Impact of Neonicotinoids to Aquatic Invertebrates—In Vitro Studies on Mytilus galloprovincialis: A Review
Abstract
:1. Introduction
2. Neonicotinoids: Dangerous Insecticides
3. Mytilus galloprovincialis: A Suitable Model Organism for the Study of Neonicotinoids
4. Conclusions
Funding
Conflicts of Interest
References
- Guruge, K.S.; Tanabe, S. Contamination by persistent organochlorines and butyltin compounds in the west coast of Sri Lanka. Mar. Pollut. Bull. 2001, 42, 179–186. [Google Scholar] [CrossRef]
- Sánchez-Bayo, F. Insecticides mode of action in relation to their toxicity to non-target organisms. J. Environ. Anal. Toxicol. 2012, S4, 002. [Google Scholar]
- Aliko, V.; Biba, A. Micronuclei induction in ranidae & buffonidae tadpoles by the pirethroid insecticide lambda-cyhalothrin. J. Ecosyst. Ecol. Sci. 2011, 1, 43–48. [Google Scholar]
- Cataño, H.C.; Carranza, E.; Huamaní, C.; Hernández, A.F. Plasma cholinesterase levels and health symptoms in Peruvian farm workers exposed to organophosphate pesticides. Arch. Environ. Contam. Toxicol. 2008, 55, 153–159. [Google Scholar] [CrossRef]
- Konradsen, F.; van der Hoek, W.; Cole, D.C.; Hutchinson, G.; Daisley, H. Reducing acute poisoning in developing countries—Options for restricting the availability of pesticides. Toxicology 2003, 192, 249–261. [Google Scholar] [CrossRef]
- Walker, C.H. Organic Pollutants; Taylor & Francis: Glasgow, UK, 2011. [Google Scholar]
- Jeschke, P.; Nauen, R.; Schindler, M.; Elbert, A. Overview of the status and global strategy for neonicotinoids. J. Agric. Food Chem. 2011, 59, 2897–2908. [Google Scholar] [CrossRef]
- Goulson, D. An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 2013, 50, 977–987. [Google Scholar] [CrossRef]
- Tapparo, A.; Marton, D.; Giorio, C.; Zanella, A.; Solda, L.; Marzaro, M. Assessment of the environmental exposure of honeybees to particulate matter containing neonicotinoid insecticides coming from corn coated seeds. Environ. Sci. Technol. 2012, 46, 2592–2599. [Google Scholar] [CrossRef]
- Marzaro, M.; Vivan, L.; Targa, A.; Mazzon, L.; Mori, N.; Greatti, M. Lethal aerial powdering of honey bees with neonicotinoids from fragments of maize seed coat. Bull. Insect. 2011, 64, 119–126. [Google Scholar]
- Krupke, C.H.; Hunt, G.J.; Eitzer, B.D.; Andino, G.; Given, K. Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLoS ONE 2012, 7, e29268. [Google Scholar] [CrossRef]
- Connolly, C. Nerve agents in honey. Sci. Perspect. 2017, 358, 38–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoar, J. The neonicotinoid era: The case for monitoring insecticide use on bee-attractive crops. BBKA News Incorporating The British Bee Journal, 20 April 2018. [Google Scholar]
- Goulson, D.; Lye, G.C.; Darvill, B. Decline and conservation of bumblebees. Annu. Rev. Entomol. 2008, 53, 191–208. [Google Scholar] [CrossRef] [PubMed]
- Moritz, R.F.A.; de Miranda, J.; Fries, I.; Le Cont, Y.; Neumann, P.; Paxton, R.J. Research strategies to improve honeybee health in Europe. Apidologie 2010, 41, 227–242. [Google Scholar] [CrossRef] [Green Version]
- Dussaubat, C. Lo stress combinato di pesticidi neonicotinoidi e parassiti altera la fisiologia e la sopravvivenza delle regine delle api. Sci. Rep. 2016, 6, 31430. [Google Scholar] [CrossRef]
- Lechnet, M. Reducing pesticide use while preserving crop productivity and profitability on arable farms. Nat. Plants 2017, 3, 17008. [Google Scholar]
- Boyd, I.L. An inside view on pesticide policy. Nat. Ecol. Evol. 2018, 2, 920–921. [Google Scholar] [CrossRef]
- Simon-Delso, N.; Amaral-Rogers, V. Systemic insecticides (neonicotinoids and fipronil): Trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res. 2015, 22, 5–34. [Google Scholar] [CrossRef]
- Velisek, J.; Stara, A. Effect of thiacloprid on early life stages of common carp (Cyprinus carpio). Chemosphere 2018, 194, 481–487. [Google Scholar] [CrossRef]
- Tomizawa, M.; Casida, J.E. Neonicotinoid insecticides: Highlights of a symposium on strategic molecular designs. J. Agric. Food Chem. 2011, 59, 2883–2886. [Google Scholar] [CrossRef]
- Chen, M.F.; Huang, J.W.; Wong, S.W.; Li, G.C. Analysis of insecticide clothianidin and its metabolites in rice by liquid chromatography with a UV detector. J. Food Drug Anal. 2005, 13, 279–283. [Google Scholar]
- Ford, K.A.; Casida, J.E. Comparative metabolism and pharmacokinetics of seven neonicotinoid insecticides in spinach. J. Agric. Food Chem. 2008, 56, 10168–10175. [Google Scholar] [CrossRef]
- Casida, J.E. Neonicotinoid metabolism: Compounds, substituents, pathways, enzymes, organisms and relevance. J. Agric. Food Chem. 2011, 59, 2923–2931. [Google Scholar] [CrossRef]
- Ford, K.A.; Casida, J.E. Unique and common metabolites of thiamethoxam, clothianidin, and dinotefuran in mice. Chem. Res. Toxicol. 2006, 19, 1549–1556. [Google Scholar] [CrossRef]
- Schulz-Jander, D.A.; Casida, J.E. Imidacloprid insecticide metabolism: Human cytochrome P450 isozymes differ in selectivity for imidazolidine oxidation versus nitroimine reduction. Toxicol. Lett. 2002, 132, 65–70. [Google Scholar] [CrossRef]
- Shi, X.; Dick, R.A.; Ford, K.A.; Casida, J.E. Enzymes and inhibitors in neonicotinoid insecticide metabolism. J. Agric. Food Chem. 2009, 57, 4861–4866. [Google Scholar] [CrossRef] [Green Version]
- Shao, X.; Liu, Z.; Xu, X.; Li, Z.; Qian, X. Overall status of neonicotinoid insecticides in China: Production, application and innovation. J. Pest Sci. 2003, 38, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Andersch, W.; Jeschke, P.; Thielert, W. Combination of Methiocarb and One or More Compounds Selected from Thiacloprid, Thiamethoxam, Acetamiprid, Nitenpyram, and Dinotefuran; Effective Animal Pests Control and for Plant Seed Dressing; Bayer Crop Science AG: Monheim am Rhein, Germany, 2010. [Google Scholar]
- Iwasa, T.; Motoyama, N.; Ambrose, J.T.; Roe, R.M. Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop. Prot. 2004, 23, 371–378. [Google Scholar] [CrossRef]
- Morrissey, C.A.; Mineau, P.; Devries, J.H.; Sanchez-Bayo, F.; Liess, M.; Cavallaro, M.C.; Liber, K. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review. Environ. Int. 2015, 74, 291–303. [Google Scholar] [CrossRef]
- Wachendorff-Neumann, U.; Mauler-Machnik, A.; Erdelen, C.; Ohtake, H. Synergistic Mixture of Trifloxystrobin and Imidacloprid; Bayer Cropscience AG: Montvale, NJ, USA, 2012. [Google Scholar]
- Marigómez, I.; Zorita, I.; Izagirre, U.; Ortiz-Zarragoitia, M.; Navarro, P.; Etxebarria, N.; Orbea, A.; Soto, M.; Cajaraville, M.P. Combined use of native and caged mussels to assess biological effects of pollution through the integrative biomarker approach. Aquat. Toxicol. 2013, 136–137, 32–48. [Google Scholar] [CrossRef] [PubMed]
- Viarengo, A.; Lowe, D.; Bolognesi, C.; Fabbri, E.; Koehler, A. The use of biomarkers in biomonitoring: A 2-tier approach assessing the level of pollutant-induced stress syndrome in sentinel organisms. Comp. Biochem. Physiol. 2007, 146, 281–300. [Google Scholar] [CrossRef]
- Capolupo, M.; Valbonesi, P.; Kiwan, A.; Buratti, S.; Franzellitti, S.; Fabbri, E. Use of an integrated biomarker-based strategy to evaluate physiological stress responses induced by environmental concentrations of caffeine in the Mediterranean mussel Mytilus galloprovincialis. Sci. Total Environ. 2016, 563–564, 538–548. [Google Scholar] [CrossRef] [PubMed]
- Livinstone, D.R. Organic xenobiotic metabolism in marine invertebrates. Adv. Comp. Environ. Physiol. 1991, 7, 45–185. [Google Scholar]
- Torre, A.; Trischitta, F.; Faggio, C. Effect of CdCl2 on regulatory volume decrease (RVD) in Mytilus galloprovincialis digestive cells. Toxicol. In Vitro 2013, 27, 1260–1266. [Google Scholar] [CrossRef]
- Faggio, C.; Tsarpali, V.; Dailianis, S. Mussel digestive gland as a model tissue for assessing xenobiotics: An overview. Sci. Total Environ. 2018, 636, 220–229. [Google Scholar] [CrossRef]
- Freitas, R.; Silvestro, S.; Pagano, M.; Coppola, F.; Meucci, V.; Battaglia, F.; Intorre, L.; Soares, A.M.V.M.; Faggio, C. Impacts of salicylic acid in Mytilus galloprovincialis exposed to warming conditions. Environ. Toxicol. Pharmacol. 2020, 80, 103448. [Google Scholar] [CrossRef]
- Freitas, R.; Silvestro, S.; Coppola, F.; Meucci, V.; Battaglia, F.; Intorre, L.; Soares, A.M.V.M.; Pretti, C.; Faggio, C. Combined effects of salinity changes and salicylic acid exposure in Mytilus galloprovincialis. Sci. Total Environ. 2020, 715, 136804. [Google Scholar] [CrossRef]
- Freitas, R.; Silvestro, S.; Coppola, F.; Costa, S.; Meucci, V.; Battaglia, F.; Intorre, L.; Soares, A.M.V.M.; Pretti, C.; Faggio, C. Toxic impacts induced by sodium lauryl sulfate in Mytilus galloprovincialis. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2020, 242, 110656. [Google Scholar] [CrossRef] [PubMed]
- Freitas, R.; Silvestro, S.; Coppola, F.; Meucci, V.; Battaglia, F.; Intorre, L.; Soares, A.M.V.M.; Pretti, C.; Faggio, C. Biochemical and physiological responses induced in Mytilus galloprovincialis after a chronic exposure to salicylic acid. Aquatic Toxicol. 2019, 214, 105258. [Google Scholar] [CrossRef] [PubMed]
- Depledge, M.H. The rational basis for the use of biomarkers as ecotoxicological tools. In Nondestructive Biomarkers in Vertebrates; Fossi, M.C., Leonzio, C., Eds.; Lewis Publishers: Boca Raton, FL, USA, 1993; pp. 261–285. [Google Scholar]
- Burgos-Aceves, M.A.; Faggio, C. An approach to the study of the immunity functions of bivalve haemocytes: Physiology and molecular aspects. Fish Shellfish Immunol. 2017, 67, 513–517. [Google Scholar] [CrossRef]
- Boillot, C.; Martinez Bueno, M.J.; Munaron, D.; Le Dreau, M.; Mathieu, O.; Davida, A.; Fenet, H.; Casellas, C.; Gomez, E. In vivo exposure of marine mussels to carbamazepine and 10-hydroxy-10, 11-dihydro-carbamazepine: Bioconcentration and metabolization. Sci. Total Environ. 2015, 532, 564–570. [Google Scholar] [CrossRef] [PubMed]
- Orbea, A.; Garmendia, L.; Marigómez, I.; Cajaraville, M.P. Effects of the ‘Prestige’ oil spill on cellular biomarkers in intertidal mussels: Results of the first year of studies. Mar. Ecol. Prog. Ser. 2006, 306, 177–189. [Google Scholar] [CrossRef]
- Davenport, J.; Manley, A. The detection of heightened sea-water copper concentrations by the mussel Mytilus edulis. J. Mar. Biol. Assoc. UK 1978, 58, 843–850. [Google Scholar] [CrossRef]
- Sloof, W.; deZwart, D.; Marquenie, J.M. Detection limits of a biological monitoring system for chemical water pollution based on mussel activity. Bull. Environ. Contam. Toxicol. 1983, 30, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Kramer, K.J.M.; Jenner, H.A.; deZwart, D. The valve movement response of mussels: A tool in biological monitoring. Hydrobiologia 1989, 188/189, 433–443. [Google Scholar] [CrossRef]
- Santovito, G.; Piccinni, E.; Cassini, A.; Irato, P.; Albergoni, V. Antioxidant responses of the Mediterranean mussel, Mytilus galloprovincialis, to environmental variability of dissolved oxygen. Comp. Biochem. Physiol. C 2005, 140, 321–329. [Google Scholar] [CrossRef]
- Braby, C.E.; Somero, G.N. Following the heart: Temperature and salinity effects on heart rate in native and invasive species of blue mussels (genus Mytilus). J. Exp. Biol. 2009, 209, 2554–2566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larguinho, M.; Cordeiro, A.S.; Diniz, M.M.; Costa, P.V.; Baptista, P. Metabolic and histopathological alterations in the marine bivalve Mytilus galloprovincialis induced by chronic exposure to acrylamide. Environ. Res. 2014, 135, 55–62. [Google Scholar] [CrossRef]
- Kahle, J.; Zauke, G.P. Bioaccumulation of trace metals in the calanoid copepod Metridia gerlachei from the Weddell Sea (Antarctica). Sci. Total Environ. 2002, 295, 1–16. [Google Scholar] [CrossRef]
- Azizi, G.; Akodad, M.; Baghour, M.; Layachi, M.; Moumen, A. The use of Mytilus spp. mussels as bioindicators of heavy metal pollution in the coastal environment. A review. J. Mater. Environ. Sci. 2018, 9, 1170–1181. [Google Scholar]
- Aarab, N.; Lemaire-Gony, S.; Unruh, E.; Hansen, P.D.; Larsen, B.K.; Andersen, O.K.; Narbonne, J.F. Preliminary study of responses in mussel (Mytilus edulis) exposed to bisphenol A, di allyl phthalate and tetrabromodiphenyl ether. Aquat. Toxicol. 2006, 78S, S86–S92. [Google Scholar] [CrossRef] [PubMed]
- Tedesco, S.; Doyle, H.; Blasco, J.; Redmond, G.; Sheehan, D. Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis. Aquat. Toxicol. 2010, 100, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Canesi, L.; Ciacci, C.; Fabbri, R. Bivalve molluscs as a unique target group for nanoparticle toxicity. Mar. Environ. Res. 2012, 76, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Qyli, M.; Aliko, V.; Faggio, C. Physiological and Biochemical Responses of Mediterranean Green Crab, Carcinus aestuarii, to Different Environmental Stressors: Evaluation of Haemocyte Toxicity and Its Possible Effects on Immune Response. Comp. Biochem. Physiol. C 2020, 231, 108739. [Google Scholar] [CrossRef]
- Canesi, L.; Lorusso, L.C.; Ciacci, C.; Betti, M.; Regoli, F.; Poiana, G.; Gallo, G.; Marcomini, A. Effects of blood lipid lowering pharmaceuticals (bezafibrate and gemfibrozil) on immune and digestive gland functions of the bivalve mollusc, Mytilus galloprovincialis. Chemosphere 2007, 69, 994–1002. [Google Scholar] [CrossRef]
- Lacaze, E.; Pédelucq, J.; Fortier, M.; Brousseau, P.; Auffret, M.; Budzinski, H.; Fournier, M. Genotoxic and immunotoxic potential effects of selected psychotropic drugs and antibiotics on blue mussel (Mytilus edulis) hemocytes. Environ. Poll. 2015, 202, 177–186. [Google Scholar] [CrossRef]
- Martin-Diaz, L.; Franzellitti, S.; Buratti, S.; Valbonesi, P.; Capuzzo, A.; Fabbri, E. Effects of environmental concentrations of the antiepilectic drug carbamazepine on biomarkers and cAMP-mediated cell signaling in the mussel Mytilus galloprovincialis. Aquat. Toxicol. 2009, 94, 177–185. [Google Scholar] [CrossRef]
- Tsiaka, P.; Tsarpali, V.; Ntaikou, I.; Kostopoulou, M.N.; Lyberatos, G.; Dailianis, S. Carbamazepine-mediated pro-oxidant effects on the unicellular marine algal species Dunaliella tertiolecta and the hemocytes of mussel Mytilus galloprovincialis. Ecotoxicology 2013, 22, 1208–1220. [Google Scholar] [CrossRef]
- Mezzelani, M.; Gorbi, S.; Da Ros, Z.; Fattorini, D.; d’Errico, G.; Milan, M.; Bargelloni, L.; Regoli, F. Ecotoxicological potential of non-steroidal anti-inflammatory drugs ((NSAIDs)) in marine organisms: Bioavailability, biomarkers and natural occurrence in Mytilus galloprovincialis. Mar. Environ. Res. 2016, 121, 31–39. [Google Scholar] [CrossRef]
- Mezzelani, M.; Gorbi, S.; Fattorini, D.; d’Errico, G.; Benedetti, M.; Milan, M.; Bargelloni, L.; Regoli, F. Transcriptional and cellular effects of Non-Steroidal Anti-Inflammatory Drugs ((NSAIDs)) in experimentally exposed mussels, Mytilus galloprovincialis. Aquat. Toxicol. 2016, 180, 306–319. [Google Scholar] [CrossRef]
- Toufexi, E.; Dailianis, S.; Vlastos, D.; Manariotis, D.I. Mediated effect of ultrasound treated Diclofenac on mussel hemocytes: First evidence for the involvement of respiratory burst enzymes in the induction of DCF-mediated unspecific mode of action. Aquat. Toxicol. 2016, 175, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Politakis, N.; Belavgeni, A.; Efthimiou, I.; Charalampous, N.; Kourkouta, C.; Dailianis, S. The impact of expired commercial drugs on non-target marine species: A case study with the use of a battery of biomarkers in hemocytes of mussels. Ecotoxicol. Environ. Safety 2018, 148, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Pagano, M.; Capillo, G.; Sanfilippo, M.; Palato, S.; Trischitta, F.; Manganaro, A.; Faggio, C. Evaluation of functionality and biological responses of Mytilus galloprovincialis after exposure to Quaternium-15 (Methenamine 3-Chloroallylochloride). Molecules 2016, 21, 144. [Google Scholar] [CrossRef] [Green Version]
- Aliko, V.; Faggio, C.; Hajdaraj, G.; Caci, A. Copper induced lysosomal membrane destabilisation in haemolymph cells of crab (Carcinus aestuarii, nardo, 1847) from the Narta Lagoon (Albania). Braz. Arch. Biol. Technol. 2015, 58, 750–756. [Google Scholar] [CrossRef] [Green Version]
- Pizzimenti, S.; Toaldo, C.; Pettazzoni, P.; Dianzani, M.U.; Barrera, G. The “two-faced” effects of reactive oxygen species and the lipid peroxidation product 4- hydroxynonenal in the hallmarks of cancer. Cancers 2010, 2, 338–363. [Google Scholar] [CrossRef] [Green Version]
- Lushchak, V.I. Environmentally induced oxidative stress in aquatic animals. Aquat. Toxicol. 2011, 101, 13–30. [Google Scholar] [CrossRef]
- Lushchak, V.I. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem. Biol. Interact. 2014, 224, 164–175. [Google Scholar] [CrossRef]
- Faggio, C.; Pagano, M.; Alampi, R.; Vazzana, I.; Felice, M.R. Cytotoxicity, haemolymphatic parameters, and oxidative stress following exposure to sub-lethal concentrations of quaternium-15 in Mytilus galloprovincialis. Acquat. Toxicol. 2016, 180, 258–265. [Google Scholar] [CrossRef]
- Widdow, S.; Donkin, P. Mussels and environmental contaminants: Bioaccumulation and physiological aspects. In The Mussel Mytilus: Ecology, Physiology, Genetics and Culture; Gosling, Elsevier: Amsterdam, The Netherlands, 1992; pp. 383–424. [Google Scholar]
- Torre, A.; Trischitta, F.; Corsaro, C.; Mallamace, D.; Faggio, C. Digestive cells from Mytilus galloprovincialis show a partial regulatory volume decrease following acute hypotonic stress through mechanisms involving inorganic ions. Cell Biochem. Funct. 2013, 31, 489–495. [Google Scholar] [CrossRef]
- Avio, C.G.; Gorbi, S.; Milan, M.; Benedetti, M.; Fattorini, D.; d’Errico, G.; Pauletto, M.; Bargelloni, L.; Regoli, F. Pollutants bioavailability and toxilogical risk from microplastics to marine mussels. Environ. Poll. 2015, 198, 211–222. [Google Scholar] [CrossRef]
- Milan, M.; Dalla Rovere, G.; Smits, M.; Ferraresso, S.; Pastore, P.; Marin, M.G.; Bogialli, S.; Patarnello, T.; Bargelloni, L.; Matozzo, V. Ecotoxicological effects of the herbicide glyphosate in non-target aquatic species: Transcriptional responses in the mussel Mytilus galloprovincialis. Environ. Poll. 2018, 237, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, P.; Almeida, A.; Calisto, V.; Esteves, V.I.; Schneider, R.J.; Wrona, F.J.; Soares, A.M.V.M.; Figueira, E.; Freitas, R. Physiological and biochemical alterations induced in the mussel Mytilus galloprovincialis after short and long-term exposure to carbamazepine. Water Res. 2017, 117, 102–114. [Google Scholar] [CrossRef] [PubMed]
- Burgos-Aceves, M.A.; Abo-Al-Ela, H.G.; Faggio, C. Physiological and metabolic approach of plastic additives effects: Immune cells responses. J. Hazar Mater. 2020, 404, 124114. [Google Scholar] [CrossRef]
- Abo-Al-Ela, H.G.; Faggio, C. MicroRNA-mediated stress response in bivalve species. Ecotoxicol. Environ. Saf. 2021, 208, 111442. [Google Scholar] [CrossRef]
- Dimitriadis, V.K.; Domouhtsidou, G.P.; Cajaraville, M.P. Cytochemical and histochemical aspects of the digestive gland cells of the mussel Mytilus galloprovincialis (L.) in relation to function. J. Mol. Histol. 2004, 35, 501–509. [Google Scholar] [CrossRef]
- Marigómez, I.; Soto, M.; Cajaraville, M.P.; Angulo, E.; Giamberini, L. Cellular and subcellular distribution of metals in molluscs. Microsc. Res. Tech. 2002, 56, 358–392. [Google Scholar] [CrossRef]
- Pagano, M.; Porcino, C.; Briglia, M.; Fiorino, E.; Vazzana, M.; Silvestro, S.; Faggio, C. The influence of exposure of cadmium chloride and zinc chloride on haemolymph and digestive gland cells from Mytilus galloprovincialis. Int. J. Environ. Res. 2017, 11, 207–216. [Google Scholar] [CrossRef]
- De Oliveira David, J.A.; Salaroli, R.B.; Fontanetti, C.S. The significance of changes in Mytella falcata gill filaments chronically exposed to polluted environments. Micron 2008, 39, 1293–1299. [Google Scholar] [CrossRef] [PubMed]
- Carella, F. Biotechnologies to Evaluate the Environmental Status: New Test Organisms in Ecotoxicology and Histopathological and Molecular Biomarkers in Natural Population. Ph.D. Thesis, University of Naples Federico II, Naples, Italy, 2010. [Google Scholar]
- George, S.G.; Pirie, B.J.S.; Coombs, T.L. The kinetics of accumulation and excretion of ferric hydroxide in Mytilus edulis (I.) and its distribution in the tissues. Exp. Mar. Biol. Ecol. 1976, 23, 71. [Google Scholar] [CrossRef]
- Regoli, F.; Nigro, M.; Orlando, F. Effects of copper and cadmium on the presence of renal concretions in the bivalve Donacilla cornea. Comp. Biochem. Phys. 1992, 102C, 189. [Google Scholar] [CrossRef]
- Tripp, M.R. Disposal by the oyster of intracardially injected red blood cells of vertebrates. Proc. Natl. Shellfish. Assoc. 1957, 48, 143. [Google Scholar]
- Dondero, F.; Negri, A.; Boatti, L.; Marsano, F.; Mignone, F.; Viarengo, A. Transcriptomic and proteomic effects of a neonicotinoid insecticide mixture in the marine mussel (Mytilus galloprovincialis, Lam.). Sci. Total Environ. 2010, 408, 3775–3786. [Google Scholar] [CrossRef]
- Stara, A.; Pagano, M.; Capillo, G.; Fabrello, J.; Sandova, M.; Vazzana, I.; Zuskova, E.; Velisek, J.; Matozzo, V.; Faggio, C. Assessing the effects of neonicotinoid insecticide on the bivalve mollusc Mytilus galloprovincialis. Sci. Total Environ. 2020, 700, 134914. [Google Scholar] [CrossRef]
- Beketov, M.A.; Liess, M. Acute and delayed effects of the neonicotinoid insecticide thiacloprid on seven freshwater arthropods. Environ. Toxicol. Chem. 2008, 27, 461–470. [Google Scholar] [CrossRef]
- Prosser, R.S.; de Solla, S.R.; Holman, E.A.M.; Osborne, R.; Robinson, S.A.; Bartlett, A.J.; Maisonneuve, F.J.; Gillis, P.L. Sensitivity of the early-life stages of freshwater mollusks to neonicotinoid and butenolide insecticides. Environ. Pollut. 2016, 218, 428–435. [Google Scholar] [CrossRef]
- EPA (Environmental Protection Agency). Name of Chemical: Thiacloprid Reason for Issuance: Conditional Registration Date Issued: September 26, 2003; Office of Prevention and Toxic Substances (7501C), Oregon State: Salem, OR, USA, 2003.
- Stara, A.; Pagano, M.; Capillo, G.; Fabrello, J.; Sandova, M.; Albano, M.; Zuskova, E.; Velisek, J.; Matozzo, V.; Faggio, C. Acute effects of neonicotinoid insecticides on the Mediterranean mussel Mytilus galloprovincialis: A case study with the active compound thiacloprid and the commercial formulation Calypso 480 SC. Ecotoxicol. Environ. Safety 2020, 203, 110980. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). EFSA Identifies Risks to Bees from Neonicotinoids; EFSA: Parma, Italy, 2013.
- McCaffery, A.; Nauen, R. The insecticide resistance action committee (IRAC): Public responsibility and enlightened industrial self-interest. Outlooks Pest Manag. 2006, 17, 11–14. [Google Scholar]
- Mileson, B.E.; Chambers, J.E.; Chen, W.L.; Dettbarn, W.; Ehrich, M.; Eldefrawi, A.T.; Gaylor, D.W.; Hamernik, K.; Hodgson, E.; Karczmar, A.G.; et al. Common mechanism of toxicity: A case study of organophosphorus pesticides. Toxicol. Sci. 1998, 41, 8–20. [Google Scholar]
- Roberts, D. The effect of pesticides on byssus formation in the common musel, Mytilus edulis. Environ. Pollut. 1975, 8, 241–254. [Google Scholar] [CrossRef]
- Bell, E.C.; Gosline, J.M. Mechanical design of mussel byssus: Material yield enhances attachment strength. J. Exp. Biol. 1996, 199, 1005–1017. [Google Scholar] [PubMed]
- Burnett, N.P.; Sara, G. Functional responses of intertidal bivalves to repeated sub-lethal, physical disturbances. Mar. Environ. Res. 2019, 147, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Ayad, M.A.; Fdil, M.A.; Mouabad, A. Effects of cypermethrin (pyrethroid insecticide) on the valve activity behavior, byssal thread formation, and survival in air of the marine mussel Mytilus galloprovincialis. Arch. Environ. Contam. Toxicol. 2011, 60, 462–470. [Google Scholar] [CrossRef] [PubMed]
- Savorelli, F.; Manfra, L.; Croppo, M.; Tornambe, A.; Palazzi, D.; Canepa, S.; Trentini, P.L.; Cicero, A.M.; Faggio, C. Fitness evaluation of Ruditapes philippinarum exposed to nickel. Biol. Trace Elem. Res. 2017, 177, 384–393. [Google Scholar] [CrossRef] [PubMed]
- Chmist, J.; Szoszkiewicz, K.; Drozdzynski, D. Behavioural responses of Unio tumidus freshwater mussels to pesticide contamination. Arch. Environ. Contam. Toxicol. 2019, 77, 432–442. [Google Scholar] [CrossRef] [Green Version]
Xenobiotics | Target Tissues | Assays | References |
---|---|---|---|
Acrylamide (organic compound) | Digestive gland, gills, and gonads | Activity of ethoxyresoruphine-O-diethylase (EROD), catalase, and glutathione S-transferase enzymes | Larguinho et al., 2014 |
Caffeine (organic compound) | Digestive gland, gills, and hemolymph | Stability of the lysosomal membrane of hemocytes and activity of the hydrolase N-acetyl-β-hexosaminidase enzyme; lipid peroxidation and malondialdehyde; activity of glutathione S-transferase, catalase, and acetylcholinesterase enzymes; DNA integrity | Capolupo et al., 2016 |
Buscopan plus and Mesulid (drugs) | Hemolymph | Stability of the lysosomal membrane of hemocytes; cytogenetic analysis for DNA integrity | Politakis et al., 2018 |
Paracetamol, Diclofenac, Ibuprofen, Ketoprofen and Nimesulide (drugs) | Digestive gland and gills | Measurement of the granulocytes/hyalinocytes ratio, stability of the lysosomal membrane of hemocytes, phagocytosis activity, accumulation of lipofuscin; activity of the enzymes acyl-CoA oxidase and acetylcholinesterase, catalase, glutathione S-transferase, glutathione peroxidase and glutathione reductase; DNA integrity | Mezzelani et al., 2016a; Mezzelani et al., 2018 |
Carbamazepine (drug) | Whole animal | Measurement of glycogen and protein levels; electron transport system; lipid peroxidation; activity of superoxide dismutase (SOD), catalase, glutathione S-transferase, glutathione reductase, and cytochrome P4503A4 enzymes | Oliveira et al., 2017 |
Quaternium-15 (preservative) | Digestive gland and gills | Volume decrease adjustment (RVD); analysis of ROS, TBARS, GSH/GSSG and HSP70, superoxide dismutase (SOD) enzyme activity | Pagano et al., 2016; Faggio et al., 2016 |
Polyethylene and polyester (microplastics) | Digestive gland and gills | Measurement of granulocyte/hyalinocyte ratio, phagocytosis activity and stability of the lysosomal membrane of hemocytes, activity of acetylcholinesterase enzymes, acyl-CoA oxidase, antioxidant enzymes, lysosome latency (LP), malondialdehyde and lipofuscin, DNA and nucleus integrity | Avio et al., 2015 |
Cadmium chloride (CdCl2) and zinc chloride (ZnCl2)(heavy metals) | Digestive gland and hemolymph | Cell viability and stability of the lysosomal membrane | Pagano et al., 2017 |
Atrazine, pendimetalin, fipronil, permethrin, chlorothalonid, propiconazole, and pyraclostrobin (pesticides) | Gills | Changes in the growth of organisms taken at an early stage of life | Bringolf et al., 2007 |
Glyphosate (herbicide) | Digestive gland, gills, and hemolymph | Superoxide dismutase (SOD), catalase, glutathione peroxidase, glutathione S-transferase, alkaline phosphatase, and acetylcholinesterase enzymes; DNA integrity | Matozzo et al., 2018; Milan et al., 2018 |
Imidacloprid and Thiacloprid (neonicotinoids) | Digestive gland and gills | Stability of the lysosomal membrane and activity of the acetylcholinesterase enzyme | Dondero et al., 2010; Prosser et al., 2016 |
Thiacloprid (neonicotinoid) | Digestive gland, gills, and hemolymph | Activity of superoxide dismutase (SOD), glutathione reductase, glutathione S-transferase, and catalase enzymes; morphological and histological anomalies, cell viability | Stara et al., 2020 |
Calypso (insecticide with Thiacloprid) | Digestive gland, gills, and hemolymph | Determination of hemolymphatic parameters; activity of superoxide dismutase (SOD) and catalase enzymes | Stara et al., 2020 |
Endosulfan, Aroclor 1242 and 1254, DDT, Carbaril, and Metrifonato (pesticides and PCBs, i.e., polychlorinated biphenyls) | Foot and byxogenic gland | Formation of the byssus | Roberts, 1975 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pagano, M.; Stara, A.; Aliko, V.; Faggio, C. Impact of Neonicotinoids to Aquatic Invertebrates—In Vitro Studies on Mytilus galloprovincialis: A Review. J. Mar. Sci. Eng. 2020, 8, 801. https://doi.org/10.3390/jmse8100801
Pagano M, Stara A, Aliko V, Faggio C. Impact of Neonicotinoids to Aquatic Invertebrates—In Vitro Studies on Mytilus galloprovincialis: A Review. Journal of Marine Science and Engineering. 2020; 8(10):801. https://doi.org/10.3390/jmse8100801
Chicago/Turabian StylePagano, Maria, Alzbeta Stara, Valbona Aliko, and Caterina Faggio. 2020. "Impact of Neonicotinoids to Aquatic Invertebrates—In Vitro Studies on Mytilus galloprovincialis: A Review" Journal of Marine Science and Engineering 8, no. 10: 801. https://doi.org/10.3390/jmse8100801
APA StylePagano, M., Stara, A., Aliko, V., & Faggio, C. (2020). Impact of Neonicotinoids to Aquatic Invertebrates—In Vitro Studies on Mytilus galloprovincialis: A Review. Journal of Marine Science and Engineering, 8(10), 801. https://doi.org/10.3390/jmse8100801