
Journal of

Marine Science 
and Engineering

Article

Internal Waves Study on a Narrow Steep Shelf of the
Black Sea Using the Spatial Antenna of Line
Temperature Sensors

Andrey Serebryany 1,2,* , Elizaveta Khimchenko 1 , Oleg Popov 3, Dmitriy Denisov 2

and Genrikh Kenigsberger 4

1 Shirshov Institute of Oceanology, Russian Academy of Sciences, 117997 Moscow, Russia;
ekhymchenko@gmail.com

2 Andreyev Acoustics Institute, 117036 Moscow, Russia; denisov.dimitriy@gmail.com
3 Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, 119017 Moscow, Russia;

olegp@mail.ru
4 Institute of Ecology of the Academy of Sciences of Abkhazia, Sukhum 384900, Abkhazia;

kenigsbergerg@mail.ru
* Correspondence: serebryany@hotmail.com

Received: 4 August 2020; Accepted: 19 October 2020; Published: 22 October 2020
����������
�������

Abstract: The results of investigations into internal waves on a narrow steep shelf of the northeastern
coast of the Black Sea are presented here. To measure the parameters of internal waves, the spatial
antenna of three autonomous line temperature sensors were equipped in the depth range of 17 to
27 m. In observations that lasted for 10 days, near-inertial internal waves with a period close to
17 h and short-period internal waves with periods of 2–8 min, regularly approaching the coast, were
revealed. The wave amplitudes were 4–8 m for inertial waves and 0.5–4 m for short-period internal
waves. It was determined that most of the short-period internal waves approached from the southeast
direction, from Cape Kodor. A large number of short waves reflected from the coast were also recorded.
The intensification of short-period waves with inertial periodicity and the belonging of trains of short
waves to crests of inertial waves were identified. In general, it was shown that the internal wave field at
a narrow shelf significantly differs in its features from analogs of ordinary shelves of the Black Sea.

Keywords: internal waves; inertial and short-period internal waves; space antenna; line temperature
sensors; shelf; the Black Sea

1. Introduction

The Black Sea is a unique phenomenon from many points of view, but here we will focus on only
one aspect: internal waves. Internal waves are widespread all over the world’s oceans, including in
marginal and inland seas. Internal waves propagate in a vertically stratified medium and perform a
significant function as the main source of internal mixing (internal ventilation) in the ocean. The base
source of the generation of internal waves is tidal forces. A large number of works have been devoted to
field studies of internal waves in oceans and seas around the world [1–5]. Initially, investigations were
carried out using contact methods. In recent decades, remote sensing methods have also been used [6,7].
Large-scale experiments have been conducted on ocean shelves, where the high intensification of
internal waves are found [8–11]. As a result, there is information on the main characteristics of internal
waves in various regions of the ocean, and regions of the world’s oceans where large-amplitude internal
waves are known to exist. The features of internal waves, as nonlinear waves exhibiting the properties
of solitons, have been described. In recent years, evidence was found of the existence of second mode
internal waves in the ocean [12,13]. Various important effects associated with internal waves have
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also been studied [14,15], leading to progress in the investigation of internal wave generation, among
which, tidal mechanisms are the best studied [16,17].

In contrast to the ocean and open seas, in the enclosed Black Sea, tides are small [18] and largely do
not affect the formation of the field of internal waves. However, internal waves do exist here, playing
an important role in vertical mixing of the water column. Observations of internal waves in the Black
Sea cover a period of several decades [19–25]. In the specialized observations that have been carried
out, not only have the parameters of internal waves been measured, but also the mechanisms of their
generation have been identified [26–28]. The internal wave field can be divided into two ranges, one of
which is long internal waves with an inertial period. In the Black Sea, this has a range of about 17 h.
The range of short-period internal waves has a frequency close to the buoyancy frequency. The periods
of these waves are from minutes to several tens of minutes. Most of the observations of internal waves
in the Black Sea have been carried out in the shelf zones. The properties of the shelf lead to the features
of the observed field of internal waves. From this perspective, observations on the steep and narrow
shelf in the northeastern part of the Black Sea, where we conducted our investigations, are of great
interest. In the Black Sea, inertial internal waves perform the role of the internal tides of the most
energy-intensive internal waves. As previous observations have shown, inertial waves on a steep and
narrow shelf have larger amplitudes compared to waves on ordinary shelves [29].

2. Study Area

In October–November 2019, we conducted a specialized experiment to study internal waves on a
narrow shelf near the Caucasian coast of the Black Sea. The measurements were carried out in the
coastal zone near Cape Sukhumsky (Figure 1). The shelf of the coast of the cape is narrow and steep,
with a sharp drop in depth. The average slope of the bottom at the measurement site, near the platform,
is about 23◦ (Figure 2). The 100 m isobath lies about 200 m from the coast, while on the ordinary shelf,
for example, on the northeastern shelf near Gelendzhik, the 100 m isobath is 5 km from the shore.
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Figure 1. The northeast part of the Black Sea shoreline and position of the study site. Map showing 
mooring locations and bathymetry of the study region (below). Depth is in meters. The dots mark the 
position of moorings equipped with line temperature sensors (LTSs) and thermistor chain (TC). 

 
Figure 2. Bottom relief at the measurement site, and the position of the measuring instruments. 

In the study area, north-west alongshore currents prevail. Often, there is an increase in the 
current velocity up to 0.5–1 m/s due to the rim current approaching the coast. This circumstance 
leads to an increase in inertial oscillations, even during calm weather. 

3. Materials and Methods 

The originality of this experiment was in using the antenna of line temperature sensors (LTSs), 
which were employed along with other measuring instruments commonly used in our practice. The 
LTS is a well-known internal wave meter [30,31] in the form of an insulated wire, which is located 
vertically in the thermocline and measures the average temperature of the covered water layer, 
recording the oscillations of internal waves propagating along the thermocline. The main advantage 
of an LTS over a point sensor is that its recordings are free from distortion, which can be introduced 
by the fine-structured irregularity of the vertical temperature profile usually found in real marine 
conditions. Fluctuations of the average temperature measured by an LTS can be easily converted 
into vertical displacements of the thermocline if the vertical temperature gradient is known, or 
special calibration is undertaken. The spatial antennas were created based on the LTSs. Previously, 
with their help, measurements were carried out on the shelves of seas from stationary platforms 
[26,27,32], as well as in the ocean with towed antennas and antennas deployed while drifting [33]. 

In our experiment, we used autonomous sensors based on the LTS technical description 
presented in Denisov and Serebryany [34]. Four moorings holding temperature sensors were 

Figure 1. The northeast part of the Black Sea shoreline and position of the study site. Map showing
mooring locations and bathymetry of the study region (below). Depth is in meters. The dots mark the
position of moorings equipped with line temperature sensors (LTSs) and thermistor chain (TC).
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In the study area, north-west alongshore currents prevail. Often, there is an increase in the current
velocity up to 0.5–1 m/s due to the rim current approaching the coast. This circumstance leads to an
increase in inertial oscillations, even during calm weather.
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3. Materials and Methods

The originality of this experiment was in using the antenna of line temperature sensors (LTSs),
which were employed along with other measuring instruments commonly used in our practice. The LTS
is a well-known internal wave meter [30,31] in the form of an insulated wire, which is located vertically
in the thermocline and measures the average temperature of the covered water layer, recording the
oscillations of internal waves propagating along the thermocline. The main advantage of an LTS
over a point sensor is that its recordings are free from distortion, which can be introduced by the
fine-structured irregularity of the vertical temperature profile usually found in real marine conditions.
Fluctuations of the average temperature measured by an LTS can be easily converted into vertical
displacements of the thermocline if the vertical temperature gradient is known, or special calibration
is undertaken. The spatial antennas were created based on the LTSs. Previously, with their help,
measurements were carried out on the shelves of seas from stationary platforms [26,27,32], as well as
in the ocean with towed antennas and antennas deployed while drifting [33].

In our experiment, we used autonomous sensors based on the LTS technical description presented
in Denisov and Serebryany [34]. Four moorings holding temperature sensors were installed at a short
distance from the coast. The positions of the moorings and their equipment, with instruments against
the bathymetry, are shown in Figures 1 and 2. Three stations were equipped with LTSs of 10 m length
(№1,№2,№3 in Figure 1), and at the fourth mooring a thermistor chain (TC) with 10 temperature
sensors (DST-centi-T of the Star-Oddi) was set. All sensors on the mooring were attached to cables,
at one end of which there was a dead anchor, and at the other a submerged buoy. The stations with
LTSs were located in the corners of a triangle, with sides of 63 m, 77 m, and 89 m. Line temperature
sensors were set at the thermocline at depths ranging from 17 m to 27 m. The sea depths at the mooring
locations were 47 m, 48 m, 70 m, and 73 m. The sampling rate of the LTSs was 20 s, and for thermistors
was 30 s. To measure the current from the surface to the bottom during the experiment, the acoustic
Doppler current profiler (ADCP) “Rio Grande 600 kHz” was installed next to the spatial antenna, from
the stationary platform, where the sea depth was 12 m.

Measurements were performed from 24 October until 4 November 2019. The pressure sensor
DST-centi-TD was deployed at the thermistor chain at a 5 m depth, to control the vertical position of the
mooring, and recorded a stable vertical position of the measuring system for most of the observation
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period. A strong current, which caused a deviation of the measuring systems from the upright position,
was observed on 3 November. We analyzed the data from 24 October to 2 November 2019.

4. Results

The temperature structure of the sea before the observations was characterized by the presence
of a pronounced thermocline at depths of 17–35 m. Figure 3 shows the vertical profiles of the
temperature and buoyancy frequency at the beginning of measurements, and after six days. In the
thermocline, the temperature difference reached 10 ◦C. The upper quasi-homogeneous layer had a
temperature of about 21 ◦C. LT sensors were placed within the horizons of 17–27 m, as shown in
Figure 3. The maximum buoyancy frequency, as seen in Figure 3, reached 30 c/h.
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The picture of temporal variability of the temperature structure for 10 days of observations was
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The aforementioned upward movement of the mean position of the thermocline (in Figure 4) was
most intense from October 26 and continued for three days. At that moment, according to the ADCP
data, the observed alongshore northwestern current first weakened from 0.25 m/s to 0.1 m/s, and then it
changed to an intense southeastern current with a velocity up to 0.35 m/s. This restructuring of currents
in the coastal zone was the principal cause of the noted upward displacement of the thermocline since
the southeastern current in the coastal area of the Black Sea leads to the upward movement of cold
waters, which occurs during upwelling. There was no more significant rise in the thermocline since an
intense southeastern current has been observed only for 20 h and then a gradual weakening to 0.1 m/s.

The heights of these inertial internal waves varied from 4 m to 8 m. It should be noted that during
the entire observation period, the weather conditions were predominantly sunny and calm, with low
wind. Besides the long-period oscillations of the thermocline, short-period internal waves with periods
of 6–10 min were identified in the record of the thermistor chain.

The information about internal waves, derived by the thermistor chain, was significantly
supplemented by the records of the spatial antenna of the line temperature sensors. Figure 5
presents an average frequency spectrum calculated by data recorded on the LTS of station№3. During
the calculation of the spectrum, averaging was carried out over the entire series, with an analysis
window length of 5 days. Let us recall that the LTS record represents the time series of the temperature
of the layer that the LTS covers. In our case, the sensor had a length of 10 m and covered a layer
between the horizons of 17 and 27 m. The passing internal waves created vertical displacements of the
thermocline, which were reflected in the temperature fluctuations recorded by the line temperature
sensor. If we know the vertical gradient of the layer temperature, it is possible to calculate the recorded
temperature oscillations into vertical displacements of the thermocline, expressed in meters. Thus,
the spectrum calculated from the LTS data is the spectrum of vertical displacements of the water column.
However, the dimension of the spectrum shown in Figure 5 is given in relative units. The spectrum
reaches the maximum at a frequency of 0.0563 c/h (period 17.8 h), which is close to the local inertial
frequency in the study area (17.6 h). Additionally, there is a rise in the spectrum at the high-frequency
band (10–20 c/h), which coincides with short-period oscillations of the thermocline. Both peaks are
above the calculated 95% confidence interval. Thus, the frequency spectrum, according to the LTS
recording data, confirms the presence of inertial and short-period internal waves in the observations.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 6 of 16 
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To better understand the appearance of short-period internal waves in more detail, a continuous
spectrum or spectrogram was built. To calculate the spectrogram, we used the record of vertical
displacement of the thermocline registered by the LTS at station No. 1 (data are shown in Figure 6, top).
The LTS record clearly shows inertial period fluctuations. The continuous spectrum (Figure 6, bottom)



J. Mar. Sci. Eng. 2020, 8, 833 6 of 15

shows that high-frequency oscillations (periods 2–8 min) appear on the thermocline with a periodicity
close to 17 h, and their appearance coincides with the passage of the crests of inertial internal waves.
The current spectra constructed from the records of the line temperature sensors at stations 2 and 3
look similar and confirm the appearance of packets of short-period waves when the crests of inertial
waves pass.
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from it (bottom), showing the inertial periodicity of the appearance of trains of short-period internal
waves and their binding to the crests of inertial internal waves.

A more detailed examination of the LTS records confirmed the binding of packets of short-period
internal waves to the crests of inertial internal waves. Figure 7 depicts a record of an internal inertial
wave made by an LTS, which clearly shows the appearance of short-period oscillations on its crest.
It should be noted also that the leading edge of the long internal wave is steeper than the trailing edge.
This feature indicates a non-linear transformation of an internal wave approaching the coast.
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A fragment of a wave train on the crest of an inertial wave is shown separately in Figure 8.
The train consists of 10 waves with periods from 4 to 8 min, and wave heights from 0.4 m to 1 m.
The parameters of these waves are typical for short-period internal waves recorded in the Black Sea.
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Oscillations of the water column with an inertial period were moved synchronously for all the
layers from the surface to the bottom, indicating their belonging to the first mode. The same has been
found for short-period waves, except for one time interval belonging to the beginning of an observation
(for 24 October from 19:59:30 to 21:59:30, Figure 9). At this time, an unusual phenomenon of a sharp
expansion of the thermocline was observed. In this case, the isotherm of 11.5 ◦C shifted down from
the horizon of 37 m to 42 m, while the isotherm of 16 ◦C moved up from 33 m to 28 m. During the
initial phase of this phenomenon, the appearance of a solitary wave of the second mode with a period of
8 min was noted, followed by two trains of short waves of the first mode, with periods of about 4 min.
The height of the second mode wave was about 4 m, while the heights of the first mode waves were in the
range of 0.5–4 m. For mode 1 waves, the height was determined as the range of oscillations of isotherms
from the trough to the crest within the wave period. For mode 2, the wave height is determined similarly
only in the section of the water column, where the movements of the layers are in phases.

The Definition of the Wave’s Directions and Phase Speed of Short-Period Internal Waves

Using a spatial antenna of three LTSs, spaced apart at the corners of a triangle with sides of
several tens of meters, we were able to determine the directions of propagation of passing short-period
internal waves (angles of arrival of waves; azimuths), and also determine their phase speeds. It is
supposed that the fronts of the internal waves are rectilinear, and based on this, we compared the wave
delays between the three sensors through which the trains passed. The rectilinear of the short-period
wave fronts on a scale of several hundred meters in the coastal zone of the Black Sea was confirmed
repeatedly by the results of remote sensing, and is beyond doubt (see, for example, Lavrova et al. [24]).
The azimuths and phase speeds were determined by a standard method based on the definition of time
delays of signal arrivals between pairs of receivers located in the corners of a triangle. This method
works well with a plane wavefront model, and a good signal-to-noise ratio. First, the signals were
filtered in the band 0.002–0.00333 Hz (periods of 300–500 s). Then, using cross-correlation analysis,
the delays of signal arrival to pairs of receivers were determined. After that, the azimuths and phase
speeds were measured. Figure 10 presents the analysis results. The estimated speeds of the propagation
of the majority of short-period internal waves were in the range from 0.1 m/s to 0.4 m/s. The obtained



J. Mar. Sci. Eng. 2020, 8, 833 8 of 15

azimuths of wave arrival showed a picture of the almost constant presence of two short-period internal
wave systems in the coastal zone. Some part of the waves moves from the open sea to the shore, and
others from the coast in the opposite direction. More information is presented in Figure 11, where the
histograms of the azimuths and phase velocities for the entire observation period are displayed.
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Figure 10. The filtered normalized LTS record in the band 0.002–0.00333 Hz (periods of 300–500 s).
The azimuths of the arrival of the waves are in the middle. The phase speeds of the waves are below.

The maximum of the azimuth histogram of 148◦ corresponds to the direction from the measurement
site near Cape Sukhumsky to Cape Kodor. The water area near Cape Kodor, where the eponymous river
flows into the sea, is placed 15 km to the southeast from Cape Sukhumsky. It is a region characterized
by the appearance of freshened water plumes with hydrological fronts, which often propagate to the
northwest and approach Cape Sukhumsky. Another maximum of the histogram, 333◦, is approximately
equal to the first plus 185◦. This is probably due to the direction of the arrival of internal waves,
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which are reflected from the coast. The phase velocities of the waves vary from 0.05 m/s to 0.35 m/s;
in this range, the most common values lie within 0.065–0.18 m/s. Based on the measured data on the
speeds and periods of the waves, we obtained an approximate range of short-period wavelengths of
within 30–100 m.
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5. Discussion

Let us compare the observed parameters of internal waves with what the theory predicts. For
this, a numerical solution of the Cauchy boundary value problem [35] (with boundary conditions of
w(0) = 0, w(н) = 0) was found:

d2w
dz2 +

N2
−ω2

ω2 − f 2 k2
hw = 0 (1)

where w is the amplitude of vertical velocity, kh is the horizontal wave number, N is the buoyancy
frequency, f is the inertial frequency, нis the depth of the sea, and w and N depend on z.

To solve this problem, we used the program from V. Goncharov [36], in which the vertical density
profile of the medium by layers is set. A more detailed description is given at the end of the article in
Appendix A. To solve (1), we used density profiles at the measurement site, which was observed at the
beginning of the experiment on 24 October, and again on 30 October 2019.

Figure 12 depicts the dispersion relationship for waves of 1 baroclinic mode (A) and dependence
of the phase velocity on the wave vector (B), obtained as a result of solution (1), and also indicates the
boundaries of the measured parameters of internal waves (showed by rectangles). A comparison of
the ranges of measured parameters of internal waves is shown in Figure 12, with theoretical curves in
good agreement.
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vector c(k) (B) for the internal waves of the first mode, obtained based on the solution of (1).

Let us return to the issue of the direction of the propagation of the observed short-period internal
waves. Previously in the study area, we measured short-period internal waves by using only single
sensors. Therefore, we knew the typical periods of the waves and their amplitudes, but we did not
have information about the wave lengths and the direction of their propagation. Nevertheless, it was
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possible for us to use additional information on the propagation of internal waves and their lengths in
this region, obtained by remote sensing data. In September 2016, we carried out observations near
Cape Sukhumsky and, as a result, the approach of a hydrological front carrying cold waters to the
coastal zone was recorded [37]. In this research, it was demonstrated that the approach of the front
towards Cape Sukhumsky was associated with the transfer of fresh water of the Kodor river plume.
The fresh river plume tracks, moving to the northwest, were accompanied by local hydrological fronts
and generated packets of short-period internal waves.

Figure 13 presents the MSI Sentinel 2-A optical range satellite image for the measurement site on
10 September 2017. Due to the color contrast, the plume at the area of the confluence of the river to the
sea and tracks of fresh water extending along the coast to the northwest towards Cape Sukhumsky are
clearly visible in the image. The water area near Cape Sukhumsky that is marked in the red rectangle
is shown in Figure 14 at an enlarged scale. Packets of internal waves are clearly visible on it, moving
shoreward in the direction of 350◦ to the cape. The front border of the train is located at a distance of
about 3 km from the coast. It was clear that soon it will approach the place where the spatial antenna
of LTS was installed in our observations in 2019. The packet of waves consists of nearly 20 waves
with lengths close to 100 m. Thus, the lengths of these waves and their directions coincide with the
parameters of the waves measured by the spatial systems of the LTSs. The hydrological conditions
when this image was taken were close to those of our observations in 2019. The ADCP data measured
in 2019 showed the presence of an alongshore northwestern current during our experiment. Thus,
we can conclude that the short internal waves moving towards the coast identified in the analysis,
like the waves in the image, owe their origin to the northwestern transport of fresh water from the
river Kodor. This is one of the possible sources of the observed trains of short-period internal waves,
but there is another. We also noted the appearance of short-period internal waves at the moments
when the crests of inertial internal waves approached the coastal zone. The appearance of packets
could be explained by the fact that, at these moments, the thermocline is pressed closer to the sea
surface, shear currents increase, and the generation conditions of the waves by the mechanism of the
Kelvin–Helmholtz shear instability are created.
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The inertial internal waves of the second mode were registered on the Black Sea shelf [38].
These observations were made near the South Coast of Crimea, where the shelf is gentle. In our
measurements on a narrow, steep shelf, there were only mode 1 inertial internal waves. As for
short-period waves, as previously mentioned, the observed short internal waves belonged to the first
mode, with the exception of one case. In the experiment of 2016 [37], the internal waves of the first mode
prevailed among short-period waves. However, once a train of waves of the second mode approaching
the coast was observed at the moment of a short-term expansion of the thermocline thickness. The
situation was similar to our case in 2019 (see Figure 9). At that time, before the appearance of the wave
train, which included the second mode wave, the thermocline also expanded. This feature is worthy of
attention and requires additional further research.

6. Conclusions

Internal waves in the Black Sea differ significantly from their analogs in the ocean. The main
difference lies in the lower wave amplitudes, and the fact that the tide—the major source of the
generation of internal waves in the ocean—does not work here. Like in the Black Sea, in other closed
basins, internal waves are also observed. Depending on the spatial dimensions of water bodies, the field
of internal waves has its specifics. Taking into account the abovementioned differences between waves
in closed seas and in the ocean, we can say that, nevertheless, in the Caspian Sea [32,39] as well as in the
Black Sea, internal waves are similar to oceanic ones. At the same time, in lakes of smaller sizes, edge
internal waves play an important role [40,41]. Trains of intense soliton-like waves or internal solitons
are observed everywhere. Their appearance is associated with the intense impact of external sources on
the stratified environment, such as atmospheric influences, which do not occur often. Our observations,
during which we saw regular approaches of inertial internal waves, as well as the appearance of trains
of short-period waves of relatively low amplitude, represent the typical and prevailing conditions of
the Black Sea shelves at this time of the year.

For many years, a vast amount of information about internal waves on the Black Sea shelf has been
collected. However, in most studies, these data were concerned with the internal wave field of ordinary
(gentle and wide) shelves. This paper presents the results of the first and most detailed experiment
measuring the field of internal waves in the coastal zone of the narrow and steep shelf of the Black Sea,
carried out in recent years near Cape Sukhumsky. In this study area, the deep waters are located close
to the coast, which imposes its features on the nature of the internal waves. The main feature of the
experiment was a system of spatial temperature sensors used to measure the parameters of the internal
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waves, which made it possible to obtain such important wave parameters as direction and speed of
propagation. The obtained data showed that the internal wave field of this region consists of two main
components: long-period internal waves close to local inertial ones, and short-period waves of the first
baroclinic mode. The presence of these two ranges of internal waves was conclusively indicated by
the peaks of the frequency spectra of the vertical displacements of the thermocline, calculated from
a 10-day record. Near-inertial waves with a period close to 17 h regularly approach the shore; their
amplitudes reached 8 m. Two systems in the short-period wave field were revealed. One is connected
with waves moving shoreward, and the other with the reverse direction. The periods of the waves
are 2–8 min; the heights are within 0.5–4 m. The wave lengths are from several tens to hundreds of
meters. A principal feature revealed was the detection of trains of short-period internal waves moving
towards the coast at the moments of the approach of the crests of inertial waves. Their generation
at the crests of long internal waves can be associated with the mechanism of the Kelvin–Helmholtz
shear instability. Additionally, some of the short-period waves approaching the coast owe their origin
to local fronts formed from the plumes of fresh water of the river Kodor, which are transferred by
the current to Cape Sukhumsky. An interesting finding was the detection of the frequent presence of
short-period internal waves moving from the coast. The origin of these waves could be attributed
to reflected waves from the narrow steep shelf. The short internal waves reflected from the coast are
probably the main distinguishing feature of the internal wave field of the narrow shelf, compared to
the internal waves of an ordinary or wide shelf.
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Appendix A

The calculation of the eigenfunctions and dispersive curves of internal waves was carried out by
numerically solving the equation of internal waves using the program elaborated by V.Goncharov [36].
The program solves the following equation for internal waves:

d2W
dz2 −

N2

g
dW
dz

+ k2 N2
−ω2

ω2 − F2 W = 0,
dW
dz

∣∣∣∣∣
z=0

=
gk2

ω2 − F2 W(0), W(−H) = 0

To calculate the parameters of internal waves in a horizontally homogeneous layer of a constant
depth H of an incompressible fluid (disregarding the Boussinesq approximation), the equilibrium
state of the fluid is assumed to be at rest (no flows), as the initial conditions are given a layer-by-layer
unperturbed vertical profile of the density of the medium, obtained from field observations. A model
of the ocean (sea) is considered in the form of a system of horizontally homogeneous liquid layers
with an upper free boundary z = 0 and an absolutely rigid bottom at z = −H, where z is the vertical
coordinate, {x, y} = r—horizontal (Figure A1). In each n-th layer, for the hydrological parameters of the
environment, the Väisälä frequency Nn is assumed to be constant, and the equilibrium water density



J. Mar. Sci. Eng. 2020, 8, 833 13 of 15

ρ0(z) is continuous at the boundaries of the layers. With a sufficiently large number of layers n, such a
model of the medium describes the measured parameters of hydrology well.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 14 of 16 
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Figure A1. Scheme of a layered homogeneous model of a liquid layer [36].

The program is based on an algorithm for the numerical calculation of the dispersion relationship,
which uses the impedance method (discrete analogue of the known sweep method), when the ratios
of functions (W′/W, or P/Z) that do not contain exponentially growing members are recalculated.
This makes it possible to calculate with sufficient accuracy the mode dispersion ωm (k) and the profiles
of their eigenfunctions under complex hydrological conditions.
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