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Abstract: The results of direct numerical simulations of the flow generated in a plane duct
by a pressure gradient which is the sum of two terms are described. The first term of the
pressure gradient is constant in space but it oscillates in time whereas the second term is
constant both in space and in time. Therefore, a pulsating flow is generated, similar to that
generated at the bottom of a monochromatic propagating surface wave when nonlinear effects
are taken into account. The simulations are carried out for values of the parameters similar
to those considered in previous investigations. It is shown that even a small constant pressure
gradient influences the flow regime in the bottom boundary layer. In particular, turbulence strength
is damped when the steady velocity component has the direction opposite to the oscillating velocity
component whereas turbulence strength increases when the steady and oscillating components point
in the same direction. Even though the flow is not exactly equal to that generated at the bottom of sea
waves, where second order effects in the wave steepness induce a steady streaming in the direction
of wave propagation, our results provide information on the interaction of the steady streaming with
the oscillatory flow and are also relevant for investigating the dynamics of sediment close to the sea
bottom. Indeed, since the turbulent eddies tend to pick-up the sediment from the bottom, it can be
inferred that the triggering of turbulence enhances sediment transport towards the shore.

Keywords: oscillating/pulsating turbulent flows; transition to turbulence; direct numerical
simulations

1. Introduction

A fair approximation of the flow field generated by a propagating surface wave is obtained by
assuming the flow to be irrotational and the fluid to be inviscid. However, this approach cannot
describe the flow close to the bottom where vorticity is generated because of the no-slip condition and
viscous effects turn out to be significant. Hence, the flow provided by the irrotational and inviscid
approach should be corrected by introducing a bottom boundary layer. When surface waves of small
amplitude are considered, the flow field can be expanded as a power series of the wave steepness and,
at the leading order of approximation, the flow close to the bottom is described by the well-known
Stokes’ solution that considers the laminar regime [1].

However, turbulence in an oscillatory boundary layer (Stokes boundary layer) appears when the
Reynolds number is larger than a critical value falling approximately between 500 and 600. Hereinafter,
the Reynolds number Rδ is defined using the amplitude U∗0 and the angular frequency ω∗ of the
oscillations of the irrotational velocity evaluated at the bottom along with the kinematic viscosity ν∗ of
the seawater:

Rδ =
U∗0 δ∗

ν∗
. (1)
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In (1), δ∗ =
√

2ν∗
ω∗ denotes the order of magnitude of the thickness of the viscous bottom

boundary layer.
Indeed, the measurements of Hino et al. [2] show that the velocity field is characterized by the

appearance of turbulent oscillations towards the end of the accelerating phases of the cycle when the
Reynolds number is larger than a value approximately equal to 500. However, small perturbations
of the Stokes flow are superimposed to the laminar flow already for values of Rδ falling around 100,
but the average velocity profile exhibits only small deviations from the laminar solution. Only when
the Reynolds number becomes larger than about 500, turbulence becomes significant and it affects the
flow field during larger parts of the oscillatory cycle as the Reynolds number is increased. The fully
turbulent regime is observed, characterized by turbulence presence throughout the whole cycle,
when the Reynolds number becomes larger than a value that is difficult to quantify exactly but the
results of Jensen et al. [3] suggest to range between 2500 and 3500. Therefore, the experimental
measurements show the existence of four flow regimes, i.e., the laminar regime, the disturbed laminar
regime, the intermittently turbulent regime and the fully developed turbulent regime. The disturbed
laminar regime is characterized by the presence of small amplitude perturbations superimposed on
the laminar flow. The intermittently turbulent regime is characterized by turbulence bursts which
appear during the decelerating phases of the cycle but the flow recovers a laminar like behavior during
the remaining parts of the cycle. The fully turbulent regime is characterized by turbulence presence
throughout the whole cycle.

The theoretical and numerical investigations of both the transition process and the dynamics of
vorticity in the oscillatory flow at the bottom of the sea waves are difficult because of the unsteadiness
of the basic flow [4–14] and because of the presence of bedforms [15–17]. When the bottom is flat,
recent theoretical investigations and numerical simulations [18–25], show that turbulence appearance
is triggered by either wall imperfections [18,20] or by the bottom roughness, because of the vortex
structures shed by the roughness elements [23,25] or by external perturbations [12,26].

Even though the oscillatory boundary layer generated close to a wall by the harmonic oscillations
of a fluid has been deeply investigated, much less is known on the boundary layer generated at the
bottom of sea waves. Indeed, no accurate measurements have been made because of the difficulties to
generate, in a laboratory, propagating surface waves characterized by large values of the Reynolds
number of the bottom boundary layer.

The numerical simulations are difficult to be made because of the different length scales involved
in the phenomenon. Indeed, the thickness δ∗ of the bottom boundary layer is of the order of 10−3 m
while the length of the surface waves is of order 102 m. Taking into account that at least 10 grid points
or more are needed every δ∗, it turns out that the numerical simulations would require a number of
grid points of order 1015.

The phenomenon becomes more complex when the surface waves interact with steady currents,
since the average flow at time t∗ is no longer the mirror image of that at time t∗ + T∗/2 and turbulence
production during half a cycle becomes different from that during the previous or following half cycle.

Herein, to provide some information on the effect that a steady velocity component has on the
transition process and on turbulence dynamics, direct numerical simulations are made of the flow
generated in a plane duct by a pressure gradient which is the sum of two terms. The first term of
the pressure gradient is constant in space but it oscillates periodically in time whereas the second
term is constant both in space and in time. Hence, a pulsating flow is generated as that considered
by [10,27,28]. The numerical simulations are carried out for values of the parameters similar to those
considered by [18,19].

Since both theoretical analyses and previous numerical simulations show that wall imperfections
play a key role in triggering turbulence appearance, in the present numerical simulations the wall is
not perfectly plane but characterized by the presence of a small waviness, the amplitude of which is so
small that the wall is flat from a macroscopic point of view.
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The structure of the rest of the paper is the following: in the next section, we formulate the
problem and briefly describe the numerical approach. The third section is devoted to describing
the results and in particular the velocity field, the spatial and temporal distribution of the turbulent
kinetic energy and the time development of the bottom shear stress. The last section is devoted to
the conclusions.

2. Problem

An incompressible viscous fluid, bounded by a horizontal wall, is set in motion by a pressure
gradient described by

∂p∗

∂x∗1
= −ρ∗U∗0 ω∗ (sin(ω∗t∗) + C) ,

∂p∗

∂x∗2
= 0,

∂p∗

∂x∗3
= 0, (2)

where x∗1 , x∗2 and x∗3 are the streamwise, cross-stream and spanwise coordinates of a Cartesian
coordinate system, ρ∗ denotes the fluid density, U0 and T∗ = 2π/ω∗ are related to the amplitude and
the period of the fluid velocity oscillations induced by the oscillating pressure far from the wall and C
is an arbitrary constant. The rigid wall, located at x∗3 = 0, is not perfectly flat but is characterized by a
waviness of small amplitude as in [18,19]. More in detail, the wall profile is described by

x∗2 = ε∗η(x∗1 , x∗3) = ε∗
N

∑
n=1

a∗n cos (α∗nx∗1 + γ∗nx∗3 + φn) , (3)

where an is the amplitude of the nth component of the wall waviness characterized by wavenumbers
α∗n and γ∗n in the x∗1- and x∗3-directions respectively and by a random phase. Moreover, the flow is
assumed to be symmetric with respect to the plane x∗2 = L∗x2.

Hereinafter, a star denotes dimensional quantities and the same symbols without the star denote
their dimensionless counterparts which are defined by

t = t∗ω∗, (x1, x2, x3) =
(x∗1 , x∗2 , x∗3)

δ∗
, (u1, u2, u3) =

(u∗1 , u∗2 , u∗3)
U∗0

, p =
p∗

ρ∗U∗20
. (4)

In (4), t∗ is time and u∗1 , u∗2 , u∗3 are the fluid velocity components. A value of L∗x2 much
larger than δ∗ is chosen so that the ghost wall located at x∗2 equal to 2L∗x2 does not affect the flow
close to the wall described by (3).

The hydrodynamic problem is posed by Navier–Stokes and continuity equations

∂u
∂t

+
Rδ

2
∇ · (uu) = −Rδ

2
∇p + ix1 (sin(t) + C) +

1
2
∇2u, (5)

where ix1 denotes the unit vector in the streamwise direction and Rδ =
U∗0 δ∗

ν∗ is the Reynolds number
of the flow.

The equations are solved by a numerical approach in a computational domain of size Lx1, Lx2 and
Lx3 in the streamwise, vertical and spanwise directions, respectively. The numerical approach uses
finite difference approximations of the spatial and temporal derivatives. An exhaustive description of
the numerical approach can be found in [19] where the tests carried out to validate the numerical code
are also described.

The no-slip condition is enforced at the wall

(u1, u2, u3) = 0 at x2 = εη (x1, x3) . (6)
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Since the value of ε∗ is assumed to be much smaller than δ∗, the parameter ε turns out to be much
smaller than 1 and the boundary condition at the wall can be approximated by

(u1, u2, u3) = −εη
∂ (u1, u2, u3)

∂x2
, at x2 = 0 (7)

since the accuracy of (7) is within the accuracy of the numerical approach itself. Indeed the numerical
approach is second order accurate in space and in the simulations the value of ε is smaller than the
size of the first computational step in the x∗2-direction. Moreover, at x∗2 = h∗0 , a symmetry condition is
enforced, which is equivalent to enforce the vanishing of tangential stresses far from the wall.

The computational grid is uniform in the streamwise and spanwise directions, with nx1 and nx3

grid points, respectively. In the cross-stream direction a non-uniform mesh with nx2 points is used to
cluster the gridpoints close the wall where velocity gradients are expected to be larger.

Costamagna et al. [29], for a flow similar to that investigated here and for similar values of
the Reynold number, discussed the adequacy of a computational domain with size Lx1 = 25.13δ∗,
Lx2 = 25.13δ∗, Lx2 = 12.57δ∗ and number of gridpoints equal to nx1 = 64, nx2 = 64, nx3 = 32
(small box). Considering the spatial autocorrelation functions and comparing with results obtained
in control runs made with a larger computational domain (big box, Lx1 = 50.27δ∗, Lx2 = 25.13δ∗,
Lx2 = 25.14δ∗, nx1 = 192, nx2 = 64, nx3 = 96), Costamagna et al. [29] concluded that as in [30],
the small computational domain does not allow accurate predictions of the high-order statistical
quantities, but it is adequate to isolate the basic process generating turbulence. On the other hand,
Costamagna et al. [29] showed that the big box allows us to investigate turbulence structure both near
and far from the wall. Moreover Costamagna et al. [29], by considering power spectra of the velocity,
showed that the number of grid points is adequate to resolve the smallest scales of the flow, even at
the phases of the cycle when turbulence appears.

Considering the size of the computational box and the number of grid points used in the present
simulations (see Table 1), which are comparable to those of the big box by [29], it appears that the
numerical parameters used in the present simulations are adequate to describe the average flow.
The initial condition is either the steady velocity profile, induced by the steady pressure gradient or the
final flow field of a run with a similar Reynolds number. In any case, the simulations are carried out till
a regime configuration is attained and the results do not depend on the initial condition. The numerical
code was run for different values of the Reynolds number Rδ ranging from 100 to 1200 and for values
of the steady pressure gradient of order 10−2 (see Table 1).

Table 1. Values of the hydrodynamics parameters of the numerical simulations.

Rδ C L∗
x1

δ∗
L∗

x2
δ

L∗
x3
δ nx1 nx2 nx3

100 10−3 50.27 25.13 25.13 129 65 129
500 0 50.27 25.13 25.13 129 65 129
500 10−3 50.27 25.13 25.13 129 65 129
600 0 50.27 25.13 25.13 129 65 129
600 10−3 50.27 25.13 25.13 129 65 129
600 5× 10−3 50.27 25.13 25.13 129 65 129
600 10−2 50.27 25.13 25.13 129 65 129
800 0 50.27 25.13 25.13 129 65 129
800 10−3 50.27 25.13 25.13 129 130 129
800 5× 10−3 50.27 25.13 25.13 129 130 129
800 10−2 50.27 25.13 25.13 129 130 129

1000 0 50.27 25.13 25.13 129 65 129
1000 10−3 50.27 25.13 25.13 129 130 129
1000 5× 10−3 50.27 25.13 25.13 129 130 129
1000 10−2 50.27 25.13 25.13 129 130 129
1200 0 50.27 25.13 25.13 129 65 129
1200 10−3 50.27 25.13 25.13 129 130 129
1200 5× 10−3 50.27 25.13 25.13 129 130 129
1200 10−2 50.27 25.13 25.13 129 130 129
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The parameters describing the wall imperfections are the same as those used by [19]. In particular,
a wall profile with two harmonic components (N = 2) is used and the first component of the wall
waviness is two-dimensional (a1 = 1.0, α1 = 0.5, γ1 = 0, φ1 = 0) whereas the second component is a
three-dimensional undulation (a2 = 0.1, α2 = 0, γ2 = 1.0, φ2 = 0). Moreover, ε is fixed equal to 0.005
which is the order of magnitude of the imperfections of a mirror-shine smooth wall. The numerical
code was extensively validated by [19,29] by comparing the results it provides with analytical solutions,
available for low Reynolds numbers, and with experimental data.

3. Results

In a purely oscillatory boundary layer, for values of the Reynolds number larger than a first
critical value ranging between 500 and 600, the transition to turbulence takes place every half cycle
and it is followed by a phase during which turbulence decays and the flow recovers a laminar-like
behaviour [19]. This scenario is partly modified by the presence of a constant positive pressure gradient,
even though turbulence dynamics is similar to that observed in [19].

In Figure 1, the instantaneous spanwise velocity component in the horizontal plane x∗2 = 0.65δ∗

is plotted at two different phases of the cycle for Rδ = 800 and C = 1.0× 10−3. The results clearly
show that turbulence intensity is rather small at t∗ ' 19.26T∗ whereas it is significant at t∗ ' 19.51T∗

(the reader should notice the different scales on the right of the panels of Figure 1).
Moreover, the time development of the turbulent kinetic energy (K∗), averaged over horizontal

planes and integrated into the vertical direction, shows that the pressure gradient has different effects
on the flow, depending on the direction of the oscillatory velocity component with respect to the
direction of the current induced by the steady pressure gradient. Indeed, as shown in Figure 2 for
Rδ = 1000, whereas in purely oscillatory flow K∗ has two similar peaks per cycle, the presence of a
moderate steady current decreases the intensity of one of the maxima. In particular, the maximum
located in the time interval during which the oscillatory velocity component opposes the steady current
is damped. On the other hand, when the oscillatory velocity component has the same direction as the
steady current, the turbulence strength increases with respect to the case characterized by C = 0. If the
steady current increases in intensity (C = 10−2), only one maximum per cycle is observed. In Figure 2,
K is equal to K∗ divided by ρ∗U∗20 δ∗ where K∗ is the turbulent kinetic energy per unit bottom area,
averaged over the horizontal plane and integrated over the vertical direction.

It is worthwhile to mention that K does not appear to reach a periodic behavior because of the size
of the computational box which is not large enough to provide an accurate description of the dynamics
of the largest vortex structures. Indeed, the size of the computational domain and the number of
grid points are the results of a compromise between the accuracy of the numerical results and the
computational costs. The evaluation of the spectra of the velocity field at different phases during
the oscillatory cycle shows that the grid size is small enough to capture the dynamics of the smallest
turbulent eddies but the size of the computational domain does not allow to describe accurately
the largest vortex structures. However, the energy of these large vortices is rather small and we are
confident that the results described in the paper provide a reliable description of turbulence dynamics.

For values of the Reynolds number close to the first critical value for the transition from the
disturbed laminar to the intermittently turbulent regime in the purely oscillatory boundary layer [19],
the steady current appears to have a different effect of K.

Figure 3 shows that for Rδ = 600 and C = 0 two maxima of K appear during one oscillating cycle
but for large values of C, only one maximum of the turbulent kinetic energy can be clearly observed.
The phase within the cycle of the maximum of K depends significantly on the value of C and it is
difficult to draw definitive conclusions. However, it appears that for moderate values of the Reynolds
number, the opposite current tends to stabilize the flow for all the values of C considered and the flow
tends to recover the laminar regime. On the other hand, the turbulent kinetic energy increases when
the oscillatory velocity component points in the same direction as the steady velocity.
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Figure 1. Dimensionless spanwise velocity component at x∗2 /δ∗ = 0.65. Top panel t∗ = 19.26T∗.
Bottom panel t∗ = 19.51T∗. (Rδ = 800, C = 1.0× 10−3).
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Figure 2. Time development of the dimensionless turbulent kinetic energy K, averaged over horizontal
planes and integrated in the vertical directions for Rδ = 1000: (a) C = 0, (b) C = 1× 10−3, 5× 10−3,
1× 10−3. The black broken lines indicates qualitatively the oscillating component of velocity at the
edge of the boundary layer. The current generated by the steady component of the pressure gradient
points in the negative direction of the x1-axis.
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Figure 3. Time development of the turbulent kinetic energy, averaged over horizontal planes and
integrated in the vertical directions (K) for Rδ = 600 (a) C = 0, (b) C = 1× 10−3, 5× 10−3, 1× 10−3.
The black broken lines indicates the oscillating component of velocity at the edge of the boundary
layer. The current generated by the steady component of the pressure gradient points in the negative
direction of the x1-axis.

The vertical distribution of the plane-averaged turbulent kinetic energy k∗, plotted in
Figures 4 and 5 for Rδ = 600 and Rδ = 1000 respectively, shows that turbulence reaches larger
distances when the flow has the same direction as the current. The intensity of the steady current does
not appear to alter the vertical profile of the turbulent kinetic energy from a qualitative point of view.
The turbulent kinetic energy profiles for Rδ = 800 and Rδ = 1200 are qualitatively similar to those of
Rδ = 1000.
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Figure 4. Vertical profiles of turbulent kinetic energy, averaged over horizontal planes, at different
times during the 20th cycle. Rδ = 600. Black line: C = 10−3; blue line: C = 5× 10−3; green line: C = 10−2.
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Figure 5. Vertical profiles of turbulent kinetic energy, averaged over horizontal planes, at different
times during the 20th cycle. Rδ = 1000. Black line: C = 10−3; blue line: C = 5× 10−3; green line:
C = 10−2.

Figure 6 shows the time development of the bottom shear stress. Vittori and Verzicco [19] showed
that, for the smallest value of Rδ and C = 0, the bottom shear stress significantly deviates from the
values typical of the laminar regime just after its maximum and minimum values, when turbulence
is generated. Of course when the Reynolds number is increased, turbulence becomes stronger and
appears earlier within the cycle and the peaks of the bottom shear stress become larger. Consistently
with the time evolution of the turbulent kinetic energy, when values of C different from zero are
considered, the peaks of the bottom shear stress in the direction of the steady current become larger
whereas those in the opposite direction decrease.

So far, we have described the influence of the steady pressure gradient on the oscillatory
components of the flow. However, the presence of a steady pressure gradient generates a steady
velocity component too. If no oscillatory velocity component is present (U∗0 = 0), in the laminar
regime the velocity profile can be easily evaluated. Such a velocity profile was used as the initial
condition for the numerical simulations. After a large number of cycles, the velocity profile, averaged
over horizontal planes and over one period should not change from one cycle to the other. Presently,
due to the limited statistical sample, the velocity profile shows little difference form one cycle to the
following ones. Figure 7 shows the time-averaged velocity profiles obtained by considering many
cycles. As expected, it can be seen that the steady velocity component u1 is always negative and the
values of the velocity increase for increasing values of C. It is also worthwhile to notice that, as the
Reynolds number is increased, the intensity of the steady velocity component tends to decrease.
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Figure 6. Time development of the plane-averaged bottom shear stress for different values of the
Reynolds number. From top to bottom: C = 1× 10−3, C = 5× 10−3, C = 1× 10−2. Green: Rδ = 600;
blue: Rδ = 800, cyan: Rδ = 1000; magenta: Rδ = 1200.
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4. Conclusions

The direct numerical simulations of the flow generated in a plane duct by a pressure gradient
which is the sum of a constant pressure gradient plus a temporal oscillating contribution show that,
for moderate values of the Reynolds number, the turbulence strength, evaluated when the oscillating
velocity component points in the same direction as the steady velocity component, is stronger than
that observed when the two velocity components have opposite directions. At the bottom of sea waves
a steady velocity component, pointing onshore, is generated by nonlinear effects [31]. Even though
the flow provided by the present direct numerical simulations is not exactly equal to that generated
at the bottom of sea waves, the obtained results provide information on the effect that the steady
streaming [31], that is present in the boundary layer at the bottom of a sea wave, has on the transition
to turbulence and on the sediment transport. Indeed, it can be inferred that, the turbulence strength
observed when the oscillatory velocity points onshore is stronger than when it points offshore. Because
the sediment transport is significantly increased by turbulence presence, it appears that the onshore
sediment transport rate is significantly increased by turbulence appearance.
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