The Impact of Wind on Flow and Sediment Transport over Intertidal Flats
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Field Measurements
2.3. Data Post-Processing
2.4. Suspended Sediment Flux Estimate
2.5. Definitions and Conventions
3. Results
3.1. Full-Period Time Series
3.2. Three Selected Wind Scenarios: Analysis of Wind-Induced Tidal Flow Reversal
3.3. Sediment Transport, Bed Shear Stress and Bed Level Change
4. Discussion
4.1. Determination of Leading Order Terms in the Momentum Balance Equation
4.2. Tide–Wind Interaction Model
4.3. Effect of Wind on Tide-Averaged Flow: Model and Data Comparison
4.4. Resuspension and Advection by Currents and Waves
4.5. Conceptual Model of Wind-Induced Sediment Transport and Storage in Intertidal Areas
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Bed Shear Stress Induced by Wave–Current Interaction
References
- Piersma, T.; de Goeij, P.; Tulp, I. An evaluation of intertidal feeding habitats from a shorebird perspective: Towards relevant comparisons between temperate and tropical mudflats. Neth. J. Sea Res. 1993, 31, 503–512. [Google Scholar] [CrossRef]
- Ysebaert, T.; Meininger, P.L.; Meire, P.; Devos, K.; Berrevoets, C.M.; Strucker, R.C.; Kuijken, E. Waterbird communities along the estuarine salinity gradient of the Schelde estuary, NW-Europe. Biodivers. Conserv. 2000, 9, 1275–1296. [Google Scholar] [CrossRef]
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Kock, E.W.; Stier, A.C.; Sillman, B.R. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Kirwan, M.L.; Megonigal, J.P. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 2013, 504, 53–60. [Google Scholar] [CrossRef]
- Cloern, J.E.; Knowles, N.; Brown, L.R.; Cayan, D.; Dettinger, M.D.; Morgan, T.L.; Schoellhamer, D.H.; Stacey, M.T.; van der Wegen, M.; Wagner, R.W.; et al. Projected evolution of California’s San Francisco bay-delta-river system in a century of climate change. PLoS ONE 2011. [Google Scholar] [CrossRef]
- Van Goor, M.A.; Zitman, T.J.; Wang, Z.B.; Stive, M.J. Impact of sea-level rise on the morphological equilibrium state of tidal inlets. Mar. Geol. 2003, 202, 211–227. [Google Scholar] [CrossRef]
- Maan, D.C.; van Prooijen, B.C.; Wang, Z.B. Progradation Speed of Tide-Dominated Tidal Flats Decreases Stronger Than Linearly with Decreasing Sediment Availability and Linearly with Sea Level Rise. Geophys. Res. Lett. 2019. [Google Scholar] [CrossRef] [Green Version]
- Temmerman, S.; Meire, P.; Bouma, T.J.; Herman, P.M.J.; Ysebaert, T.; De Vriend, H.J. Ecosystem-based coastal defence in the face of global change. Nature 2013, 504, 79–83. [Google Scholar] [CrossRef]
- Baptist, M.J.; Gerkema, T.; van Prooijen, B.; van Maren, D.; van Regteren, M.; Schulz, K.; Colosimo, I.; Vroom, J.; van Kessel, T.; Grasmeijer, B.; et al. Beneficial use of dredged sediment to enhance salt marsh development by applying a ‘Mud Motor’. Ecol. Eng. 2019, 127, 312–323. [Google Scholar] [CrossRef]
- Kirby, R. Minimising harbour siltation—Findings of PIANC Working Group 43. Ocean Dyn. 2011, 61, 233–244. [Google Scholar] [CrossRef]
- Pontee, N.I. Saltmarsh loss and maintenance dredging in estuaries. Proc. Inst. Civ. Eng. Mar. Eng. 2004. [Google Scholar] [CrossRef]
- De Vet, P.L.M.; Prooijen, B.C.; Colosimo, I.; Ysebaert, T.; Herman, P.M.J.; Wang, Z.B. Sediment Disposals in Estuarine Channels Alter the Eco-Morphology of Intertidal Flats. J. Geophys. Res. Earth Surf. 2020, 125. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.B.; Hoekstra, P.; Burchard, H.; Ridderinkhof, H.; Swart, H.E.D.; Stive, M.J.F. Ocean & Coastal Management Morphodynamics of the Wadden Sea and its barrier island system. Ocean Coast. Manag. 2012, 68, 39–57. [Google Scholar] [CrossRef]
- Daidu, F.; Yuan, W.; Min, L. Classifications, sedimentary features and facies associations of tidal flats. J. Palaeogeogr. 2013, 2, 66–80. [Google Scholar] [CrossRef]
- Van Straaten, L.M.J.U. Sedimentation in Tidal Flat Areas. Bull. Can. Pet. Geol. 1961, 9, 203–226. [Google Scholar]
- Faria, A.F.G.; Thornton, E.B.; Stanton, T.P.; Soares, C.V.; Lippmann, T.C. Vertical profiles of longshore currents and related bed shear stress and bottom roughness. J. Geophys. Res. Ocean. 1998, 103, 3217–3232. [Google Scholar] [CrossRef] [Green Version]
- Soulsby, R.; Clarke, S. Bed Shear-stresses Under Combined Waves and Currents on Smooth and Rough Beds. Hydraul. Res. Rep. 2005, 1905, TR 137. [Google Scholar]
- Bassoullet, P.; Le Hir, P.; Gouleau, D.; Robert, S. Sediment transport over an intertidal mudflat: Field investigations and estimation of fluxes within the ’Baie de Marennes-Oleron’ (France). Cont. Shelf Res. 2000, 20, 1635–1653. [Google Scholar] [CrossRef]
- Carniello, L.; D’Alpaos, A.; Defina, A. Modeling wind waves and tidal flows in shallow micro-tidal basins. Estuarine Coast. Shelf Sci. 2011, 92, 263–276. [Google Scholar] [CrossRef]
- Friedrichs, C.T. Tidal Flat Morphodynamics: A Synthesis; Elsevier Inc.: Amsterdam, The Netherlands, 2012; Volume 3, pp. 137–170. [Google Scholar] [CrossRef]
- Green, M.O.; Coco, G. Review of wave driven sediment resuspension and transport in estuaries. Rev. Geophys. 2014, 52, 77–117. [Google Scholar] [CrossRef]
- Hir, P.L.; Roberts, W.; Cazaillet, O.; Christie, M.; Bassoullet, P.; Bacher, C. Characterization of intertidal # at hydrodynamics. Cont. Shelf Res. 2000, 20, 1433–1459. [Google Scholar]
- Mariotti, G.; Fagherazzi, S. Wind waves on a mudflat: The influence of fetch and depth on bed shear stresses. Cont. Shelf Res. 2013, 60, S99–S110. [Google Scholar] [CrossRef]
- Zhu, Q.; van Prooijen, B.C.; Wang, Z.B.; Yang, S.L. Bed-level changes on intertidal wetland in response to waves and tides: A case study from the Yangtze River Delta. Mar. Geol. 2017, 385, 160–172. [Google Scholar] [CrossRef]
- Baeye, M.; Fettweis, M.; Voulgaris, G.; Van Lancker, V. Sediment mobility in response to tidal and wind-driven flows along the Belgian inner shelf, southern North Sea. Ocean Dyn. 2011, 61, 611–622. [Google Scholar] [CrossRef]
- Christiansen, C.; Vølund, G.; Lund-Hansen, L.C.; Bartholdy, J. Wind influence on tidal flat sediment dynamics: Field investigations in the Ho Bugt, Danish Wadden Sea. Mar. Geol. 2006, 235, 75–86. [Google Scholar] [CrossRef]
- Mariotti, G.; Fagherazzi, S. Asymmetric fluxes of water and sediments in a mesotidal mudflat channel. Cont. Shelf Res. 2011, 31, 23–36. [Google Scholar] [CrossRef]
- Talke, S.A.; Stacey, M.T. Suspended sediment fluxes at an intertidal flat: The shifting influence of wave, wind, tidal, and freshwater forcing. Cont. Shelf Res. 2008, 28, 710–725. [Google Scholar] [CrossRef] [Green Version]
- Sassi, M.; Duran-Matute, M.; van Kessel, T.; Gerkema, T. Variability of residual fluxes of suspended sediment in a multiple tidal-inlet system: The Dutch Wadden Sea. Ocean Dyn. 2015, 65, 1321–1333. [Google Scholar] [CrossRef] [Green Version]
- Duran-Matute, M.; Gerkema, T.; De Boer, G.J.; Nauw, J.J.; Gräwe, U. Residual circulation and freshwater transport in the Dutch Wadden Sea: A numerical modelling study. Ocean Sci. 2014, 10, 611–632. [Google Scholar] [CrossRef] [Green Version]
- Postma, H. Transport and accumulation of suspended matter in the Dutch Wadden Sea. Neth. J. Sea Res. 1961, 1, 148–190. [Google Scholar] [CrossRef]
- Bartholomä, A.; Flemming, B.W. Progressive grain-size sorting along an intertidal energy gradient. Sediment. Geol. 2007, 202, 464–472. [Google Scholar] [CrossRef]
- Schulz, K.; Gerkema, T. Corrigendum to ‘An inversion of the estuarine circulation by sluice water discharge and its impact on suspended sediment transport.’ [Estuarine, Coastal and Shelf Science 200 (2018) 31-40] (S0272771417306194) doi.org/10.1016/j.ecss.2017.09.031. Estuarine Coast. Shelf Sci. 2018, 207, 510. [Google Scholar] [CrossRef]
- Goring, D.G.; Nikora, V.I. Despiking Acoustic Doppler Velocimeter Data. J. Hydraul. Eng. 2002, 128, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Codiga, D.L. Unified Tidal Analysis and Prediction Using the UTide Matlab Functions; Technical Report 2011-01; Graduate School of Oceanography, University of Rhode Island: Narragansett, RI, USA, 2011. [Google Scholar] [CrossRef]
- Tucker, M.; Pitt, E. Waves in Ocean Engineering; Elsevier: Amsterdam, The Netherlands, 2001; p. 521. [Google Scholar]
- Andersen, T.; Pejrup, M. Suspended sediment transport on a temperate, microtidal mudflat, the Danish Wadden Sea. Mar. Geol. 2001, 173, 69–85. [Google Scholar] [CrossRef]
- Lin, W.; Sanford, L.P.; Suttles, S.E.; Valigura, R. Drag Coefficients with Fetch-Limited Wind Waves. J. Phys. Oceanogr. 2002. [Google Scholar] [CrossRef]
- Wu, J. Wind-stress coefficients over sea surface near neutral conditions—A revisit. J. Phys. Oceanogr. 1980. [Google Scholar] [CrossRef] [Green Version]
- Wu, J. Wind-stress coefficients over sea surface from breeze to hurricane. J. Geophys. Res. 1982. [Google Scholar] [CrossRef]
- Soulsby, R. Bed shear-stresses due to combined waves and currents. In Advances in Coastal Morphodynamics: An Overview of the G-8 Coastal Morphodynamics Project; Delft Hydraulics: Delft, The Netherlands, 1995; pp. 20–23. [Google Scholar]
- De Vet, P.L.M.; van Prooijen, B.C.; Schrijvershof, R.A.; van der Werf, J.J.; Ysebaert, T.; Schrijver, M.C.; Wang, Z.B. The Importance of Combined Tidal and Meteorological Forces for the Flow and Sediment Transport on Intertidal Shoals. J. Geophys. Res. Earth Surf. 2018, 123, 2464–2480. [Google Scholar] [CrossRef] [Green Version]
- Speerstra, H.J. Estimating the Roughness of Muddy Beds; Technical Report; Delft University of Technology: Delft, The Netherlands, 2018. [Google Scholar]
- Bartholdy, J.; Christiansen, C.; Kunzendorf, H. Long term variations in backbarrier salt marsh deposition on the Skallingen peninsula—The Danish Wadden Sea. Mar. Geol. 2004, 203, 1–21. [Google Scholar] [CrossRef]
- Soulsby, R.L.; Hamm, L.; Klopman, G.; Myrhaug, D.; Simons, R.R.; Thomas, G.P. Wave-current interaction within and outside the bottom boundary layer. Coast. Eng. 1993, 21, 41–69. [Google Scholar] [CrossRef]
- Fan, R.; Zhao, L.; Lu, Y.; Nie, H.; Wei, H. Impacts of Currents and Waves on Bottom Drag Coefficient in the East China Shelf Seas. J. Geophys. Res. Ocean. 2019, 124, 7344–7354. [Google Scholar] [CrossRef]
- ASCE. Friction factors in open channels. J. Hydraul. Div. ASCE 1963, 89, 97–143. [Google Scholar]
- Sternberg, R.W. Friction factors in tidal channels with differing bed roughness. Mar. Geol. 1968. [Google Scholar] [CrossRef]
- Verney, R.; Brun-Cottan, J.C.; Lafite, R.; Deloffre, J.; Taylor, J.A. Tidally-induced shear stress variability above intertidal mudflats in the macrotidal seine estuary. Estuaries Coasts 2006, 29, 653–664. [Google Scholar] [CrossRef] [Green Version]
- Pascolo, S.; Petti, M.; Bosa, S. On the Wave Bottom Shear Stress in Shallow Depths: The Role of Wave Period and Bed Roughness. Water 2018, 10, 1348. [Google Scholar] [CrossRef] [Green Version]
- Hunt, S.; Bryan, K.R.; Mullarney, J.C. The influence of wind and waves on the existence of stable intertidal morphology in meso-tidal estuaries. Geomorphology 2015, 228, 158–174. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colosimo, I.; de Vet, P.L.M.; van Maren, D.S.; Reniers, A.J.H.M.; Winterwerp, J.C.; van Prooijen, B.C. The Impact of Wind on Flow and Sediment Transport over Intertidal Flats. J. Mar. Sci. Eng. 2020, 8, 910. https://doi.org/10.3390/jmse8110910
Colosimo I, de Vet PLM, van Maren DS, Reniers AJHM, Winterwerp JC, van Prooijen BC. The Impact of Wind on Flow and Sediment Transport over Intertidal Flats. Journal of Marine Science and Engineering. 2020; 8(11):910. https://doi.org/10.3390/jmse8110910
Chicago/Turabian StyleColosimo, Irene, Paul L. M. de Vet, Dirk S. van Maren, Ad J. H. M. Reniers, Johan C. Winterwerp, and Bram C. van Prooijen. 2020. "The Impact of Wind on Flow and Sediment Transport over Intertidal Flats" Journal of Marine Science and Engineering 8, no. 11: 910. https://doi.org/10.3390/jmse8110910
APA StyleColosimo, I., de Vet, P. L. M., van Maren, D. S., Reniers, A. J. H. M., Winterwerp, J. C., & van Prooijen, B. C. (2020). The Impact of Wind on Flow and Sediment Transport over Intertidal Flats. Journal of Marine Science and Engineering, 8(11), 910. https://doi.org/10.3390/jmse8110910