A New Experimental Study and SPH Comparison for the Sequential Dam-Break Problem
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Set-Up
2.2. Calibration Process
2.3. Obtaining the Water Level-Time Curves
2.4. Numerical Solution
3. Results and Discussion
3.1. General Overview of the Initial and Development Stages of the Experiment
3.2. Repeatability Test
3.3. Comparison of Different Camera Results
3.4. Determination of the Parameters in the SPH Method
3.5. Comparison of the Experimental and Numerical Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ritter, A. The propagation of water waves. Ver Dtsch. Ing. Zeitschr 1892, 36, 947–954. [Google Scholar]
- Stoker, J.J. Water Waves: The Mathematical Theory with Applications; Interscience Publishers Inc.: New York, NY, USA, 1957. [Google Scholar]
- Fraccarollo, L.; Toro, E.F. Experimental and numerical assessment of the shallow water model for two-dimensional dam-break type problems. J. Hydraul. Res. 1995, 33, 843–864. [Google Scholar] [CrossRef]
- Toro, E.F. Shock-Capturing Methods for Free-Surface Shallow Flows; John Wiley: New York, NY, USA, 2001. [Google Scholar]
- Aureli, F.; Maranzoni, A.; Mignosa, P.; Ziveri, C. Dam-break flows: Acquisition of experimental data through an imaging technique and 2D numerical modelling. J. Hydraul. Eng. 2008, 134, 1089–1101. [Google Scholar] [CrossRef]
- Song, L.; Zhou, J.; Guo, J.; Zou, Q.; Liu, Y. A robust well-balanced finite volume model for shallow water flows with wetting and drying over irregular terrain. Adv. Water Resour. 2001, 34, 915–932. [Google Scholar] [CrossRef]
- Alvarez, M.; Puertas, J.; Pena, E.; Bermudez, M. Two-dimensional dam-break flood analysis in data-scarce regions: The case study of chipembe dam, Mozambique. Water 2017, 9, 432. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liang, Q.; Kesserwani, G.; Hall, J.W. A 2D shallow flow model for practical dam-break simulations. J. Hydraul. Res. 2011, 49, 307–316. [Google Scholar] [CrossRef]
- Ozmen-Cagatay, H.; Kocaman, S. Dam-break flow in the presence of obstacle: Experiment and CFD simulation. Eng. Appl. Comput. Fluid Mech. 2011, 5, 541–552. [Google Scholar] [CrossRef] [Green Version]
- Ozmen-Cagatay, H.; Kocaman, S. Investigation of dam-break flow over abruptly contracting channel with trapezoidal-shaped lateral obstacles. J. Fluids Eng. 2012, 134, 081204. [Google Scholar] [CrossRef]
- Shigematsu, T.; Liu, P.L.F.; Oda, K. Numerical modeling of the initial stages of dam-break waves. J. Hydraul. Res. 2004, 42, 183–195. [Google Scholar] [CrossRef]
- Marsooli, R.; Wu, W. 3-D finite volume model of dam-break flow over uneven beds based on VOF method. Adv. Water Resour. 2014, 70, 104–117. [Google Scholar] [CrossRef]
- Ozmen-Cagatay, H.; Kocaman, S.; Guzel, H. Investigation of dam-break flood waves in a dry channel with a hump. J. Hydro Environ. Res. 2014, 8, 304–315. [Google Scholar] [CrossRef]
- Zubeldia, E.H.; Fourtakas, G.; Rogers, B.D.; Farias, M.M. Multi-phase SPH model for simulation of erosion and scouring by means of the shields and Drucker-Prager criteria. Adv. Water Resour. 2018, 117, 98–114. [Google Scholar] [CrossRef]
- Manenti, S.; Wang, D.; Domínguez, J.M.; Li, S.; Amicarelli, A.; Albano, R. SPH modeling of water-related natural hazards. Water 2019, 11, 1875. [Google Scholar] [CrossRef] [Green Version]
- Subramaniam, S.P.; Scheres, B.; Schilling, M.; Liebisch, S.; Kerpen, N.B.; Schlurmann, T.; Schüttrumpf, H. Influence of convex and concave curvatures in a coastal dike line on wave run-up. Water 2019, 11, 1333. [Google Scholar] [CrossRef] [Green Version]
- Domínguez, J.M.; Crespo, A.J.; Hall, M.; Altomare, C.; Wu, M.; Stratigaki, V.; Gómez-Gesteira, M. SPH simulation of floating structures with moorings. Coastal Eng. 2019, 153, 103560. [Google Scholar] [CrossRef]
- Trimulyono, A.; Hirotada, H.; Akihiko, M. Experimental validation of single-and two-phase smoothed particle hydrodynamics on sloshing in a prismatic tank. J. Mar. Sci. Eng. 2019, 7, 247. [Google Scholar] [CrossRef] [Green Version]
- Trimulyono, A.; Hashimoto, H. Experimental validation of smoothed particle hydrodynamics on generation and propagation of water waves. J. Mar. Sci. Eng. 2019, 7, 17. [Google Scholar] [CrossRef] [Green Version]
- Altomare, C.; Tafuni, A.; Domínguez, J.M.; Crespo, A.J.C.; Gironella, X.; Sospedra, J. SPH simulations of real sea waves impacting a large-scale structure. J. Mar. Sci. Eng. 2020, 8, 826. [Google Scholar] [CrossRef]
- Gingold, R.A.; Monaghan, J.J. Smoothed particle hydrodynamics-theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 1977, 181, 375–389. [Google Scholar] [CrossRef]
- Altomare, C.; Tagliafierro, B.; Dominguez, J.M.; Suzuki, T.; Viccione, G. Improved relaxation zone method in SPH-based model for coastal engineering applications. Appl. Ocean Res. 2018, 81, 15–33. [Google Scholar] [CrossRef]
- Novak, G.; Tafuni, A.; Domínguez, J.M.; Četina, M.; Žagar, D. A numerical study of fluid flow in a vertical slot fishway with the smoothed particle hydrodynamics method. Water 2019, 11, 1928. [Google Scholar] [CrossRef] [Green Version]
- Hui Pu, J.; Shao, S.; Huang, Y.; Hussain, K. Evaluations of SWEs and SPH numerical modelling techniques for dam break flows. Eng. Appl. Comput. Fluid Mech. 2013, 7, 544–563. [Google Scholar] [CrossRef]
- Aureli, F.; Dazzi, S.; Maranzoni, A.; Mignosa, P.; Vacondio, R. Experimental and numerical evaluation of the force due to the impact of a dam-break wave on a structure. Adv. Water Resour. 2015, 76, 29–42. [Google Scholar] [CrossRef]
- Luo, J.; Xu, W.; Tian, Z.; Chen, H. Numerical simulation of cascaded dam-break flow in downstream reservoir. Water Management 2017, 172, 55–67. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, W. Retarding effects of an intermediate intact dam on the dam-break flow in cascade reservoirs. J. Hydraul. Res. 2017, 55, 438–444. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.U.E.; Xu, W.L.; Luo, S.J.; Chen, H.Y.; Li, N.W.; Xu, L.J. Experimental study of dam-break flow in cascade reservoirs with steep bottom slope. J. Hydrodyn. Ser. B 2011, 23, 491–497. [Google Scholar]
- Dai, S.; He, Y.; Yang, J.; Ma, Y.; Jin, S.; Liang, C. Numerical study of cascading dam-break characteristics using SWEs and RANS. Water Supply 2020, 20, 348–360. [Google Scholar] [CrossRef]
- Dal, K.; Kocaman, S. Comparison of the experimental results with SPH method for sequential dam-break problem. In Proceedings of the 5th IAHR Europe Congress, Trento, Italy, 12–14 June 2018. [Google Scholar]
- Evangelista, S.; Altinakar, M.; Di Cristo, C.; Leopardi, A. Simulation of dam-break waves on movable beds using a multi-stage centered scheme. Int. J. Sediment Res. 2013, 28, 269–284. [Google Scholar] [CrossRef]
- Evangelista, S. Experiments and numerical simulations of dike erosion due to a wave impact. Water 2015, 7, 5831–5848. [Google Scholar] [CrossRef] [Green Version]
- Chanson, H. Tsunami surges on dry coastal plains: Application of dam break wave equations. Coast. Eng. J. 2006, 48, 355–370. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.L.; Ma, Y.; Deng, R.; Jiang, D.P.; Hu, Z. Research on dam-break induced tsunami bore acting on the triangular breakwater based on high order 3D CLSVOF-THINC/WLIC-IBM approaching. Ocean Eng. 2019, 182, 645–659. [Google Scholar] [CrossRef]
- Cheng, D.; Zhao, X.Z.; Zhang, D.K.; Chen, Y. Numerical study of dam-break induced tsunami-like bore with a hump of different slopes. China Ocean Eng. 2017, 31, 683–692. [Google Scholar] [CrossRef]
- Kocaman, S. Experimental and Theoretical Investigation of Dam-Break Problem. Ph.D. Thesis, Cukurova University, Adana, Turkey, 2007. [Google Scholar]
- Kocaman, S.; Ozmen-Cagatay, H. Investigation of dam-break induced shock waves impact on a vertical wall. J. Hydrol. 2015, 525, 1–12. [Google Scholar] [CrossRef]
- Kocaman, S.; Güzel, H.; Evangelista, S.; Ozmen-Cagatay, H.; Viccione, G. Experimental and numerical analysis of a dam-break flow through different contraction geometries of the channel. Water 2020, 12, 1124. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Wang, B.; Chen, Y.; Wu, C.; Liu, X. Assessing the analytical solution of one-dimensional gravity wave model equations using dam-break experimental measurements. Water 2018, 10, 1261. [Google Scholar] [CrossRef] [Green Version]
- Soares-Frazao, S.; Zech, Y. Experimental study of dam-break flow against an isolated obstacle. J. Hydraul. Res. 2007, 45, 27–36. [Google Scholar] [CrossRef]
- Crespo, A.J.C.; Dominguez, J.M.; Rogers, B.D.; Gesteira, M.G.; Longshaw, S.; Canelas, R.; Vacondio, R.; Barreiro, A.; Feal, O.G. DualSPHysics: Open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH). Comput. Phys. Commun. 2015, 187, 204–216. [Google Scholar] [CrossRef]
- Turhan, E.; Ozmen-Cagatay, H.; Kocaman, S. Experimental and numerical investigation of shock wave propagation due to dam-break over a wet channel. Pol. J. Environ. Stud. 2019, 28, 2877–2898. [Google Scholar] [CrossRef]
- Han, Z.; Su, B.; Li, Y.; Dou, J.; Wang, W.; Zhao, L. Modeling the progressive entrainment of bed sediment by viscous debris flows using the three-dimensional SC-HBP-SPH method. Water Res. 2020, 182, 116031. [Google Scholar] [CrossRef]
# | Brand | Properties |
---|---|---|
Camera-1 | Apple® iPhone 6 s | 720 p/120 fps |
Camera-2 | Sony® Nex 7 | 1080 p/50 fps |
Parameter | Value |
---|---|
Artificial Viscosity | 0.05 |
Courant coefficient | 0.2 |
Coefficient of sound | 20 |
Distance of the particles | 0.001 m |
DeltaSPH value | 0.1 |
Step Algorithm | Symplectic |
Kernel | Wendland |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kocaman, S.; Dal, K. A New Experimental Study and SPH Comparison for the Sequential Dam-Break Problem. J. Mar. Sci. Eng. 2020, 8, 905. https://doi.org/10.3390/jmse8110905
Kocaman S, Dal K. A New Experimental Study and SPH Comparison for the Sequential Dam-Break Problem. Journal of Marine Science and Engineering. 2020; 8(11):905. https://doi.org/10.3390/jmse8110905
Chicago/Turabian StyleKocaman, Selahattin, and Kaan Dal. 2020. "A New Experimental Study and SPH Comparison for the Sequential Dam-Break Problem" Journal of Marine Science and Engineering 8, no. 11: 905. https://doi.org/10.3390/jmse8110905
APA StyleKocaman, S., & Dal, K. (2020). A New Experimental Study and SPH Comparison for the Sequential Dam-Break Problem. Journal of Marine Science and Engineering, 8(11), 905. https://doi.org/10.3390/jmse8110905