A Computational Investigation of Storm Impacts on Estuary Morphodynamics
Abstract
:1. Introduction
2. The Study Site and Its Environment
3. Methodology: Data Analysis and Numerical Modelling
3.1. Hyrodynamic Conditions Including Future Sea Level Rise and Storm Climate at Study Site
3.1.1. Sea Level
3.1.2. Waves
3.1.3. Storms
3.2. Numerical Modelling
3.2.1. Model Set Up
3.2.2. Model Validation
3.2.3. Storm Wave Conditions
3.2.4. Storm Surge Conditions
3.2.5. Estuary Bathymetries
4. Results and Discussions
4.1. Estuary State A
4.1.1. Waves and Hydrodynamic Changes
4.1.2. Morphodynamic Changes
4.2. Estuary State B
4.2.1. Waves and Hydrodynamic Changes
4.2.2. Morphodynamic Changes
4.3. Estuary State C
4.3.1. Waves and Hydrodynamic Changes
4.3.2. Morphodynamic Changes
4.4. Cross-Comparisons among the Different Estuary Morphodynamic States
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Bruun, P. Sea-level rise as a cause of shore erosion. J. Waterw. Harb. Div. 1962, 88, 117–130. [Google Scholar]
- Gornitz, V.; Couch, S.; Hartig, E.K. Impacts of sea level rise in the New York City metropolitan area. Glob. Planet. Chang. 2001, 32, 61–88. [Google Scholar] [CrossRef]
- Stive, M. How important is global warming for coastal erosion? Clim. Chang. 2004, 64, 27–39. [Google Scholar] [CrossRef]
- Van Goor, M.A.; Zitman, T.J.; Wang, Z.B.; Stive, M.J.F. Impact of sea-level rise on the morphological equilibrium state of tidal inlets. Mar. Geol. 2003, 202, 211–227. [Google Scholar] [CrossRef]
- Van Der Wal, D.; Pye, K.; Neal, A. Long-term morphological change in the Ribble Estuary, northwest England. Mar. Geol. 2002, 189, 249–266. [Google Scholar] [CrossRef]
- Long, A.J.; Innes, J.B.; Lloyd, J.M.; Rutherford, M.M.; Shennan, I.; Kirby, J.R.; Tooley, M.J. Holocene sea-level change and coastal evolution in the Humber estuary, eastern England: An assessment of rapid coastal change. Holocene 1998, 8, 229–247. [Google Scholar] [CrossRef]
- Guthrie, G.; Cottle, R. Suffolk Coast and Estuaries Coastal Habitat Management Plan; Report to English Nature/Environment Agency; Posford Haskoning Ltd.: Peterborough, UK, 2002; Appendix A; pp. 20–25. [Google Scholar]
- Horrillo-Caraballo, J.M.; Reeve, D.E.; Simmonds, D.; Pan, S.; Fox, A.; Thompson, R.; Hoggarth, S.; Kwan, S.S.H.; Greaves, D. Application of a source-pathway-receptor-consequence (S-P-R-C) methodology to the Teign Estuary, UK. J. Coast. Res. Spec. Issue 65 Int. Coast. Symp. 2013, 2, 1939–1944. [Google Scholar] [CrossRef]
- Tessier, B.; Billeaud, I.; Sorrel, P.; Delsinne, N.; Lesueur, P. Infilling stratigraphy of macrotidal tide-dominated estuaries. Controlling mechanisms: Sea-level fluctuations, bedrock morphology, sediment supply and climate changes (The examples of the Seine estuary and the Mont-Saint-Michel Bay, English Channel, NW France). Sediment. Geol. 2012, 279, 62–73. [Google Scholar] [CrossRef]
- Robins, P.E.; Skov, M.W.; Lewis, M.J.; Giménez, L.; Davies, A.G.; Malham, S.K.; Neill, S.P.; McDonald, J.E.; Whitton, T.A.; Jackson, S.E.; et al. Impact of climate change on UK estuaries: A review of past trends and potential projections. Estuar. Coast. Shelf Sci. 2016, 169, 119–135. [Google Scholar] [CrossRef]
- Houghton, G.T.; Ding, Y.; Griggs, D.J.; Noguer, M.; Van der Linden, P.J.; Dai, X.; Maskell, K.; Johnson, C.A. Climate Change Scientific Basis, Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC); Cambridge University Press: Cambridge, UK, 2001; pp. 74–77. [Google Scholar]
- Lowe, J.A.; Howard, T.P.; Pardaens, A.; Tinker, J.; Holt, J.; Wakelin, S.; Milne, G.; Leake, J.; Wolf, J.; Horsburgh, K.; et al. UK Climate Projections Science Report: Marine and Coastal Projections; Met Office Hadley Centre: Exeter, UK, 2009. [Google Scholar]
- Woth, K.; Weisse, R.; Von Storch, H. Climate change and North Sea storm surge extremes: An ensemble study of storm surge extremes expected in a changed climate projected by four different regional climate models. Ocean Dyn. 2006, 56, 3–15. [Google Scholar] [CrossRef]
- Jenkins, G.J.; Murphy, J.M.; Sexton, D.M.H.; Lowe, J.A.; Jones, P.; Kilsby, C.G. UK Climate Projections: Briefing Report; Met Office Hadley Centre: Exeter, UK, 2009. [Google Scholar]
- Meehl, G.A.; Stocker, T.F.; Collins, W.; Friedlingstein, P.; Gaye, A.; Gregory, J.; Kitoh, A.; Knutti, R. Global climate projections. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 747–846. [Google Scholar]
- Nicholls, R.J.; Wong, P.P.; Burkett, V.R.; Codignotto, J.O.; Hay, J.E.; McLean, R.F.; Ragoonaden, S.; Woodroffe, C.D. Coastal systems and low-lying areas. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 315–356. [Google Scholar]
- Brown, J.M.; Wolf, J. Coupled wave and surge modelling for the eastern Irish Sea and implications for model wind-stress. Cont. Shelf Res. 2009, 29, 1329–1342. [Google Scholar] [CrossRef]
- Brown, J.M.; Souza, A.J.; Wolf, J. Surge modelling in the eastern Irish Sea: Present and future storm impact. Ocean Dyn. 2010, 60, 227–236. [Google Scholar] [CrossRef]
- Chini, N.; Stansby, P.; Leake, J.; Wolf, J.; Roberts-Jones, J.; Lowe, J. The impact of sea level rise and climate change on inshore wave climate: A case study for East Anglia (UK). Coast. Eng. 2010, 57, 973–984. [Google Scholar] [CrossRef]
- Wang, X.; Swail, V.R. Trends of Atlantic Wave Extremes as Simulated in a 40-Yr Wave Hindcast Using Kinematically Reanalyzed Wind Fields. J. Clim. 2001, 15, 1020–1035. [Google Scholar] [CrossRef]
- Wolf, J.; Brown, J.M.; Howarth, M.J. The wave climate of Liverpool Bay-observations and modelling. Ocean Dyn. 2011, 61, 639–655. [Google Scholar] [CrossRef]
- Brown, J.M.; Wolf, J.; Souza, A.J. Past to future extreme events in Liverpool Bay: Model projections from 1960–2100. Clim. Chang. 2012, 111, 365–391. [Google Scholar] [CrossRef]
- Dissanayake, D.M.P.K.; Ranasinghe, R.; Roelvink, J.A. Effects of sea level rise in tidal inlet evolution: A numerical modelling approach. J. Coast. Res. 2009, 11, 942–946. [Google Scholar]
- Lesser, G.; Roelvink, J.; van Kester, J.; Stelling, G. Development and validation of a three-dimensional morphological model. Coast. Eng. 2004, 51, 883–915. [Google Scholar] [CrossRef]
- Karunarathna, H.; Reeve, D.E. A Boolean approach to prediction of long-term evolution of estuary morphology. J. Coast. Res. 2008, 24, 51–61. [Google Scholar] [CrossRef]
- Passeri, D.L.; Hagen, S.C.; Medeiros, S.C.; Bilskie, M.V. Impacts of historic morphology and sea level rise on tidal hydrodynamics in a microtidal estuary (Grand Bay, Mississippi). Cont. Shelf Res. 2015, 111, 150–158. [Google Scholar] [CrossRef]
- Yin, Y.; Karunarathna, H.; Reeve, D.E. Numerical modelling of hydrodynamic and morphodynamic response of a meso-tidal estuary inlet to the impacts of global climate variabilities. Mar. Geol. 2019, 407, 229–247. [Google Scholar] [CrossRef]
- Duong, T.M.; Ranasinghe, R.; Luijendijk, A.; Walstra, D. Assessing climate change impacts on the stability of small tidal inlets: Part 1-Data poor environments. Mar. Geol. 2017, 390, 331–346. [Google Scholar] [CrossRef]
- Duong, T.M.; Ranasinghe, R.; Thatcher, M.; Mahanama, S.; Wang, Z.B.; Dissanayake, P.K.; Hemer, M.; Luijendijk, A.; Bamunawala, J.; Roelvink, D.; et al. Assessing climate change impacts on the stability of small tidal inlets: Part 2-Data rich environments. Mar. Geol. 2018, 395, 65–81. [Google Scholar] [CrossRef] [PubMed]
- ABPmer. Development and Demonstration of Systems-Based Estuary Simulators. R&D Technical Report FD2117/TR; Department for Environment, Food and Rural Affairs (DEFRA): London, UK, March 2008. [Google Scholar]
- Beardall, C.H.; Dryden, R.C.; Holzer, T.J. The Suffolk Estuaries; Segment Publications: Colchester, UK, 1991; p. 77. [Google Scholar]
- Burningham, H.; French, J. Morphodynamic behaviour of a mixed sand–gravel ebb-tidal delta: Deben estuary, Suffolk, UK. Mar. Geol. 2006, 225, 23–44. [Google Scholar] [CrossRef]
- HR Wallingford; CEFAS; Posford Haskoning; D’Olier, B. Southern North Sea Sediment Transport Study (Phase 2); Report EX; HR Wallingford Ltd: Wallingford, UK, 2002. [Google Scholar]
- Hydrographic Office. Admiralty Tide Tables: United Kingdom and Ireland (Including European Channel Ports); Hydrographer of the Navy: Taunton, UK, 2000; p. 440. [Google Scholar]
- Posford Duvivier. Suffolk Estuarine Strategies: Deben Estuary. Strategy Report: Phase 2 Volume 1 Main Report; Environment Agency: Peterborough, UK, 1999; pp. 5–20. [Google Scholar]
- Wong, P.P.; Losada, I.J.; Gattuso, J.-P.; Hinkel, J.; Khattabi, A.; McInnes, K.L.; Saito, Y.; Sallenger, A. Coastal systems and low-lying areas. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 361–409. [Google Scholar]
- Solomon, S.; Quin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.; Tignor, M.; Miller, H.L., Jr. (Eds.) Climate Change 2007: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2007; p. 996. [Google Scholar]
- Mizuta, R.; Yoshimura, H.; Endo, H.; Ose, T.; Kamiguchi, K.; Hosaka, M.; Sugi, M.; Yukimoto, S.; Kusunoki, S.; Kitoh, A. Climate Simulations Using MRI-AGCM3.2 with 20-km Grid. J. Meteorol. Soc. Jpn. 2012, 90, 233–258. [Google Scholar] [CrossRef]
- Shimura, T.; Mori, N.; Mase, H. Future projection of ocean wave climate: Analysis of SST impacts on wave climate changes in the Western North Pacific. J. Clim. 2015, 18, 3171–3190. [Google Scholar] [CrossRef]
- Tolman, H.L. User Manual and System Documentation of WAVEWATCH-III; TM Version 3.14; Technical note; U.S. Department of Commerce NOAA, National Centers for Environmental Prediction: Camp Springs, MD, USA, May 2009. [Google Scholar]
- Murakami, H.; Wang, Y.; Sugi, M.; Yoshimura, H.; Mizuta, R.; Shindo, E.; Adachi, Y.; Yukimoto, S.; Hosaka, M.; Kitoh, A.; et al. Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. J. Clim. 2012, 25, 3237–3260. [Google Scholar] [CrossRef]
- Bennett, W.G.; Karunarathna, H.; Mori, N.; Reeve, D.E. Climate change impacts on future wave climate around the UK. J. Mar. Sci. Eng. 2016, 4, 78. [Google Scholar] [CrossRef]
- Dissanayake, P.; Brown, J.; Wisse, P.; Karunarathna, H. Comparison of storm cluster vs isolated event impacts on beach/dune morphodynamics. Estuar. Coast. Shelf Sci. 2015, 164, 301–312. [Google Scholar] [CrossRef]
- Coles, S. An Introduction to Statistical Modeling of Extreme Values; Springer Series in Statistics: Bristol, UK, 2001. [Google Scholar] [CrossRef]
- Davison, A.C. Modelling excesses over high thresholds, with an application. In Statistical Extremes and Applications; Tiago de Oliveira, J., Ed.; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1984; pp. 461–482. [Google Scholar]
- Booij, N.; Ris, R.; Holthuijsen, L. A third-generation wave model for coastal regions, Part I, Model description and validation. J. Geophys. Res. 1999, 104, 7649–7666. [Google Scholar] [CrossRef]
- Bijker, E. Longshore transport computation. ASCE J. Waterw. Port Coast. Ocean Eng. 1971, 97, 687–701. [Google Scholar]
- Yin, Y. Morphodynamic Responses of Estuaries to Climate Change. Ph.D. Thesis, Swansea University, Swansea, UK, 2018. [Google Scholar]
- Mangor, K.; Drønen, N.K.; Kaergaard, K.H.; Kristensen, N.E. Shoreline Management Guidelines; DHI: Hirschholm, Denmark, 2017. [Google Scholar]
- Battjes, J.; Janssen, J. Energy loss and set-up due to breaking of random waves. In No 16 (1978): Proceedings of 16th Conference on Coastal Engineering, Hamburg, Germany, 1978; ASCE: Reston, VA, USA, 1978; pp. 569–587. [Google Scholar]
- McMillan, A.; Batstone, C.; Worth, D.; Tawn, J.; Horsburgh, K.; Lawless, D. Coastal Flood Boundary Conditions for UK Mainland and Islands; Technical report; Environment Agency/Defra: Bristol, UK, 2011. [Google Scholar]
- Zou, Q.P.; Chen, Y.; Cluckie, I.; Hewston, R.; Pan, S.; Peng, Z.; Reeve, D. Ensemble prediction of coastal flood risk arising from overtopping by linking meteorological, ocean, coastal and surf zone models. Q. J. R. Meteorol. Soc. 2013, 139, 298–313. [Google Scholar] [CrossRef]
Experiments | Estimation Method | 10-year Return Period Hsmax (m) | 20-year Return Period Hsmax (m) | 30-year Return Period Hsmax (m) | 50-year Return Period Hsmax (m) | 100-year Return Period Hsmax (m) | 200-year Return Period Hsmax (m) |
---|---|---|---|---|---|---|---|
‘Present’ | GPD | 5.62 | 5.94 | 6.11 | 6.32 | 6.59 | 6.85 |
‘Future’ | GPD | 5.81 | 6.12 | 6.29 | 6.50 | 6.76 | 7.00 |
Increase from ‘present’ to ‘future’ | GPD | 3.38% | 3.03% | 2.95% | 2.85% | 2.58% | 2.19% |
Return Year (years) | 10 | 20 | 25 | 50 | 75 | 100 | 150 | 200 |
---|---|---|---|---|---|---|---|---|
Peak Sea Level with 5% confidence interval (mOD) | 3.14 ± 0.2 | 3.29 ± 0.2 | 3.34 ± 0.2 | 3.51 ± 0.2 | 3.62 ± 0.2 | 3.69 ± 0.3 | 3.8 ± 0.3 | 3.88 ± 0.3 |
Scenarios | State A-1 in 100-year Storm | State B-1 in 100-year Storm | State C-1 in 100-year Storm |
---|---|---|---|
Present | P_Sp_A | P_Sp_B | P_Sp_C |
Future | F_Sf_A | F_Sf_B | F_Sf_C |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, Y.; Karunarathna, H.; Reeve, D.E. A Computational Investigation of Storm Impacts on Estuary Morphodynamics. J. Mar. Sci. Eng. 2019, 7, 421. https://doi.org/10.3390/jmse7120421
Yin Y, Karunarathna H, Reeve DE. A Computational Investigation of Storm Impacts on Estuary Morphodynamics. Journal of Marine Science and Engineering. 2019; 7(12):421. https://doi.org/10.3390/jmse7120421
Chicago/Turabian StyleYin, Yunzhu, Harshinie Karunarathna, and Dominic E. Reeve. 2019. "A Computational Investigation of Storm Impacts on Estuary Morphodynamics" Journal of Marine Science and Engineering 7, no. 12: 421. https://doi.org/10.3390/jmse7120421
APA StyleYin, Y., Karunarathna, H., & Reeve, D. E. (2019). A Computational Investigation of Storm Impacts on Estuary Morphodynamics. Journal of Marine Science and Engineering, 7(12), 421. https://doi.org/10.3390/jmse7120421