Isolation, Identification, and Biochemical Characteristics of a Cold-Tolerant Chlorella vulgaris KNUA007 Isolated from King George Island, Antarctica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Isolation
2.2. Morphological and Molecular Identification
2.3. Temperature Testing
2.4. Biomass Characterization
2.5. Gas Chromatography/Mass Spectrometry (GC/MS) Analysis
3. Results
3.1. Identification of Strain KNUA007
3.2. Cold Tolerance of Strain KNUA007
3.3. Biomass Properties
3.4. GC/MS Analysis of Strain KNUA007
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Komárek, J.; Nedbalová, L. Green cryosestic algae. In Algae and Cyanobacteria in Extreme Envionments; Seckbach, J., Ed.; Springer: Dordrecht, The Netherlands, 2007; pp. 323–344. [Google Scholar]
- Lewis, L.A.; Lewis, P.O. Unearthing the molecular phylodiversity of desert soil green algae (Chlorophyta). Syst. Biol. 2005, 54, 936–947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vincent, W.F. Cyanobacterial dominance in the polar regions. In The Ecology of Cyanobacteria: Their Diversity in Time and Space; Whitton, B.A., Potts, M., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; pp. 321–340. [Google Scholar]
- Broady, P.A. Diversity, distribution and dispersal of Antarctic terrestrial algae. Biodivers. Conserv. 1996, 5, 1307–1335. [Google Scholar] [CrossRef]
- Vincent, W.F.; James, M.R. Biodiversity in extreme aquatic environments: Lakes, ponds and streams of the Ross Sea sector, Antarctica. Biodivers. Conserv. 1996, 5, 1451–1471. [Google Scholar] [CrossRef]
- Wynn-Williams, D.D. Antarctic microbial diversity: The basis of polar ecosystem processes. Biodivers. Conserv. 1996, 5, 1271–1293. [Google Scholar] [CrossRef]
- De Wever, A.; Leliaert, F.; Verleyen, E.; Vanormelingen, P.; Van Der Gucht, K.; Hodgson, D.A.; Sabbe, K.; Vyverman, W. Hidden levels of phylodiversity in Antarctic green algae: Further evidence for the existence of glacial refugia. Proc. R. Soc. B Biol. Sci. 2009, 276, 3591–3599. [Google Scholar] [CrossRef] [Green Version]
- Jungblut, A.D.; Vincent, W.F.; Lovejoy, C. Eukaryotes in Arctic and Antarctic cyanobacterial mats. FEMS Microbiol. Ecol. 2012, 82, 416–428. [Google Scholar] [CrossRef] [Green Version]
- Wood, S.A.; Rueckert, A.; Cowan, D.A.; Cary, S.C. Sources of edaphic cyanobacterial diversity in the Dry Valleys of Eastern Antarctica. ISME J. 2008, 2, 308–320. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, M.; Guerriero, G.; Cardi, M.; Esposito, S. Purification and biochemical characterisation of a glucose-6-phosphate dehydrogenase from the psychrophilic green alga Koliella antarctica. Extremophiles 2013, 17, 53–62. [Google Scholar] [CrossRef]
- Pulz, O.; Gross, W. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 2004, 65, 635–648. [Google Scholar] [CrossRef]
- Řezanka, T.; Nedbalová, L.; Sigler, K. Unusual medium-chain polyunsaturated fatty acids from the snow alga Chloromonas brevispina. Microbiol. Res. 2008, 163, 373–379. [Google Scholar] [CrossRef]
- Ru, I.T.K.; Sung, Y.Y.; Jusoh, M.; Wahid, M.E.A.; Nagappan, T. Chlorella vulgaris: A perspective on its potential for combining high biomass with high value bioproducts. Appl. Phycol. 2020, 1, 2–11. [Google Scholar] [CrossRef] [Green Version]
- Safi, C.; Zebib, B.; Merah, O.; Pontalier, P.Y.; Vaca-Garcia, C. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renew. Sustain. Energy Rev. 2014, 35, 265–278. [Google Scholar] [CrossRef] [Green Version]
- Cecchin, M.; Marcolungo, L.; Rossato, M.; Girolomoni, L.; Cosentino, E.; Cuine, S.; Li-Beisson, Y.; Delledonne, M.; Ballottari, M. Chlorella vulgaris genome assembly and annotation reveals the molecular basis for metabolic acclimation to high light conditions. Plant J. 2019, 100, 1289–1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, M.T.; Shariff, M.; Md. Yusoff, F.; Goh, Y.M.; Banerjee, S. Applications of microalga Chlorella vulgaris in aquaculture. Rev. Aquac. 2020, 12, 328–346. [Google Scholar] [CrossRef]
- Merchant, S.S.; Prochnik, S.E.; Vallon, O.; Harris, E.H.; Karpowicz, S.A.; Witman, G.B.; Terry, A.; Salamov, A.; Fritz-Laylin, L.K.; Maréchal-Drouard, L.; et al. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Natl. Inst. Heal. 2007, 318, 245–250. [Google Scholar] [CrossRef] [Green Version]
- Blanc, G.; Duncan, G.; Agarkova, I.; Borodovsky, M.; Gurnon, J.; Kuo, A.; Lindquist, E.; Lucas, S.; Pangilinan, J.; Polle, J.; et al. The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell 2010, 22, 2943–2955. [Google Scholar] [CrossRef] [Green Version]
- Vieler, A.; Wu, G.; Tsai, C.H.; Bullard, B.; Cornish, A.J.; Harvey, C.; Reca, I.B.; Thornburg, C.; Achawanantakun, R.; Buehl, C.J.; et al. Correction: Genome, functional gene annotation, and nuclear transformation of the Heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS Genet. 2017, 13, e1006802. [Google Scholar] [CrossRef]
- Arriola, M.B.; Velmurugan, N.; Zhang, Y.; Plunkett, M.H.; Hondzo, H.; Barney, B.M. Genome sequences of Chlorella sorokiniana UTEX 1602 and Micractinium conductrix SAG 241.80: Implications to maltose excretion by a green alga. Plant J. 2018, 93, 566–586. [Google Scholar] [CrossRef] [Green Version]
- Luo, W.; Pflugmacher, S.; Pröschold, T.; Walz, N.; Krienitz, L. Genotype versus phenotype variability in Chlorella and Micractinium (Chlorophyta, Trebouxiophyceae). Protist 2006, 157, 315–333. [Google Scholar] [CrossRef]
- Luo, W.; Krienitz, L.; Pflugmacher, S.; Walz, N. Genus and species concept in Chlorella and Micractinium (Chlorophyta, Chlorellaceae): Genotype versus phenotypical variability under ecosystem conditions. SIL Proc. 2005, 29, 170–173. [Google Scholar] [CrossRef]
- Rippka, R.; Deruelles, J.; Waterbury, J.B.; Herdman, M.; Stanier, R.Y. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 1979, 111, 1–61. [Google Scholar] [CrossRef] [Green Version]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR protocols: A Guide to Method and Applications; Academic Press: Cambridge, MA, USA, 1990; pp. 315–322. [Google Scholar]
- Marshall, M.N.; Cocolin, L.; Mills, D.A.; VanderGheynst, J.S. Evaluation of PCR primers for denaturing gradient gel electrophoresis analysis of fungal communities in compost. J. Appl. Microbiol. 2003, 95, 934–948. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003, 31, 3406–3415. [Google Scholar] [CrossRef]
- Germond, A.; Hata, H.; Fujikawa, Y.; Nakajima, T. The phylogenetic position and phenotypic changes of a Chlorella-like alga during 5-year microcosm culture. Eur. J. Phycol. 2013, 48, 485–496. [Google Scholar] [CrossRef] [Green Version]
- Heo, J.; Cho, D.-H.; Ramanan, R.; Oh, H.-M.; Kim, H.-S. PhotoBiobox: A tablet sized, low-cost, high throughput photobioreactor for microalgal screening and culture optimization for growth, lipid content and CO2 sequestration. Biochem. Eng. J. 2015, 103, 193–197. [Google Scholar] [CrossRef]
- Friedl, A.; Padouvas, E.; Rotter, H.; Varmuza, K. Prediction of heating values of biomass fuel from elemental composition. Anal. Chim. Acta 2005, 544, 191–198. [Google Scholar] [CrossRef]
- Aussant, J.; Guihéneuf, F.; Stengel, D.B. Impact of temperature on fatty acid composition and nutritional value in eight species of microalgae. Appl. Microbiol. Biotechnol. 2018, 102, 5279–5297. [Google Scholar] [CrossRef]
- Chae, H.; Lim, S.; Kim, H.S.; Choi, H.-G.; Kim, J.H. Morphology and phylogenetic relationships of Micractinium (Chlorellaceae, trebouxiophyceae) taxa, including three new species from antarctica. Algae 2019, 34, 267–275. [Google Scholar] [CrossRef] [Green Version]
- Illman, A.M.; Scragg, A.H.; Shales, S.W. Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb. Technol. 2000, 27, 631–635. [Google Scholar] [CrossRef]
- Do, J.-M.; Jo, S.-W.; Kim, I.-S.; Na, H.; Lee, J.H.; Kim, H.S.; Yoon, H.-S. A feasibility study of wastewater treatment using domestic microalgae and analysis of biomass for potential applications. Water 2019, 11, 2294. [Google Scholar] [CrossRef] [Green Version]
- Lunch, C.K.; Lafountain, A.M.; Thomas, S.; Frank, H.A.; Lewis, L.A.; Cardon, Z.G. The xanthophyll cycle and NPQ in diverse desert and aquatic green algae. Photosynth. Res. 2013, 115, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Müller, P.; Li, X.-P.; Niyogi, K.K. Non-photochemical quenching. A response to excess light energy. Plant Physiol. 2001, 125, 1558–1566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chong, G.-L.; Chu, W.-L.; Othman, R.Y.; Phang, S.-M. Differential gene expression of an Antarctic Chlorella in response to temperature stress. Polar Biol. 2011, 34, 637–645. [Google Scholar] [CrossRef]
- Li, H.; Liu, X.; Wang, Y.; Hu, H.; Xu, X. Enhanced expression of antifreeze protein genes drives the development of freeze tolerance in an Antarctica isolate of Chlorella vulgaris. Prog. Nat. Sci. 2009, 19, 1059–1062. [Google Scholar] [CrossRef]
- Machida, T.; Murase, H.; Kato, E.; Honjoh, K.; Matsumoto, K.; Miyamoto, T.; Iio, M. Isolation of cDNAs for hardening-induced genes from Chlorella vulgaris by suppression subtractive hybridization. Plant Sci. 2008, 175, 238–246. [Google Scholar] [CrossRef]
- Spijkerman, E.; Wacker, A.; Weithoff, G.; Leya, T. Elemental and fatty acid composition of snow algae in Arctic habitats. Front. Microbiol. 2012, 3, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyon, B.R.; Mock, T. Polar microalgae: New approaches towards understanding adaptations to an extreme and changing environment. Biology 2014, 3, 56–80. [Google Scholar] [CrossRef] [Green Version]
- Harris, P.; James, A.T. The effect of low temperatures on fatty acid biosynthesis in plants. Biochem. J. 1969, 112, 325–330. [Google Scholar] [CrossRef] [Green Version]
- Suga, K.; Honjoh, K.I.; Furuya, N.; Shimizu, H.; Nishi, K.; Shinohara, F.; Hirabaru, Y.; Maruyama, I.; Miyamoto, T.; Hatano, S.; et al. Two low-temperature-inducible Chlorella genes for Δ12 and ω-3 fatty acid desaturase (FAD): Isolation of Δ12 and ω-3 fad cDNA clones, expression of Δ12 fad in Saccharomyces cerevisiae, and expression of ω-3 fad in Nicotiana tabacum. Biosci. Biotechnol. Biochem. 2002, 66, 1314–1327. [Google Scholar] [CrossRef] [PubMed]
- El-sheekh, M.; Abomohra, A.E.; El-azim, M.A.; Abou-shanab, R. Effect of temperature on growth and fatty acids profile of the biodiesel producing microalga Scenedesmus acutus. Biotechno. Agron. Soc. Environ. 2017, 21, 233–239. [Google Scholar]
- Mehta, L.R.; Dworkin, R.H.; Schwid, S.R. Polyunsaturated fatty acids and their potential therapeutic role in multiple sclerosis. Nat. Clin. Pract. Neurol. 2009, 5, 82–92. [Google Scholar] [CrossRef]
- Nadeau, T.-L.; Castenholz, R.W. Characterization of psychrophilic Oscillatorians (cyanobacteria) from antarctic meltwater ponds. J. Phycol. 2000, 36, 914–923. [Google Scholar] [CrossRef]
- Tang, E.P.Y.; Vincent, W.F. Strategies of thermal adaptation by high-latitude cyanobacteria. New Phytol. 1999, 142, 315–323. [Google Scholar] [CrossRef] [Green Version]
- Chevalier, P.; Proulx, D.; Lessard, P.; Vincent, W.F.; De La Noüe, J. Nitrogen and phosphorus removal by high latitude mat-forming cyanobacteria for potential use in tertiary wastewater treatment. J. Appl. Phycol. 2000, 12, 105–112. [Google Scholar] [CrossRef]
- Tang, E.P.Y.; Tremblay, R.; Vincent, W.F. Cyanobacterial dominance of polar freshwater ecosystems: Are high-latitude mat-formers adapted to low temperature? J. Phycol. 1997, 33, 171–181. [Google Scholar] [CrossRef]
- Hu, H.; Li, H.; Xu, X. Alternative cold response modes in Chlorella (Chlorophyta, Trebouxiophyceae) from Antarctica. Phycologia 2008, 47, 28–34. [Google Scholar] [CrossRef]
- Hong, J.W.; Kim, O.H.; Jo, S.-W.; Kim, H.; Jeong, M.R.; Park, K.M.; Lee, K.I.; Yoon, H.-S. Biochemical composition of a Korean domestic microalga Chlorella vulgaris KNUA027. Microbiol. Biotechnol. Lett. 2016, 44, 400–407. [Google Scholar] [CrossRef] [Green Version]
Marker Gene | Accession no. | Product Size (bp) | Closet Match (GenBank Accession no.) | Query Cover (%) | Identification (%) |
---|---|---|---|---|---|
18S rRNA | KJ148623 | 1771 | C. vulgaris CCAP 211/19 (MK541792) | 100 | 99.89 |
ITS | KJ148624 | 783 | C. vulgaris ATFG2 (MT137382) | 100 | 99.87 |
LSU | KJ148625 | 612 | C. vulgaris NIES:227 (AB237642) | 100 | 99.84 |
Contents (wt%) | |||
---|---|---|---|
10 °C | 20 °C | 30 °C | |
C | 45.36 ± 0.06 | 42.94 ± 0.15 | 42.72 ± 0.26 |
H | 6.64 ± 0.03 | 6.42 ± 0.05 | 6.54 ± 0.07 |
N | 6.17 ± 0.00 | 5.84 ± 0.03 | 5.25 ± 0.02 |
S | 0.76 ± 0.07 | 1.10 ± 0.03 | 1.14 ± 0.02 |
Gross calorific value (MJ kg−1) | 18.7 ± 0.02 | 17.7 ± 0.06 | 17.5 ± 0.11 |
Contents (wt%) | |||
---|---|---|---|
10 °C | 20 °C | 30 °C | |
C15:0 (Pentadecanoic acid) | 0.12 ± 0.01 | 0.15 ± 0.03 | N.D |
C16:0 (Palmitic acid) | 18.55 ± 0.02 | 22.35 ± 0.48 | 25.02 ± 0.03 |
C16:1 (Palmitoleic acid) | 0.51 ± 0.02 | 0.53 ± 0.08 | 0.55 ± 0.04 |
C16:2 (Hexadecadienoic acid) | 2.29 ± 0.07 | 4.25 ± 0.33 | 5.16 ± 0.04 |
C16:3 (Hexadecatrienoic acid) | 17.31 ± 0.19 | 8.08 ± 0.31 | 2.93 ± 0.11 |
C18:0 (Stearic acid) | 1.30 ± 0.10 | 1.52 ± 0.05 | 2.36 ± 0.28 |
C18:1 (Oleic acid) | 8.05 ± 0.16 | 9.00 ± 0.12 | 13.78 ± 0.46 |
C18:2 (Linoleic acid) | 8.52 ± 0.08 | 17.97 ± 0.84 | 29.54 ± 0.17 |
C18:3 (α-Linolenic acid) | 43.35 ± 0.05 | 36.14 ± 2.01 | 20.67 ± 0.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jo, S.-W.; Do, J.-M.; Kang, N.S.; Park, J.M.; Lee, J.H.; Kim, H.S.; Hong, J.W.; Yoon, H.-S. Isolation, Identification, and Biochemical Characteristics of a Cold-Tolerant Chlorella vulgaris KNUA007 Isolated from King George Island, Antarctica. J. Mar. Sci. Eng. 2020, 8, 935. https://doi.org/10.3390/jmse8110935
Jo S-W, Do J-M, Kang NS, Park JM, Lee JH, Kim HS, Hong JW, Yoon H-S. Isolation, Identification, and Biochemical Characteristics of a Cold-Tolerant Chlorella vulgaris KNUA007 Isolated from King George Island, Antarctica. Journal of Marine Science and Engineering. 2020; 8(11):935. https://doi.org/10.3390/jmse8110935
Chicago/Turabian StyleJo, Seung-Woo, Jeong-Mi Do, Nam Seon Kang, Jong Myong Park, Jae Hak Lee, Han Soon Kim, Ji Won Hong, and Ho-Sung Yoon. 2020. "Isolation, Identification, and Biochemical Characteristics of a Cold-Tolerant Chlorella vulgaris KNUA007 Isolated from King George Island, Antarctica" Journal of Marine Science and Engineering 8, no. 11: 935. https://doi.org/10.3390/jmse8110935
APA StyleJo, S. -W., Do, J. -M., Kang, N. S., Park, J. M., Lee, J. H., Kim, H. S., Hong, J. W., & Yoon, H. -S. (2020). Isolation, Identification, and Biochemical Characteristics of a Cold-Tolerant Chlorella vulgaris KNUA007 Isolated from King George Island, Antarctica. Journal of Marine Science and Engineering, 8(11), 935. https://doi.org/10.3390/jmse8110935