse marine environments, integration of battery
energy storage systems (BESS) to smooth power fluctuations and enhance grid compatibility,
and the demonstration of consistent power output under dynamic wave conditions for
seamless grid integration. Additionally, the system’s robust and adaptable design supports
long-term deployment, ensuring longevity, cost-effectiveness, and operational reliability
[97].

6.2. WP4.2—Array Deployment

This sub-package addresses the scalability of the TALOS-WEC in array configura-
tions, focusing on the challenges and perspectives related to large-scale deployments. By
extending the performance of individual units, WP4.2 aims to optimise array layouts, eval-
uate resource sharing, and address operational challenges unique to array-based energy
capture systems.

6.2.1. Scalability of TALOS-WEC Arrays

The modular design of the TALOS-WEC, established through laboratory validations
and numerical simulations, supports scalability for deployment in arrays. Key principles
enabling scalability include:

• Distributed energy extraction: Arrays of TALOS-WECs exploit constructive wave in-
teractions, enhancing energy capture while mitigating destructive interference effects.
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• Adaptive spacing and alignment: Optimal spacing ensures maximum energy ab-
sorption while minimising wake-induced losses. Alignment with dominant wave
directions improves array performance under varying marine conditions.

• Modular design flexibility: Each TALOS-WEC unit operates independently, allowing
scalable configurations customised to site-specific wave climates and energy demands.

6.2.2. Array Performance and Interference Effects

Numerical modelling and experimental analyses of TALOS-WEC arrays highlight the
importance of managing inter-device interactions, as spacing, alignment, and environmen-
tal factors influence constructive and destructive interference. Optimising layouts mitigates
shadowing effects while ensuring high energy capture efficiency.

6.2.3. Challenges for Large-Scale Deployment

Deploying TALOS-WEC arrays at scale introduces several technical challenges:

• Wake effects and hydrodynamic loads: Arrays face complex wake interactions, which
can reduce energy capture efficiency for downstream units. Advanced simulations are
necessary to model these effects and optimise array configurations.

• Grid integration and power management: Scaling up arrays requires efficient power
conditioning and smoothing. Integration with BESS ensures grid compatibility by
addressing variability in wave energy output.

• Structural and mooring system durability: Large arrays impose significant loads on
mooring and structural systems, especially under extreme marine conditions.

6.3. WP4.3—LCOE Assessment

The LCOE is a pivotal metric for evaluating the economic feasibility of WECs, such
as the TALOS-WEC. This subsection focuses on developing robust techno-economic mod-
els that encompass capital expenditure (CAPEX), operational expenditure (OPEX), pre-
installation cost or pre-operating cost (PC), and decommissioning costs (DC) to calculate
the LCOE and ensure the cost competitiveness of wave energy [55].

6.3.1. Levelised Cost of Wave Energy

The levelised cost of energy (LOCE) represents the average minimum price at which
electricity must be sold to break even over a project’s operational lifespan.

LCOEbase =

CAPEX + ∑u
y=1

OPEXy

(1 + dr)y

∑u
y=1

AEPy

(1 + dr)y

, (35)

where the discount rate dr reflects the time value of money, accounting for the cost of
capital and financial risks associated with the project. The variable u denotes the project’s
operational lifespan in years, encompassing the duration over which the system is expected
to produce energy and incur associated costs. AEPy represents the AEP at year y. AEP is a
pivotal metric in determining the economic viability of wave energy projects, as it directly
impacts the LCOE. AEP quantifies the total energy output of the system over a year and is
calculated using the following equation:

AEP = ηconv × Pwave × availability factor, (36)

where ηconv represents the energy conversion efficiency of the system, a crucial parameter
influenced by the design and operation of the PTO mechanisms. The availability factor
accounts for system downtime caused by maintenance activities, environmental condi-
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tions, or operational inefficiencies, impacting the overall energy output and reliability of
the system.

Optimising AEP is critical for reducing the LCOE and enhancing the economic com-
petitiveness of wave energy technologies. The TALOS-WEC system can achieve higher
AEP through several targeted strategies. PTO Optimisation (as described in Section 3.3.1)
involves fine-tuning the force damping and stiffness of the PTO mechanisms to align with
the dynamic characteristics of site-specific wave climates, thereby maximising energy cap-
ture. Site-Specific Tuning (as described in Section 5.1.2) focuses on customising key device
parameters, such as resonance frequency and mooring configurations, to fully exploit the
energy potential of high-energy wave environments. Additionally, Minimising Downtime
is achieved by implementing predictive maintenance strategies and incorporating robust
design features to enhance the availability factor, ensuring consistent energy output and
long-term system reliability.

6.3.2. Cost Breakdown

CAPEX, OPEX, PC, and sometimes decommissioning costs, can be incorporated to
provide a comprehensive framework for comparing wave energy projects with other
renewable and non-renewable energy sources (see Figure 32). As such, LCOE serves as a
key indicator of the commercial viability of wave energy technologies.

Figure 32. Distribution of CAPEX, OPEX, PC, and DC across the project lifecycle (Reproduced with
permission from [55]. Licensed under CC-BY 4.0, MDPI, 2023.).

• Capital Expenditure (CAPEX)

CAPEX constitutes 50–70% of the levelised cost of energy (LCOE) for wave energy
projects. Key components include device costs (e.g., TALOS-WEC construction and PTO
systems), installation (e.g., mooring systems and vessel mobilisation), and grid connection
(e.g., subsea cables and substations), as depicted in Figure 33. Modular PTO designs and
lightweight structural components enable phased installations and lower material costs,
enhancing economic feasibility.

Geographical factors also influence CAPEX and LCOE. High-energy locations like Bora
Bora achieve favourable LCOE values (£0.282/kWh for two WECs with 3406.32 MWh AEP
and 98% availability), driven by strong wave energy potential and reduced infrastructure
costs. Conversely, harsher climates or less developed regions experience higher CAPEX
and OPEX, underscoring the importance of site-specific planning.

Figure 33. Breakdown of CAPEX costs across device, installation, and grid connection categories
(Reproduced with permission from [55]. Licensed under CC-BY 4.0, MDPI, 2023.).
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Key CAPEX components for wave energy systems include device costs for essential
elements like gravity foundations (EUR 2125), buoys (EUR 8400), translators (EUR 21,120),
stators (EUR 8100), casings (EUR 5300), labour (EUR 25,000), and materials (EUR 10,000).
Electrical system costs cover intra-array cables (EUR 46/m), transmission cables (EUR
72.5/m), communication cables (EUR 2/m), and substations (EUR 168/km). Installation
costs involve deploying WECs (EUR 4100), substations (EUR 10,000), and cables (EUR
500/km). Decommissioning costs include dismantling and recycling these components,
ensuring proper waste management [55].

CAPEX distribution shows structure costs at 38.2%, foundation and mooring at 19.1%,
installation at 10.2%, PTO components at 24.2%, and grid connection at 8.3%. Specific
development costs are EUR 250/kW for site development, EUR 1340/kW for WECs,
EUR 1600/kW for balance of plant, EUR 590/kW for installation, and EUR 420/kW for
decommissioning. Large-scale deployments include WEC and installation costs (EUR
2.5–6.0 million/MW), mooring systems (EUR 0.265/day), and electrical substations (EUR
1.2 million).

A phased investment approach, starting with smaller-scale installations, can reduce
upfront CAPEX, validate performance, and address operational challenges. This strategy
enables optimised resource allocation and risk reduction, improving economic feasibility
for large-scale TALOS-WEC deployments.

• Operational Expenditure (OPEX)

OPEX is vital for the long-term sustainability of wave energy projects, covering regular
and corrective maintenance of the WEC structure and PTO systems, insurance costs to
mitigate environmental and operational risks, and administrative costs for monitoring and
regulatory compliance. IoT-based predictive maintenance systems can reduce downtime
and costs by enabling real-time monitoring and proactive interventions. Insurance pre-
miums can also be lowered through validated system reliability, as highlighted in WP4.1,
improving the economic feasibility of TALOS-WEC over its lifespan.

Figure 34 shows that CAPEX consistently dominates total costs, underscoring the
importance of modular PTO designs and efficient installations in the TALOS-WEC project
to minimise upfront capital expenditures.

Figure 34. CAPEX per unit of case study simulated in the sea area of the USA (Reproduced with
permission from [55]. Licensed under CC-BY 4.0, MDPI, 2023.).

Key OPEX components for wave energy projects include repair and maintenance of
critical systems, such as buoys (EUR 723/year) and generators (EUR 10,000/year), along
with site lease and insurance costs (EUR 5000/year). Annual operational and maintenance
(O&M) expenses account for 29% of OPEX, with overhauls at 15% and replacements at
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45%. Insurance represents 11% of OPEX, with additional costs equal to 1% of CAPEX,
emphasising risk mitigation’s role. OPEX typically ranges from 5–15% of CAPEX, reflecting
its economic significance. Maintenance activities require four vessel-days and sixteen
person-days, with mooring tension adjustments performed periodically (e.g., after 1, 5, and
10 years). Replacements contribute 1.5% of CAPEX, underscoring the need for effective
lifecycle planning [55].

• Decommissioning costs (DC)

Decommissioning costs, while representing a smaller portion of total costs, include
dismantling and recycling components at the end of the project lifespan.

• Pre-installation Costs (PC)

PC encompasses early-stage expenses in wave energy projects, such as site selection,
environmental assessments, permitting, farm design, and consenting procedures. These
costs are critical for ensuring well-prepared deployment strategies that align with regulatory
and site-specific requirements.

Including PC in the total cost significantly affects LCOE calculations by shifting the
project timeline earlier, necessitating the compounding of PC to reflect its future value at
the project’s formal start. The revised LCOE calculation is shown in Equation (37):

LCOErevised =
∑u

y=i−3
PCy + CAPEXy + OPEXy + DCy

(1 + dr)y

∑u
y=i−3

AEPy

(1 + dr)y

, (37)

Efficient PC management through strategies such as phased investments and modular
CAPEX structures minimises financial risks and improves economic feasibility. By address-
ing pre-installation inefficiencies like permitting delays, projects can further enhance LCOE
and operational viability.

6.3.3. Seasonal and Geographic Variability

Beyond costs, seasonal and geographic variability significantly influence the perfor-
mance and economic viability of wave energy systems like TALOS-WEC. The monthly
energy production (MEP) can be modelled as [56]:

MEP = Pwave × Wabsorber × ηwave-to-wire × availability factor × hours per month × nWEC devices, (38)

where Wabsorber is the absorber width, which is specified as 30 m, ηwave-to-wire denotes the
wave-to-wire efficiency, calculated at 20%, and nWEC devices refers to the number of wave
energy converter devices deployed in the system.

Wave power varies significantly with seasons. Winter months typically exhibit higher
wave power due to stronger winds and ocean dynamics, while summer months see reduced
wave activity. For example, at Location A, wave power in winter reaches 109.63 kW/m com-
pared to just 17.79 kW/m in summer. This seasonal variation directly affects energy capture,
necessitating robust designs and energy storage solutions to ensure consistent supply.

Geographic location also plays a critical role in determining wave energy potential.
Locations with higher Hs and Te (see (24)), such as Location A in Figure 35, exhibit sig-
nificantly greater energy potential compared to less dynamic wave environments. This
figure highlights annual mean wave power variations across locations, emphasising the
importance of site selection for TALOS-WEC deployments.
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Figure 35. Annual mean wave power at different locations around the British Isles, displaying wave
power density in kW/m. The color scale represents wave energy flux, with red indicating higher
energy levels and blue indicating lower values. The marked locations correspond to key study
sites: (A) off the west coast of Scotland, (B) in the North Sea near Norway, and (C) in the Irish Sea.
(Reproduced with permission from [56]. 2024, DiLellio, J.A., et al.).

6.3.4. Advanced Financial Metrics

Having established the importance of costs and seasonal variability, this section
delves into financial models that incorporate these dynamics to assess project viability.
The financial feasibility of TALOS-WEC is assessed by integrating LCOE with NPV and
stochastic models for electricity price forecasting. These advanced metrics provide a
comprehensive evaluation of project profitability and long-term viability [55,56].

NPV complements LCOE by incorporating revenue generation, market value, and
electricity price trends. The NPV formula is given by

NPV =
u

∑
y=1

Ry − Cy

(1 + dr)y − CAPEX, (39)

where Ry is revenue and Cy represents costs at year y. Positive NPV values indicate
economic viability, especially when supported by favourable electricity prices and policy
incentives. The inclusion of NPV enhances the traditional LCOE analysis, accounting for
market uncertainties and policy-driven incentives.

6.3.5. LCOE Sensitivity to Discount Rate and Discount Factor

The LCOE is highly sensitive to the discount rate (dr), which represents the time
value of money and financing costs. Higher discount rates significantly increase the LCOE,
potentially reducing the economic competitiveness of wave energy. For example

• At dr = 11%, the LCOE exceeds $160/MWh, limiting cost competitiveness.
• Lowering dr to 6% reduces the LCOE to approximately $102/MWh, demonstrating

the importance of favourable financing conditions.

The discount factor (DFy), defined as follows:

DFy =
1

(1 + dr)y , (40)

adjusts future costs and revenues to their present value, enabling accurate economic
assessments. Break-even analysis equates the present value of revenues (REVy) and total
costs (TCy) over the project lifespan, as expressed by
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i

∑
y=1

REVy

(1 + dr)y =
i

∑
y=1

TCy

(1 + dr)y . (41)

7. Results and Key Findings
Table 14 summarizes the results and key findings of the study, providing information

on the performance, design, and optimisation of the TALOS-WEC system in various aspects.

Table 14. Summary of results and key findings

Aspect Key Findings

Hydrodynamic Modelling

Heave motion plays a dominant role in energy absorption, exhibiting the highest added mass
(4.2 × 106 kg) and damping coefficient (7.8 × 104 Ns/m). Coupled surge–pitch dynamics are critical
for multi-modal energy transfers, highlighting the importance of addressing transient dynamics in
design.

Numerical Tools WAMIT excels in validating complex configurations, HAMS offers computational efficiency for
iterative designs, and NEMOH is suitable for cost-effective preliminary studies.

Numerical Modelling
The hydraulic PTO system ensures stable energy harvesting with synchronised heave oscillations.
Asymmetric PTO placements, such as PTO2 and PTO3, highlight the need for optimised spatial
design.

Mooring System Effects Slack mooring (MLC1) enhances energy absorption but increases variability and structural instabil-
ity. Moderately slack mooring (MLC2) balances energy efficiency and stability.

Geometric optimisation Shortened and Tailless TALOS configurations excel in energy absorption (8–9 s wave periods).
Lowering the centre of gravity and adding overlapping panels enhance stability and performance.

PTO optimisation Soft springs (KPTO = 250 kN/m) and damping coefficients (BPTO = 150 kNs/m) maximise energy
absorption. Low damping improves efficiency but risks instability.

Condition Monitoring KPCA-LSTM provides computational efficiency for long-term trends, while ANN-LSTM is effective
for real-time monitoring. Combined approaches enhance reliability and reduce downtime.

Control Strategies Full-state MPC delivers the highest power output ( 3.7 MW) but requires significant computational
resources. Reduced-state MPC balances performance ( 3 MW) with efficiency.

Wave Energy Resource Dy-
namics

The highest wave energy potential (>70 kW/m) is west of the UK and Ireland, with peaks in winter
(>140 kW/m). Coastal areas offer moderate but stable energy levels ( 35 kW/m).

Site-Specific Assessments
High-energy sites (Isle of Islay, SW Irish Coast) require minimal optimisation for deployment.
Moderate-energy sites (Cantabrian Sea) need customised adjustments, while low-energy sites (West
of Sardinia) necessitate significant design modifications.

Uncertainty Mitigation Bias correction techniques (e.g., BC-QM) improve data reliability, achieving high correlation (r =
0.96 for Hs), particularly under extreme conditions.

Validation and Demonstra-
tion

Laboratory experiments validated numerical predictions, aligning strongly with real-world perfor-
mance. Modular, scalable designs ensure efficient array deployment and energy extraction.

LCOE optimisation Competitive LCOE (0.2–0.35 €/kWh) achieved through modular designs, predictive maintenance,
and targeted high-wave-energy deployments. Reactive control improves efficiency and scalability.

8. Discussions and Conclusions
The TALOS-WEC project underscored several valuable lessons for future renewable

energy developments. A key factor was the use of a structured approach to project manage-
ment, dividing tasks into distinct WPs to effectively handle the complexity of integrating
multiple technical fields. For instance, WP1 concentrated on the foundational design and
optimisation of the WEC, including hydrodynamic interactions (WP1.1), geometric refine-
ment (WP1.2), and PTO system development (WP1.3). WP2, on the other hand, tackled
reliability and survivability by integrating smart sensors (WP2.1), employing AI-based
condition monitoring (WP2.2), developing predictive maintenance strategies (WP2.3), and
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implementing adaptive control systems for variable sea states (WP2.4). This division al-
lowed for parallel advancements in different areas, a method that can be broadly applied
in multidisciplinary endeavours.

The findings from the hydrodynamic and numerical modelling of the TALOS-WEC
provide a comprehensive understanding of the system’s energy absorption mechanisms,
dynamic behaviour, and optimisation potential. The dominance of heave motion in ver-
tical energy capture underscores the importance of designing systems that maximise its
efficiency, particularly by tuning frequency-dependent parameters to leverage resonance
effects. The coupled interactions between surge and pitch reveal critical perspectives into
multi-modal energy transfers, necessitating a holistic approach to optimising rotational-
translational dynamics.

Numerical tools such as WAMIT, HAMS, and NEMOH demonstrate complementary
strengths, making them invaluable for different phases of the design process. While WAMIT
provides high accuracy for validating advanced configurations, HAMS offers computa-
tional efficiency for iterative design iterations, and NEMOH is suitable for cost-effective
preliminary studies. These tools, combined with hydrodynamic modelling, support a
robust and efficient design pipeline.

The optimisation of mooring configurations, PTO parameters, and geometric features
like the centre of gravity and overlapping panels significantly enhances energy capture and
system stability. However, trade-offs between energy absorption and structural integrity
remain, particularly in slack mooring systems and low damping configurations. Intelligent
condition monitoring frameworks, integrating KPCA-LSTM and ANN-LSTM models,
offer reliable solutions for real-time and long-term system health assessments, ensuring
operational safety and efficiency.

Control strategies further refine energy performance, with full-state MPC achieving
superior energy output but at higher computational costs. Reduced-state MPC balances
computational demand and performance, making it an effective alternative for moderate
conditions. These findings highlight the importance of tailoring control strategies to the
specific operational context and energy capture objectives.

Wave energy resource assessments emphasize the need for strategic site selection,
balancing high-energy potential with temporal stability. Locations such as the Isle of Islay
and SW Irish Coast offer prime conditions for large-scale deployment with minimal optimi-
sation. Conversely, low-energy sites like Sardinia require significant design modifications
to achieve operational feasibility.

The validation and demonstration phases confirm the reliability of the TALOS-WEC’s
numerical models, with laboratory experiments aligning closely with real-world perfor-
mance metrics. Modular and scalable designs enhance array deployment potential, en-
suring efficient energy extraction even in large-scale applications. Furthermore, the op-
timisation strategies for reducing the levelised cost of energy (LCOE) demonstrate the
system’s economic viability, supported by advanced PTO designs, predictive maintenance,
and strategic geographic deployments.

The development and optimisation of the TALOS-WEC highlight its potential as a
reliable and efficient wave energy converter, capable of addressing the challenges associated
with dynamic marine environments. By leveraging advanced hydrodynamic modelling,
numerical tools, and intelligent monitoring frameworks, the system achieves significant
improvements in energy capture, operational stability, and cost-effectiveness.

Key advancements in PTO design, geometric optimisation, and control strategies
enhance the TALOS-WEC’s adaptability across diverse wave climates. The system’s mod-
ular and scalable design supports large-scale deployments, while its competitive LCOE
positions it as a viable solution in the renewable energy market. Site-specific assessments
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and resource evaluations further refine its deployment strategy, aligning performance with
local wave conditions to maximise energy yield.

The knowledge gained from this project can contribute to improving the effectiveness
and dependability of other renewable energy technologies, such as wind turbines and tidal
energy converters.

9. Challenges and Future Work
The development of TALOS-WEC faced several challenges that provided valuable

learning opportunities for future advancements. One significant issue was accurately
modelling the flexible connections between the hull and the internal reaction mass, which
introduced considerable non-linearities into the system. To address this, bespoke numerical
models, such as the hybrid frequency-time domain approach, were developed. While
these efforts ultimately enhanced system understanding, they also caused delays. Another
challenge was integrating smart sensors for real-time monitoring. Ensuring reliable data
transmission in harsh marine environments required iterative hardware testing and re-
calibration. In hindsight, more extensive prototype testing in controlled settings could
have mitigated some of these delays. Building on these experiences, future work will focus
on real-world validation through large-scale marine trials, grid integration solutions, and
adaptive biomimetic designs. These efforts aim to ensure the scalability and commercialisa-
tion of the TALOS-WEC, contributing to global renewable energy goals and advancing the
transition to sustainable energy solutions.
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17. Martić, I.; Degiuli, N.; Grlj, C.G. Scaling of Wave Energy Converters for Optimum Performance in the Adriatic Sea. Energy 2024,
294, 130922.

18. Yun, S.-M.; Shin, H.-S.; Park, J.-C. Two-Way Coupling Simulation of Fluid-Multibody Dynamics for Estimating Power Generation
Performance of Point Absorber Wave Energy Converters. Energies 2024, 17, 930.

19. Phan, C.B.; Ahn, K.K. Experimental Investigation of a Point Absorber Wave Energy Converter Using an Inertia Adjusting
Mechanism. Appl. Sci. 2024, 14, 5506.

20. Gaspar, J.F.; Pinheiro, R.F.; Mendes, M.J.; Kamarlouei, M.; Soares, C.G. Review on Hardware-in-the-Loop Simulation of Wave
Energy Converters and Power Take-Offs. Renew. Sustain. Energy Rev. 2024, 191, 114144.

21. Chen, G.; Kuang, R.; Li, W.; Cui, K.; Fu, D.; Yang, Z.; Shen, Y. Numerical Study on Efficiency and Robustness of Wave Energy
Converter-Power Take-Off System for Compressed Air Energy Storage. Renew. Energy 2024, 232, 121080.

22. Yang, B.; Duan, J.; Chen, Y.; Wu, S.; Li, M.; Cao, P.; Jiang, L. A critical survey of power take-off systems based wave energy
converters: Summaries, advances, and perspectives. Ocean Eng. 2024, 298, 117149.

23. Sun, P.; Wang, J. Long-Term Variability Analysis of Wave Energy Resources and Its Impact on Wave Energy Converters along the
Chinese Coastline. Energy 2024, 288, 129644.

24. Kara, F. Hydrodynamic Performances of Wave Energy Converter Arrays in Front of a Vertical Wall. Ocean Eng. 2021, 235, 109459.
25. Falcão, A.; Gato, L.; Nunes, E. A Novel Radial Self-Rectifying Air Turbine for Use in Wave Energy Converters. Part 2: Results

from Model Testing. Renew. Energy 2013, 53, 159–164.
26. Simmons, J.W., II; Van de Ven, J.D. A Comparison of Power Take-Off Architectures for Wave-Powered Reverse Osmosis

Desalination of Seawater with Co-Production of Electricity. Energies 2023, 16, 7381.
27. Mehdipour, H.; Amini, E.; Naeeni, S.T.O.; Neshat, M.; Gandomi, A.H. Optimization of Power Take-Off System Settings and

Regional Site Selection Procedure for a Wave Energy Converter. Energy Convers. Manag. X 2024, 22, 100559.
28. Abbaspour, M.; Farshforoush, A. Optimal Arrangements for Semi-Submersible Cylindrical Wave Energy Converters: A Study in

Layout Optimization and Power Extraction Efficiency. Ocean Eng. 2024, 296, 116833.
29. Noad, I.F.; Porter, R. Optimization of Arrays of Flap Type Oscillating Wave Surge Converters. Appl. Ocean Res. 2015, 50, 237–253.
30. Mansouri, A.; El Magri, A.; Lajouad, R.; Giri, F.; Watil, A. Nonlinear Control Strategies with Maximum Power Point Tracking for

Hybrid Renewable Energy Conversion Systems. Asian J. Control 2024, 26, 1047–1056.
31. Taylor, C.J.; Bradshaw, A.; Chaplin, R.V.; French, M.; Widden, M.B. Wave Energy Research at Lancaster University: PS Frog and

Frond. In Proceedings of the World Renewable Energy Congress VII, Cologne, Germany, 29 June–5 July 2002.
32. Orecon. Wave Energy Developer Orecon Hits Stormy Waters. Renewable Energy Focus. Available online: http://www.

renewableenergyfocus.com/view/5700/wave-energy-developer-orecon-hits-stormy-waters (accessed on 29 October 2024).
33. Tan, M.; Cen, Y.; Yang, Y.; Liu, X.; Si, Y.; Qian, P.; Zhang, D. Power Absorption Modelling and Analysis of a Multi-Axis Wave

Energy Converter. IET Renew. Power Gener. 2021, 15, 3368–3384.
34. Antoniadis, I. A.; Georgoutsos, V.; Paradeisiotis, A.; Kanarachos, S.; Gryllias, K. Preliminary Assessment of a Wave Energy

Conversion Principle, Using Fully Enclosed Multi-Axis Inertial Reaction Mechanisms. In Proceedings of the 2016 Sound and
Vibration Conference, Athens, Greece, 10–14 July 2016; pp. 10–14.

https://iea.blob.core.windows.net/assets/52f66a88-0b63-4ad2-94a5-29d36e864b82/KeyWorldEnergyStatistics2021.pdf
https://iea.blob.core.windows.net/assets/52f66a88-0b63-4ad2-94a5-29d36e864b82/KeyWorldEnergyStatistics2021.pdf
http://dx.doi.org/10.1201/9781003508779-72
http://dx.doi.org/10.1201/9781003508779-72
http://www.renewableenergyfocus.com/view/5700/wave-energy-developer-orecon-hits-stormy-waters
http://www.renewableenergyfocus.com/view/5700/wave-energy-developer-orecon-hits-stormy-waters


J. Mar. Sci. Eng. 2025, 13, 279 52 of 54

35. Shadmani, A.; Nikoo, M.R.; Gandomi, A.H.; Chen, M. An Optimization Approach for Geometry Design of Multi-Axis Wave
Energy Converters. Energy 2024, 301, 131714.

36. Zhang, D.; George, A.; Wang, Y.; Gu, X.; Li, W.; Chen, Y. Wave Tank Experiments on the Power Capture of a Multi-Axis Wave
Energy Converter. J. Mar. Sci. Technol. 2015, 20, 520–529.

37. Huang, S.; Shi, H.; Cao, F.; Tan, J.; Cheng, H.; Li, D.; Liu, S.; Gong, H.; Tao, J. Experimental Study on Interaction Between Degrees
of Freedom in a Wave Buoy. J. Ocean Univ. China 2019, 18, 1256–1264.

38. Cordonnier, J.; Gorintin, F.; De Cagny, A.; Clément, A.H.; Babarit, A. SEAREV: Case Study of the Development of a Wave Energy
Converter. Renew. Energy 2015, 80, 40–52.

39. Zhang, D.; Aggidis, G.; Wang, Y.; McCabe, A.; Li, W. Experimental Results from Wave Tank Trials of a Multi-Axis Wave Energy
Converter. Appl. Phys. Lett. 2013, 103, 10.

40. Wu, Y.; Sheng, W.; Taylor, C.J.; Aggidis, G.; Ma, X. Enhancing Long-Term Predictive Accuracy in Wave Energy Converters
Through a Dual-Model Approach. In Proceedings of the ISOPE International Ocean and Polar Engineering Conference, Rhodes,
Greece, 16–21 June 2024.

41. Cummins, W.E. The Impulse Response Function and Ship Motions; Report No. 1661; Department of the Navy, David Taylor Model
Basin: Washington, DC, USA, 1962.

42. Jama, M.; Mon, B.F.; Wahyudie, A.; Mekhilef, S. Maximum Energy Capturing Approach for Heaving Wave Energy Converters
Using an Estimator-Based Finite Control Set Model Predictive Control. IEEE Access 2021, 9, 67648–67659.

43. Ogden, D.; Koukouvinis, F.; Sheng, W.; Aggidis, G.; Anagnostopoulos, J.; Bharath, A. Numerical Modelling of the TALOS
Wave Energy Converter—Using HydroChrono and Ansys Fluent. In Proceedings of the 15th European Wave and Tidal Energy
Conference, Bilbao, Spain, 3–7 September 2023; pp. 532-1–532-6.

44. Sheng, W.; Aggidis, G. Optimisations for Improving Energy Absorption of TALOS-WEC. In Proceedings of the Thirty-Fourth
(2024) International Ocean and Polar Engineering Conference, Rhodes, Greece, 16–21 June 2024; pp. 608–615.

45. Sheng, W.; Tapoglou, E.; Ma, X.; Taylor, C.J.; Dorrell, R.M.; Parsons, D.R.; Aggidis, G. Hydrodynamic Studies of Floating
Structures: Comparison of Wave-Structure Interaction Modelling. Ocean Eng. 2022, 249, 110878.

46. Sheng, W.; Aggidis, G. Hydrodynamic Comparisons of TALOS Wave Energy Converter Using Panel Methods. In Proceedings of
the ISOPE 2023, Ottawa, Canada, 19–23 June 2023; pp. 597–604.

47. Leon-Quiroga, J.A.; Ogden, D.; Husain, S.; Sheng, W.; Aggidis, G.; Bharath, A. Design and Performance Evaluation of a Resistive
Control Using a Hydraulic PTO System for the TALOS Wave Energy Converter. In Proceedings of the Thirty-Fourth (2024)
International Ocean and Polar Engineering Conference, Rhodes, Greece, 16–21 June 2024; pp. 649–655.

48. Loukogeorgaki, E.; Michaelides, C.; Sheng, W.; Aggidis, G. Effects of Mooring Lines on TALOS-WEC Performance. In Proceedings
of the Thirty-Fourth (2024) International Ocean and Polar Engineering Conference, Rhodes, Greece, 16–21 June 2024; pp. 616–623.

49. Hall, C.; Sheng, W.; Wu, Y.; Aggidis, G. The Impact of Model Predictive Control Structures and Constraints on a Wave Energy
Converter with Hydraulic Power Take-Off System. Renew. Energy 2024, 224, 120172.

50. Hall, C.; Wu, Y.; Sheng, W.; Aggidis, G. The Impact of Control Structure and Constraints on the Performance of a Wave Energy
Converter with a Hydraulic PTO System. In Proceedings of the 2023 International Society of Offshore and Polar Engineers
(ISOPE) Conference, Ottawa, Canada, 19–23 June 2023.

51. Wu, Y.; Sheng, W.; Taylor, J.; Aggidis, G.; Ma, X. TALOS Wave Energy Converter Power Output Prediction Analysis Based on a
Machine Learning Approach. Int. J. Offshore Polar Eng. 2024, 34, 306–313.

52. Hall, C.; Wu, Y.; Sheng, W.; Aggidis, G. The Impact of Linear and Nonlinear Control Structures on the Performance of a Wave
Energy Converter. Int. J. Offshore Polar Eng. 2024, 34, 422–430.

53. Hall, C.; Sheng, W.; Yavuz, H.; Aggidis, G. PTO Control Design for a Multi-Axis WEC Device. In Proceedings of the Thirty-Fourth
(2024) International Ocean and Polar Engineering Conference, Rhodes, Greece, 16–21 June 2024; pp. 641–648.

54. Oikonomou, C.; Sheng, W.; Korres, G.; Aggidis, G. Operating of TALOS Wave Energy Converter in Different Wave Climates. In
Proceedings of the ISOPE Ottawa, Canada, 19–23 June 2023; pp. 650–656.

55. Guo, C.; Sheng, W.; De Silva, D.G.; Aggidis, G. A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic
Model. Energies 2023, 16, 2144.

56. DiLellio, J.A.; Butler, J.C.; Rizaev, I.; Sheng, W.; Aggidis, G. Evaluating the Long-Term Investment Opportunities of Wave Energy
Conversion with Real Options. In Proceedings of the ISOPE International Ocean and Polar Engineering Conference, Rhodes,
Greece, 16–21 June 2024.

57. Bacelli, G.; Gilloteaux, J.-C.; Ringwood, J. State Space Model of a Hydraulic Power Take-Off Unit for Wave Energy Conversion
Employing Bond Graphs. In Proceedings of the World Renewable Energy Conference, Glasgow, UK, 19–25 July 2008.

58. Duarte, T.; Sarmento, A.; Alves, M.; Jonkman, J. State-Space Realization of the Wave-Radiation Force Within FAST; Technical Report;
National Renewable Energy Lab (NREL): Golden, CO, USA, 2013.

59. Tavakoli, A.; Roohi, E.; Sanaee Namaghi, M. Numerical Simulation of Free Surface Water Waves Around Wavy Hydrofoils:
Prediction of Hydrodynamic Coefficients Using Machine Learning. J. Fluids Eng. 2024, 146, 021501.



J. Mar. Sci. Eng. 2025, 13, 279 53 of 54

60. Choi, J.; Kalogirou, A.; Lu, Y.; Bokhove, O.; Kelmanson, M. A Study of Extreme Water Waves Using a Hierarchy of Models Based
on Potential-Flow Theory. Water Waves 2024, 6, 225–277.

61. Li, J.; Hao, H. Structural Damage Quantification Using Long Short-Term Memory (LSTM) Auto-Encoder and Impulse Response
Functions. J. Infrastruct. Intell. Resil. 2024, 3, 100086.

62. Zobel, O.M.; Trainotti, F.; Rixen, D.J. Enabling Experimental Impulse-Based Substructuring Through Time Domain Deconvolution
and Downsampling. arXiv 2024, arXiv:2404.14802.

63. Zabala, I.; Henriques, J.C.C.; Kelly, T.E.; Ricci, P.P.; Blanco, J.M. Post-Processing Techniques to Improve the Results of Hydrody-
namic Boundary Element Method Solvers. Ocean Eng. 2024, 295, 116913.

64. Raghavan, V.; Loukogeorgaki, E.; Mantadakis, N.; Metrikine, A.; Lavidas, G. HAMS-MREL: A New Open Source Multiple Body
Solver for Marine Renewable Energies. Renew. Energy 2024, 237, 121577.

65. Raghavan, V.; Lavidas, G.; Metrikine, A.V. Comparing Open-Source BEM Solvers for Analysing Wave Energy Converters. J. Phys.
Conf. Ser. 2024, 2647, 072002.

66. Asiikkis, A.T.; Grigoriadis, D.G.; Vakis, A.I. Wave-to-Wire Modelling and Hydraulic PTO Optimization of a Dense Point Absorber
WEC Array. Renew. Energy 2024, 237, 121620.

67. Jia, H.; Pei, Z.; Tang, Z.; Li, M. Properties Analysis of Hydraulic PTO Output Fluctuation Regulating Based on Accumulator.
Actuators 2024, 13, 261.

68. Yi, Y.; Sun, K.; Liu, Y.; Ma, G.; Zhao, C.; Zhang, F.; Zhang, J. Experimental and CFD Assessment of Harmonic Characteristics of
Point-Absorber Wave-Energy Converters with Nonlinear Power Take-Off System. J. Mar. Sci. Eng. 2023, 11, 1860.

69. Rui, S.; Zhou, Z.; Gao, Z.; Jostad, H.P.; Wang, L.; Xu, H.; Guo, Z. A Review on Mooring Lines and Anchors of Floating Marine
Structures. Renew. Sustain. Energy Rev. 2024, 199, 114547.

70. Alkhabbaz, A.; Hamza, H.; Daabo, A.M.; Yang, H.S.; Yoon, M.; Koprulu, A.; Lee, Y.H. The Aero-Hydrodynamic Interference
Impact on the NREL 5-MW Floating Wind Turbine Experiencing Surge Motion. Ocean Eng. 2024, 295, 116970.

71. Zhang, C.; Li, D.; Ding, Z.; Liu, Y.; Cao, F.; Ning, D. Wave Energy Converter with Multiple Degrees of Freedom for Sustainable
Repurposing of Decommissioned Offshore Platforms: An Experimental Study. Appl. Energy 2024, 376, 124204.

72. Li, D.; Duan, W.; Huang, L.; Lu, W.; Zhang, X.; Li, X.; Zhang, J. Effects of the Current-Wave Interaction on a Cylinder Platform.
Ships Offshore Struct. 2024, 19, 935–947.

73. Michele, S.; Zheng, S.; Renzi, E.; Borthwick, A.G.L.; Greaves, D.M. Hydroelastic Theory for Offshore Floating Plates of Variable
Flexural Rigidity. J. Fluids Struct. 2024, 125, 104060.

74. Han, Z.; Cao, F.; Tao, J.; Zhang, C.; Shi, H. Study on the Energy Capture Spectrum (ECS) of a Multi-DOF Buoy with MMR-PTO
Damping. Ocean Eng. 2024, 294, 116698.

75. Chaudhary, V.; Gaur, P.; Rustagi, S. Sensors, Society, and Sustainability. Sustain. Mater. Technol. 2024, e00952.
76. Gao, L.; Xu, X.; Han, H.; Yang, W.; Zhuo, R.; Wei, Q.; Hu, N. A Broadband Hybrid Blue Energy Nanogenerator for Smart Ocean

IoT Network. Nano Energy 2024, 127, 109697.
77. Lei, Y. A Wave Forecasting Method Based on Probabilistic Diffusion LSTM Network for Model Predictive Control of Wave Energy

Converters. Appl. Soft Comput. 2024, 164, 112006.
78. Xu, S.; Wang, S.; Soares, C.G. Prediction of Mooring Tensions of a Wave Energy Converter Considering the Effects of Nonlinear

Axial Stiffness by a Deep Learning Neural Network. Ocean Eng. 2024, 305, 117810.
79. Ahmed, A.A.M.; Jui, S.J.J.; Al-Musaylh, M.S.; Raj, N.; Saha, R.; Deo, R.C.; Saha, S.K. Hybrid Deep Learning Model for Wave

Height Prediction in Australia’s Wave Energy Region. Appl. Soft Comput. 2024, 150, 111003.
80. Ouro-Koura, H.; Jung, H.; Li, J.; Borca-Tasciuc, D.A.; Copping, A.E.; Deng, Z.D. Predictive Model Using Artificial Neural Network

to Design Phase Change Material-Based Ocean Thermal Energy Harvesting Systems for Powering Uncrewed Underwater Vehicles.
Energy 2024, 301, 131660.

81. Jie, L.; Bao-ji, Z.; Yu-yang, L.; Li-qiao, F. Multi-Objective Optimisation Research of Ship Form in Waves Based on Kernel Principal
Component Analysis. Ships Offshore Struct. 2024, 1–14. [https://doi.org/10.1080/17445302.2024.2353979]

82. Wu, K.; Sun, Y. Short Term Wind Power Prediction Based on Empirical Mode Decomposition and Kernel Principal Component
Analysis. In Proceedings of the 5th International Seminar on Artificial Intelligence, Networking and Information Technology
(AINIT), Nanjing, China, 29–31 March 2024; pp. 1810–1816.

83. Rajanand, A.; Singh, P. ErfReLU: Adaptive Activation Function for Deep Neural Network. Pattern Anal. Appl. 2024, 27, 68.
84. Zhang, X.; Bose, I. Reliability Estimation for Individual Predictions in Machine Learning Systems: A Model Reliability-Based

Approach. Decis. Support Syst. 2024, 186, 114305.
85. Hassan, M.K.; Youssef, H.; Gaber, I.M.; Shehata, A.S.; Khairy, Y.; El-Bary, A.A. A Predictive Machine Learning Model for

Estimating Wave Energy Based on Wave Conditions Relevant to Coastal Regions. Results Eng. 2024, 21, 101734.
86. Firozjaei, M.R.; Hajebi, Z.; Naeeni, S.T.O.; Akbari, H. Discharge Performance of a Submerged Seawater Intake in Unsteady Flows:

Combination of Physical Models and Decision Tree Algorithms. J. Water Process Eng. 2024, 60, 105198.

https://doi.org/10.1080/17445302.2024.2353979


J. Mar. Sci. Eng. 2025, 13, 279 54 of 54

87. Poguluri, S.K.; Bae, Y.H. Enhancing Wave Energy Conversion Efficiency Through Supervised Regression Machine Learning
Models. J. Mar. Sci. Eng. 2024, 12, 153.

88. Rokni, M.N.; Tavasoli, O.; Esmaeilabadi, R.; Saraf, A. Evaluating Ground Vibration Attenuation Through Leca-Filled Trenches: A
Support Vector Machine Approach. Eng. Rep. 2024, 6, e12960.

89. Simmons, J.W., II; Van de Ven, J.D. Limits on the Range and Rate of Change in Power Take-Off Load in Ocean Wave Energy
Conversion: A Study Using Model Predictive Control. Energies 2023, 16, 5909.

90. KhalafAnsara, H.M.; Keighobadi, J. Deep Reinforcement Learning with Immersion-and Invariance-Based State Observer Control
of Wave Energy Converters. Int. J. Eng. Trans. C: Aspects 2024, 37, 1085–1097.

91. Rizaev, I. G.; Dorrell, R. M.; Oikonomou, C. L. G.; Tapoglou, E.; Hall, C.; Aggidis, G. A.; Parsons, D. R. Wave Power Resource
Dynamics for the Period 1980–2021 in Atlantic Europe’s Northwest Seas. In Proceedings of the 33rd International Ocean and
Polar Engineering Conference, Ottawa, Canada, 18–23 June 2023.

92. The WAVEWATCH III® Development Group. User Manual and System Documentation of WAVEWATCH III® Version 6.07.
NOAA/NWS/NCEP/MMAB Technical Note 333, 465p. 2019. Available online: https://www.envlab.eu/documents/Papers/
WaveWatch-III_manual_v.6.0.7.pdf (accessed on 23 January 2025).

93. Selman-Caro, D.; Gorr-Pozzi, E.; Odériz, I.; Díaz-Hernández, G.; García-Nava, H.; Silva, R. Assessing Wave Energy for Possible
WEC Installations at La Serena, Central Chile. Ocean Eng. 2024, 295, 116854.

94. Gohari, A.; Akpınar, A. Projected Changes in Wind Speed and Wind Energy Resources Over the Persian Gulf Based on Bias
Corrected CMIP6 Models. J. Clim. Chang. 2024. [https://dx.doi.org/10.2139/ssrn.5036638]

95. Liu, T.; Zhu, X.; Tang, M.; Guo, C.; Lu, D. Multi-Model Ensemble Bias-Corrected Precipitation Dataset and Its Application in
Identification of Drought-Flood Abrupt Alternation in China. Atmos. Res. 2024, 307, 107481.

96. Dinku, M.B.; Gibre, A.M. Comparison of Bias Correction Methods to Regional Climate Model Simulations for Climate Change
Projection in Muger Subbasin, Upper Blue Nile Basin, Ethiopia. J. Water Clim. Chang. 2024. [https://doi.org/10.2166/wcc.2024.5
91]

97. Satymov, R.; Bogdanov, D.; Dadashi, M.; Lavidas, G.; Breyer, C. Techno-Economic Assessment of Global and Regional Wave
Energy Resource Potentials and Profiles in Hourly Resolution. Appl. Energy 2024, 364, 123119.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.envlab.eu/documents/Papers/WaveWatch-III_manual_v.6.0.7.pdf
https://www.envlab.eu/documents/Papers/WaveWatch-III_manual_v.6.0.7.pdf
https://dx.doi.org/10.2139/ssrn.5036638
https://doi.org/10.2166/wcc.2024.591
https://doi.org/10.2166/wcc.2024.591

	Introduction
	Work Packages (WPs)
	WP1: Concept Development
	WP1.1—Experimental and Numerical Hydrodynamics
	Hydrodynamic Modelling Framework
	Numerical Tools for Hydrodynamic Analysis
	Numerical Modelling
	Validation of TALOS-WEC Numerical Models Using CFD
	Mooring System Effects on Hydrodynamics

	WP1.2: Geometric Optimisation
	Baseline Geometry Studies for Optimisation
	Geometric Modifications
	Geometric Optimisation Strategies

	PTO Design and Optimisation for TALOS-WEC
	Optimisation of the PTO System


	WP2: Survivability, Reliability, and Control
	WP2.1—Smart Sensors
	WP2.2—Intelligent Condition Monitoring
	ANN-LSTM Framework
	KPCA-LSTM Framework
	Evaluation Metrics and Model Comparison
	PTO Power Output Prediction Comparison

	WP2.3—Predictive Maintenance
	WP2.4—Optimised Control
	System Dynamics and State-Space Representation
	MPC Control Framework
	Results and Discussion


	WP3: Sea State Forecasting and Resource Evaluation
	WP3.1—Resource Characterisation
	Wave Energy Resource Dynamics in the North-West European Shelf
	Site-Specific Assessments and Optimisation
	Uncertainty Mitigation and Reliability Improvement in Wave Energy Resource Assessments

	WP3.2—Efficiency Testing
	WP3.3—Array Effects 

	WP4: Validation and Cost Analysis
	WP4.1—Validation and Demonstration
	WP4.2—Array Deployment
	Scalability of TALOS-WEC Arrays
	Array Performance and Interference Effects
	Challenges for Large-Scale Deployment

	WP4.3—LCOE Assessment
	Levelised Cost of Wave Energy
	Cost Breakdown
	Seasonal and Geographic Variability
	Advanced Financial Metrics
	LCOE Sensitivity to Discount Rate and Discount Factor


	Results and Key Findings
	Discussions and Conclusions
	Challenges and Future Work
	References

