A Simplified Numerical Method for the Design and Analysis of FPSO Platform Brackets Subjected to Operational Conditions
Abstract
:1. Introduction
2. Proposed Computational Methodology
2.1. Definition of Environmental Loads and Reaction Forces
2.2. Computational Domain of Brackets and Geometrical Investigation
2.3. Numerical Procedures
3. Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gordon, R.B.; Brown, M.G.; Allen, E.M. Mooring Integrity Management: A State-of-the-Art Review. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 5–8 May 2014; OCT 25134. pp. 1–12. [Google Scholar]
- Pecher, A.; Foglia, A.; Kofoed, J.P. Comparison and sensitivity investigations of a CALM and SALM type mooring system for wave energy converters. J. Mar. Sci. Eng. 2014, 2, 93–122. [Google Scholar]
- Kasper, F.; Barros, M.; Rossi, R.; Masetti, I.; Falkenberg, E.; Karlsen, S.; Waclawek, I. DICAS—A new mooring concept for FPSO’s. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 5–8 May 1997; OTC-8439-MS. pp. 1–12. [Google Scholar]
- Babicz, J. Wärtsilä Encyclopedia of Marine Technology, 2nd ed.; Wärtsilä Corporation: Helsinki, Finland, 2015; pp. 1–663. [Google Scholar]
- Finucane, M. Details of Gryphon Incident of 4th February 2011 and Lessons Learned; Technical Report, Maersk Oil; IOSH Institution of Occupational Safety and Health: Aberdeen, UK, 2012. [Google Scholar]
- Qiao, D.; Yan, J.; Ou, J. Fatigue analysis of deepwater hybrid mooring line under corrosion effect. Pol. Marit. Res. 2014, 21, 68–76. [Google Scholar]
- Azcona, J.; Munduate, X.; Gonzáles, L.; Nygaard, T.A. Experimental validation of a dynamic mooring lines code with tension and motion measurements of a submerged chain. Ocean Eng. 2017, 129, 415–427. [Google Scholar]
- Shen, K.; Guo, Z.; Wang, L. Prediction of the whole mooring chain reaction to cyclic motion of a fairlead. Bull. Eng. Geol. Environ. 2019, 78, 2197–2213. [Google Scholar]
- Kim, M.H.; Koo, B.J.; Mercier, R.M.; Ward, E.G. Vessel/mooring/riser coupled dynamic analysis of a turret-moored FPSO compared with OTRC experiment. Ocean Eng. 2005, 32, 1780–1802. [Google Scholar]
- Hollyhead, C.J.; Townsend, N.C.; Blake, J.I.R. Experimental investigations into the current-induced motion of a lifeboat at a single point mooring. Ocean Eng. 2017, 146, 192–201. [Google Scholar]
- Wang, S.; Wang, X.; Woo, W.L.; Seow, T.H. Study on green water prediction for FPSOs by a practical numerical approach. Ocean Eng. 2017, 143, 88–96. [Google Scholar]
- Pradana, M.R.; Qian, X.; Ahmed, A. Efficient discrete element simulation of man-aged ice actions on moored floating platforms. Ocean Eng. 2019, 190, 106483. [Google Scholar]
- Touzon, I.; Nava, V.; Gao, Z.; Mendikoa, I.; Petuya, V. Small scale experimental validation of a numerical model of the HarshLab2.0 floating platform coupled with a non-linear lumped mass catenary mooring system. Ocean Eng. 2020, 200, 107036. [Google Scholar]
- Jin, C.; Bakti, F.P.; Kim, M. Multi-floater-mooring coupled time-domain hydro-elastic analysis in regular and irregular waves. Appl. Ocean Res. 2020, 101, 102276. [Google Scholar]
- Skjetne, R.; Zhengru, R. A survey on modeling and control of thruster-assisted position mooring systems. Mar. Struct. 2020, 74, 102830. [Google Scholar] [CrossRef]
- Det Norske Veritas (DNV). Offshore Standard DNV-OS-E301: Position Mooring; Det Norske Veritas (DNV): Namibia (NA), 2015. [Google Scholar]
- Det Norske Veritas (DNV) - Germanischer Lloyd (GL). Offshore Standard DNVGL-OS-E301: Position Mooring; Det Norske Veritas (DNV) - Germanischer Lloyd (GL): Namibia (NA), 2015. [Google Scholar]
- ANSYS, Inc. ANSYS Mechanical APDL Theory Reference; Release 15.0; SAS IP, Inc.: Canonsburg, PA, USA, 2013. [Google Scholar]
- Zienkiewicz, O.C.; Taylor, R.L.; Zhu, J.Z. The Finite Element Method: Its Basis and Fundamentals, 6th ed.; Elsevier: Oxford, UK, 2005; pp. 1–752. [Google Scholar]
- Bejan, A.; Lorente, S. Design with Constructal Theory; Wiley: Hoboken, NJ, USA, 2008; pp. 1–529. [Google Scholar]
- Bejan, A. Freedom and Evolution: Hierarchy in Nature, Society and Science; Springer: Cham, Switzerland, 2020; pp. 1–151. [Google Scholar]
- De Queiroz, J.; Cunha, M.L.; Pavlovic, A.; Rocha, L.A.O.; Dos Santos, E.D.; Troina, G.; Isoldi, L.A. Geometric evaluation of stiffened steel plates subjected to transverse loading for naval and offshore applications. J. Mar. Sci. Eng. 2019, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Magalhães, G.M.C.; Fragassa, C.; Lemos, R.L.; Isoldi, L.A.; Amico, S.C.; Rocha, L.A.O.; Souza, J.A.; Dos Santos, E.D. Numerical Analysis of the Influence of Empty Channels Design on Performance of Resin Flow in a Porous Plate. Appl. Sci. 2020, 10, 4054. [Google Scholar] [CrossRef]
- Vieira, R.S.; Petry, A.P.; Rocha, L.A.O.; Isoldi, L.A.; Dos Santos, E.D. Numerical evaluation of a solar chimney geometry for different ground temperatures by means of constructal design. Renew. Energy 2017, 109, 222–234. [Google Scholar] [CrossRef]
- Rodrigues, P.M.; Biserni, C.; De Escobar, C.C.; Rocha, L.A.O.; Isoldi, L.A.; Dos Santos, E.D. Geometric optimization of a lid-driven cavity with two rectangular intrusions under mixed convection heat transfer: A numerical investigation motivated by constructal design. Int. Commun. Heat Mass Transf. 2020, 117, 104759. [Google Scholar] [CrossRef]
- Gonzales, G.V.; Estrada, E.d.S.D.; Emmendorfer, L.R.; Isoldi, L.A.; Xie, G.; Rocha, L.A.O.; Dos Santos, E.D. A comparison of simulated annealing schedules for constructal design of complex cavities intruded into conductive walls with internal heat generation. Energy 2015, 93, 372–382. [Google Scholar] [CrossRef]
- Rocha, L.A.O.; Real, M.V.; Correia, A.L.G.; Vaz, J.; Dos Santos, E.D.; Isoldi, L.A. Geometric optimization based on the Constructal Design of perforated thin plates subject to buckling. Comput. Therm. Sci. 2012, 4, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Lorenzini, G.; Helbig, D.; Real, M.V.; dos Santos, E.D.; Rocha, L.A.O.; Isoldi, L.A. Computational modeling and Constructal Design method applied to the mechanical behavior improvement of thin perforated steel plates subject to buckling. J. Eng. Thermophys. 2016, 25, 197–215. [Google Scholar] [CrossRef]
- Da Silva, C.C.C.; Helbig, D.; Cunha, M.L.; Dos Santos, E.D.; Rocha, L.A.O.; Real, M.V.; Isoldi, L.A. Numerical buckling analysis of thin steel plates with centered hexagonal perforation through constructal design method. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 309-1–309-18. [Google Scholar] [CrossRef]
- Pinto, V.T.; Cunha, M.L.; Troina, G.S.; Martins, K.L.; Dos Santos, E.D.; Isoldi, L.A.; Rocha, L.A.O. Constructal design applied to geometrical evaluation of rectangular plates with inclined stiffeners subjected to uniform transverse load. Res. Eng. Struct. Mat. 2019, 5, 379–392. [Google Scholar]
- Troina, G.S.; Cunha, M.L.; Pinto, V.T.; Rocha, L.A.O.; Dos Santos, E.D.; Fragassa, C.; Isoldi, L.A. Computational Modeling and Design Constructal Theory Applied to the Geometric Optimization of Thin Steel Plates with Stiffeners Subjected to Uniform Transverse Load. Metals 2020, 10, 220. [Google Scholar] [CrossRef] [Green Version]
- Amaral, R.R.; Troina, G.S.; Fragassa, C.; Pavlovic, A.; Cunha, M.L.; Rocha, L.A.O.; dos Santos, E.D.; Isoldi, L.A. Constructal design method dealing with stiffened plates and symmetry boundaries. Theor. Appl. Mech. Let. 2020, 10, 266–372. [Google Scholar]
- Mardanpour, P.; Izadpanahi, E.; Rastkar, S.; Lorente, S.; Bejan, A. Constructal design of aircraft: Flow of stresses and aeroelastic stability. AIAA J. 2019. [Google Scholar] [CrossRef]
- Izadpanahi, E.; Moshtaghzadeh, M.; Radnezhad, H.R.; Mardanpour, P. Constructal approach to design of wing cross-section for better flow of stresses. AIAA J. 2020, in press. [Google Scholar] [CrossRef]
- Bergdahl, L.; Kofoed, J.P. Simplified Design Procedures for Moorings of Wave-Energy Converters: Deliverable 2.2; DCE Technical Report nº172; Department of Civil Engineering, Aalborg University: Aalborg, Denmark, 2015. [Google Scholar]
- Kawasaki, P.Y. Analysis of Anchoring Lines of Ocean Platforms Considering Several Sections and Partially Buried Line (In Portuguese). Ph.D. Thesis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, 2010. (In Portuguese). [Google Scholar]
- Rocha, L.; Azevedo, C. Projetos de Poços de Petróleo—Geopressões e Assentamento de Colunas de Revestimento; Interciência: Rio de Janeiro, Brazil, 2019; pp. 1–696. (In Portuguese) [Google Scholar]
- Hoerner, S.F. Fluid Dynamic Drag: Practical Information on Aerodynamic Drag and Hydrodynamic Resistance; Hoerner Fluid Dynamics: Bakersfield, CA, USA, 1965; pp. 1–455. [Google Scholar]
- Martins, K.L.; Pinto, V.T.; Rocha, L.A.O.; Dos Santos, E.D.; Isoldi, L.A. Numerical evaluation of the mechanical behavior of an FPSO mooring system fairleads foundations due to maximum environmental loads. Res. Eng. Struct. Mat. 2019, 5, 355–366. [Google Scholar] [CrossRef]
- Marinkovic, D.; Rama, G.; Zehn, M. Abaqus implementation of a corotational piezoelectric 3-node shell element with drilling degree of freedom. FU Mech. Eng. 2019, 17, 269–283. [Google Scholar] [CrossRef] [Green Version]
- Roache, P.J. Verification and Validation in Computational Science and Engineering; Hermosa Publishers: Albuquerque, NM, USA, 1998; pp. 1–446. [Google Scholar]
- The American Society of Mechanical Engineers (ASME). An Illustration of the Concepts of Verification and Validation in Computational Solid Mechanics, V&V 10.1-2012 Standard; The American Society of Mechanical Engineers: New York, NY, USA, 2012. [Google Scholar]
- Lima, J.P.S.; Cunha, M.L.; Dos Santos, E.D.; Rocha, L.A.O.; Real, M.V.; Isoldi, L.A. Constructal design for the ultimate buckling stress improvement of stiffened plates submitted to uniaxial compressive load. Eng. Struct. 2020, 203, 109883. [Google Scholar] [CrossRef]
Environmental Load Type | Total Load | Per Line (24 Lines) | Per Line (20 Lines) |
---|---|---|---|
Wind | 6.69 | 0.28 | 0.33 |
Current | 5.96 | 0.25 | 0.30 |
Waves | 11.43 | 0.48 | 0.57 |
Total | 24.08 | 1.01 | 1.20 |
Number of Elements | Largest Element Size (mm) | Maximum von Mises Stress (MPa) |
---|---|---|
110,385 | 30.0 | 275.83 |
144,321 | 27.0 | 270.58 |
188,805 | 24.0 | 273.93 |
222,379 | 22.0 | 288.52 |
298,351 | 21.0 | 289.77 |
376,490 | 19.0 | 292.57 |
449,265 | 18.0 | 305.54 |
463,528 | 17.5 | 298.33 |
510,011 | 17.0 | 297.50 |
563,925 | 16.5 | 303.30 |
Characteristic/Loads | 24 Lines (ULS) | 20 Lines (ALS) |
---|---|---|
Line length (m) | 1554.52 | 1584.22 |
Anchoring radius (m) | 761.91 | 820.81 |
Angle between the line and hull (°) | 60.60 | 58.80 |
Fairlead centroid load (x axis) (kN) | 421.38 | 505.66 |
Fairlead centroid load (y axis) (kN) | 1780.55 | 1987.95 |
Fairlead centroid load (z axis) (kN) | 902.96 | 1083.55 |
Reaction Forces | ULS (kN) | ALS (kN) |
---|---|---|
Sbx | −1105.37 | −1258.66 |
Sbz | 785.18 | 942.22 |
Ibx | 1526.75 | 1680.05 |
Iby | 1780.55 | 1987.95 |
Ibz | 785.18 | 942.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, K.L.; Pinto, V.T.; Fragassa, C.; Real, M.V.; Rocha, L.A.O.; Isoldi, L.A.; dos Santos, E.D. A Simplified Numerical Method for the Design and Analysis of FPSO Platform Brackets Subjected to Operational Conditions. J. Mar. Sci. Eng. 2020, 8, 929. https://doi.org/10.3390/jmse8110929
Martins KL, Pinto VT, Fragassa C, Real MV, Rocha LAO, Isoldi LA, dos Santos ED. A Simplified Numerical Method for the Design and Analysis of FPSO Platform Brackets Subjected to Operational Conditions. Journal of Marine Science and Engineering. 2020; 8(11):929. https://doi.org/10.3390/jmse8110929
Chicago/Turabian StyleMartins, Kauê L., Vinícius T. Pinto, Cristiano Fragassa, Mauro V. Real, Luiz A. O. Rocha, Liércio A. Isoldi, and Elizaldo D. dos Santos. 2020. "A Simplified Numerical Method for the Design and Analysis of FPSO Platform Brackets Subjected to Operational Conditions" Journal of Marine Science and Engineering 8, no. 11: 929. https://doi.org/10.3390/jmse8110929
APA StyleMartins, K. L., Pinto, V. T., Fragassa, C., Real, M. V., Rocha, L. A. O., Isoldi, L. A., & dos Santos, E. D. (2020). A Simplified Numerical Method for the Design and Analysis of FPSO Platform Brackets Subjected to Operational Conditions. Journal of Marine Science and Engineering, 8(11), 929. https://doi.org/10.3390/jmse8110929