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Abstract: Increasing our capacity to predict extreme storm surges is one of the key issues in terms of
coastal flood risk prevention and adaptation. Dynamically forecasting storm surges is computationally
expensive. Here, we focus on an alternative data-driven approach and set up a weather-type statistical
downscaling for daily maximum storm surge (SS) prediction, using atmospheric hindcasts (CFSR and
CFSv2) and 15 years of tidal gauge station measurements. We focus on predicting the storm surge
at La Rochelle–La Pallice tidal gauge station. First, based on a sensitivity analysis to the various
parameters of the weather-type approach, we find that the model configuration providing the best
performance in SS prediction relies on a fully supervised classification using minimum daily sea level
pressure (SLP) and maximum SLP gradient, with 1◦ resolution in the northeast Atlantic domain as the
predictor. Second, we compare the resulting optimal model with the inverse barometer approach and
other statistical models (multi-linear regression; semi-supervised and unsupervised weather-types
based approaches). The optimal configuration provides more accurate predictions for extreme storm
surges, but also the capacity to identify unusual atmospheric storm patterns that can lead to extreme
storm surges, as the Xynthia storm for instance (a decrease in the maximum absolute error of 50%).

Keywords: statistical downscaling; weather types; storm surge; fully supervised classification;
Xynthia storm; Joachim storm; tide gauge; La Rochelle

1. Introduction

Storms, together with tides, are the main driving force for coastal flooding events that have
impacted coastal zones throughout history. For example, the years of 1953 and 1962 were marked by
strong storm surge events, which, combined with tides, caused flooding over broad coastal areas in
the south-western Netherlands and eastern England [1], and in northern Germany [2], respectively.
In the last decade, the Xynthia (27 to 28 February 2010) storm severely impacted low-lying coastal
areas located in the central part of the Bay of Biscay [3–6], causing 53 fatalities and material damage
assessed at more than one billion euros. This event was a mid-latitude storm resulting in a storm surge
of about 1.5 m, which coincided with a spring high tide. These examples illustrate the potentially
devastating effect that storm surges can have on the coasts and the need for a better prediction of storm
surge phenomena.
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Nearshore storm surge is mainly a consequence of atmospheric surges and wave setup [4,7].
Atmospheric surges result from the direct effect of wind (especially in shallow-water) and atmospheric
pressure (both in shallow and deep water), while the breaking of waves generates the wave setup.
The theoretical model of the inverse barometer (IB) is the simplest way to estimate the storm surge.
This approach can be efficient for lands or islands surrounded by deep seas, however, most of
the time this is not sufficient, because it does not account for the local and regional effect of the
wind [8], neither for the wave set up contribution [4,7]. In addition to the IB approach, there are
mainly two types of methods to estimate storm surges: dynamical approaches such as dynamical
downscaling (DD) and data-driven approaches such as statistical downscaling (SD). Advantages and
disadvantages between DD and SD approaches were discussed for the specific case of waves on the
coast of France [9]. They concluded that there is a balance between representing physical processes
and statistical relationships; the first are limited by computational time and resources, the latter are
faster but have a limited ability to explain all the physical processes.

The DD relies on the use of numerical models solving physical equations, for instance,
the shallow-water equations. Generally, DD allows a good representation of physical processes
with a high resolution both in time and space; however, they need data for boundary and forcing
conditions (e.g., observed or regional model outputs for wave parameters, water level, tidal constituents,
wind magnitude, and direction, see for instance [4]) and the simulations can demand a high
computational effort [10,11]. In addition, precise local modeling requires the availability of good
bathymetric data and sometimes complex modeling techniques. For instance, if the wave setup is
expected to play a significant role, then the numerical modeling should rely on two coupled models:
one focusing on the atmospheric storm surge, most of the time using shallow-water equation models,
and another focusing on waves and the resulting wave setup using a spectral wave model [4,7].

The SD establishes a statistical link between the predictor (e.g., averaged regional atmospheric data
such as sea level pressure, SLP) and the predictand (e.g., measured or simulated storm surge or wave
parameters for a given point). SD approaches present good approximations in terms of the statistical
distribution of the variable to be predicted with few input variables, but usually have limitations when
applied to short-term predictions (e.g., minutes and hours) and extreme events [12–16]. For example,
an SD method based on a multiple linear regression linking principal components of atmospheric data
to local modeled atmospheric surge levels was used to reconstruct historical daily maximum storm
surge (SS) on a global scale from 1871 to 2010 [14]; and also applied for the specific case of southeast
Asia [15] and New Zealand [16].

Another example of an SD method is the weather-type approach, which has been widely used for
estimating wave parameters as well as storm surge and wave parameters combined. This technique has
been mainly used to investigate climate-related variability and future projections, analyzing monthly
and annual distributions [9,17–19]. In these studies, the principal components of the predictor are
clustered, resulting in different groups of data, called weather types (WT). An improvement of this
method is the weather type regression guided approach [12]. It works as the former method, but, in the
clustering process, information on the predictand is included in addition to the predictor variable
(SLP and sea level pressure gradient (SLPG)) through a weighting scheme (via an α factor).

Other SD methods that rely on machine learning algorithms have been applied for the estimation
of storm surge. For instance, the artificial neural network algorithm has been used for short-term local
predictions associated with severe storms, such as hurricanes [20–26], as well as for the study of extreme
events on a global scale [27]. The random forest algorithm has also been used for the estimation of
global SS and compared with DD approaches, showing that data-driven methods can perform equally
or better on storm surge predictions than dynamical models on a global and long-term scale [28].

Although the SD models were applied to a large range of locations around the world with good
efficiency, the predictions for enclosed seas and bays, where the geographical settings can play an
important role, are sometimes not as satisfactory as for exposed coastlines, especially for maximum
value daily predictions [12,14,16,18,19]. Another limitation is that despite the fact the multiple linear
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regression approach presents good approximations for daily predictions [14–16], it does not establish
an easy visualization and direct link between the WTs and local storm surge response; while the SD
weather types approach can do it, but is not originally designed for daily predictions. The design
of SD models based on the WT approach requires the defining of several key elements, which can
vary accordingly to the study site, spatial-temporal scale, and target variable of the prediction (in this
manuscript, SS). Some of these elements are the weather type’s selection method and the configuration
of the predictor, by setting the appropriate variable and spatial-temporal domain.

The present study aims to: (1) build a WT-based method to set up a statistical downscaling
model to estimate the daily maximum value of storm surge, and (2) estimate the added value in
comparison with other models. For this development, we focus on predicting the storm surges at the
La Rochelle–La Pallice tide gauge (France). For instance, we will show how our SD model can provide
valuable information on the atmospheric patterns of storms responsible for the extreme daily values of
local storm surges.

2. Study Site and Database

La Rochelle is located along the south-west coast of France, New Aquitaine, in the maritime region
called the Bay of Biscay, as shown in Figure 1. It is located at the inner shelf, protected by swells due to
the presence of Ile de Ré and Ile d’Oléron. This implies that the average and extreme events of storm
surges (e.g., Xynthia, 2010) that occurred in this area do not result only from the inverse barometric
effect, but also from the wind effect and regional wave setup [3,4]. The choice of La Rochelle as our
study site aims at ensuring a minimum level of complexity in the surge signal. There is one tidal
gauge (La Rochelle–La Pallice) and a weather station, operated by SHOM (Service Hydrographique et
Océanographique de la Marine) and Météo-France, respectively.

To set up our statistical models, which aim to predict SS for La Rochelle–La Pallice, we need to
define a predictor and predictand data (see Sections 3.1 and 3.2 for more details). For the predictor
definition process, we use the atmospheric CFSR and CFSRv2 reanalysis data [29–31] over the 1979 to
2014 period. These datasets have a spatial resolution of 0.33◦ and 0.22◦. Here, we used the following
hourly output data: sea level pressure (SLP), wind magnitude (WND), and geopotential height at
500 hPa (GP). In addition, to investigate the effect of the spatial domain of the predictor, these variables
were extracted onto the domain of the North Atlantic (NA) and northeast Atlantic (NEA) zones,
Figure 1A.

The predictand data is derived from the water level measured at La Rochelle–La Pallice (available at
data.shom.fr, tidal gauge station doi: 10.17183/REFMAR#34). First, the observed storm surge dataset
is estimated by subtracting the predicted tide provided by the SHOMAR software [32] to the water
level measurements, resulting in a time-series covering the period from 1941 to 2014. Due to the many
data gaps in the records before 2000, we focus on the 2000 to 2014 period, for more reliable results.
Thus, the time-series is post-processed to extract the maximum storm surge per day (i.e., SS), defining
the predictand data. Figure 2 presents the respective dataset, showing extreme storm surges exceeding
1 m, with the largest value (~1.5 m) observed on 28 February 2010, corresponding to the Xynthia event.

This outstanding storm has unique aspects. According to previous numerical modeling work [3],
the unusual trajectory from SW to NE enables the storm to produce short waves that significantly
enhanced the atmospheric storm surge at La Rochelle–La Pallice, which represented about 94% of the
Xynthia storm surge, the rest being induced by the regional wave setup [4]. This proportion depends
on the characteristics of the storm. For instance, for the Joachim storm (15 to 16 December 2011),
the relative contribution of the atmospheric storm surge to the surge was smaller (88%) (deduced from
the results of [4]), highlighting the non-negligible effect of the regional wave setup on surges in
such environments.

data.shom.fr
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3. Methods

Here, we first give a general explanation of the statistical downscaling weather type approach
(Section 3.1). Second, we describe the sensitivity tests made (e.g., on predictors selection, clustering
technique) to identify the optimal configuration for the proposed SD (Section 3.2). Third, we describe
the alternative predictive models (e.g., formers SD multiple linear regression and SD WT models)
whose performances are compared with the optimal model resulting from set-up sensitivity tests
(Section 3.3).

3.1. A Generalized Explanation of the Weather Type Approach

As already introduced (Section 1), the statistical downscaling weather types approach is based
on the establishment of a statistical relationship between regional atmospheric data, i.e., predictor,
and local response of a given marine variable (e.g., wave parameter and/or storm surge) which is the
target of study, i.e., predictand. Figure 3 illustrates the main steps. The arrows and numbers indicate the
flow and steps of the method, respectively. This figure is a generalization of the WT approaches applied
for the wave climate prediction [13], and combined wave and storm surge climate [12]. In what follows,
we detail each step, based on these past studies, while the application of this general framework to SS
prediction is detailed in Sections 3.2 and 4.1.J. Mar. Sci. Eng. 2019, 7, x FOR PEER REVIEW 7 of 23 
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indicate the main steps of the method. The p and p′ are the probabilities of each weather type (WT)
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functions of the predictand in the calibration and validation period, respectively.

Accordingly, with [12] this method is composed of the following steps: (1) collecting of historical
data for the predictor and predictand followed by pre-processing; (2) performing a regression-guided
classification (first, a multiple linear regression between predictand and predictor, and second,
a classification of the predictor and the estimations of the predictand); (3) defining the weather types
of the synoptic circulation conditions; (4) establishing the statistical relationship between predictor
and predictand (empirical distribution functions of SS are calculated for each WT); (5) validating the
statistical model or applying the model to different temporal periods.
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First, the pre-processing of predictor and predictand historical data need to be executed. For the
European Atlantic coast, former works [14,16,20] used as predictors variables SLP and SLPG fields
covering an area from 20◦ to 80◦ N and from 60◦ W to 50◦ E of the North Atlantic basin; while the
predictand data used were daily mean wave parameters and storm surge. The predictor’s domain area
was defined by the evaluation of source and travel time of wave energy reaching a local area (ESTELA)
method, which shows that for the most part, the wave energy that reaches the European coast takes
three days to travel from the genesis point [33,34].

Then, for the cases of wave climate prediction [12,13], the predictor is defined as the three-day
mean SLP and three-day mean SLPG, calculated every day through the historical time period.
Thus, the predictor associated with a certain day corresponds to the average obtained using the same
day and the previous two days. This process aims to reduce the dimensionality of the data and also
takes into account the time response between the atmospheric system and the consequent storm surge.
A principal components analysis (PCA) is applied to the predictor in order to reduce the dimensionality
of the data and simplify the classification process. From all the principal components (PCs) identified,
just the ones which together explain 95% of the data variance are selected [13].

Second, the regression-guided classification is performed. To start with, a multivariate regression
between predictors PCs and predictand daily data is developed, resulting in predicted marine variables.
The predicted data is then concatenated with the PCs in a new matrix, structured just as shown in
Figure 3, step 2 (for details on this procedure see [12]). Thus a K-means algorithm (KMA) is applied to
the concatenated matrix (step 3), dividing the data space into a number of clusters, each one defined by
a prototype and formed by the data for which the prototype is the closest [35]. The number of clusters
should be pre-defined, which is 100 in former studies applying this approach for the North Atlantic
region [12,13]. The maximum-dissimilarity algorithm (MDA) is performed to initiate the prototypes,
which guarantees a deterministic classification and the most representative initial subset. The level of
influence between atmospheric and marine variables (predictor and predictand, respectively) in the
classification is controlled by a weighting factor α [36]. In the case α = 0, an unsupervised multivariate
regression classification is applied; for α = ~0.5, a semi-supervised multivariate regression-guided
classification is applied; and for α = 1, a fully supervised classification is performed.

Still, in the third step, the WTs are calculated as the mean of the synoptic circulation conditions
(i.e., cluster center) included in each cluster of the regression-guided classification. The statistical
relationship between the predictor and the predictand is established in the fourth step: the empirical
probability distributions of daily local marine variables are calculated for each WT (fi), following
the equation in Figure 3, step 4, considering the probabilities (p) of each WT and their associated
distribution during a given calibration period. In the fifth step, given a validation period, the predictand
is predicted where pi is the probability of the WT in the validation period (WTi).

3.2. Procedure for Identifying the Best SD Using WT Approach Configuration

In order to set up a statistical downscaling model of SS for La Rochelle–La Pallice tidal gauge
station, we follow the general procedure (Figure 3) and first perform sensitivity tests to identify the
best configuration of the model (called SD1). The tests are done by varying each parameter presented
in Table 1, one at a time.

To evaluate the influence of different spatial domains of weather patterns, two predictor domains
were used (Figure 1): the North Atlantic (NA) and northeast Atlantic (NEA). Indeed, modeling
experiments suggest that the atmospheric storm surges at La Rochelle are driven by the NEA
meteorological patterns [5,37], while the regional wave setup is related to swells whose generation
domain extends to the NA domain [4]. The spatial resolution of the predictor is another important
factor in the downscaling technique. Thus, the CFRS (0.33◦) and CFRSv2 (0.22◦) data were linearly
interpolated at three different resolutions (0.5◦, 1◦, 2◦) in the predictor’s domain.

There is a time lag between the atmospheric condition and its local storm surge response,
which can vary on a scale of days [12,13,34]. As explained in Section 3.1, this is taken into account
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by calculating the X-day average predictor variable, calculated every day through the historical time
period. Thus, the predictor associated with a certain day corresponds to the average obtained using
the same day and the previous n days (X-day average = (certain day + n days)/(n + 1)). We tested
X = 2, 3, and 4 day-average as the predictor variable.

Table 1. The different set-ups were tested in the sensitivity analyses. The bold parameters are the
parameters used in the optimal model, SD1, after Section 4.1.

ID Test Parameter Values

Domain North Atlantic, Northeast Atlantic
Spatial Resolution 2◦; 1◦; 0.5◦

Number of Days Averaged for the Predictor Definition 2, 3, 4 days
Type of Clustering KMA, SOM

α 0.2, 0.6, 0.8, 1

Predictor Variable

Daily Min. SLP and Daily Max. SLPG;
Daily Min. SLP and Daily Max. WND,

Daily Mean GP,
Daily Max. GP,

In order to determine the weather types, a clustering technique is applied. For this purpose,
we tested the usual KMA approach and the so-called self-organizing maps (SOM) [38]. For evaluating
the effect of semi-supervised versus fully supervised classification on model performance, α parameter
values of 0.2, 0.6, 0.8, and 1 were tested. In all the cases tested, a number of 100 clusters was
pre-determined to start the clustering algorithm based on former studies using the WT approach for
the North Atlantic region [12,13].

Regarding the predictor variables, the most common approach is to use SLP and SLPG. However,
other atmospheric variables could be considered as relevant predictors for storm surges like wind
magnitude at 10 m above the sea surface (WND) and the geopotential height of the 500 hPa (GP).
Thus, we investigated the following predictor variables: daily minimum SLP and daily maximum
SLPG; daily minimum SLP and daily maximum WND; daily mean GP; daily maximum GP.

The model performances are evaluated in terms of root mean squared error (RMSE, Equation (1),
with n number of days), maximum absolute error (MAE, Equation (2)), and r-squared (R2, Equation (3)),
compared with the observed SS. The error indicators are calculated for every year and also averaged
over the five years of the validation period (RMSE, MAE, R2) and described as follows:

RMSE =

√√ n∑
i=1

(SSsimulated − SSmeasured)
2

n
(1)

MAE = max
{

n
i=1

∣∣∣SSsimulated − SSobserved
∣∣∣} (2)

R2 = 1−
∑
(SSsimulated − SSmeasured)

2∑
(SSmeasured − SSmeasured)

2 (3)

Thus, for each configuration, Table 1, the model is calibrated using 14-year-long data from the 15-year
dataset (2000 to 2014). The remaining one-year-long period is used for validation purposes, following a
leave-one-year-out cross-validation. This procedure is done for five individual years (K = 2010 to 2014).

3.3. Comparing the Best Model Configuration with Former Models

With the aim to compare the performance of the optimal model (SD1, Sections 3.2 and 4.1) with the
alternative prediction methods based on former approaches, several tests were performed (see Table 2).
For all the tests, we keep a spatial resolution of 1◦ in the NA domain and use the same validation
procedure as in Section 3.2.
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Table 2. Configuration of each model tested in sensitivity analyses.

ID Test Type of Model Predictor Predictand Calibration
Period

Validation
Period

Type of
Clustering Reference

SD2 Statistical multiple
linear regression model

Two-days mean of
daily mean SLP;

Two-days mean of
daily mean SLPG

Daily maximum
storm surge (SS)
observed at La

Rochelle–La
Pallice tide gauge

2000–2014
Leave-one
year-out

cross-validation
2010–2014

No clustering Cid et al (2017) [14]

SD3
Statistical downscaling
WT, semi-supervised

regression.

Two-days mean of
daily mean SLP;

Two-days mean of
Daily Mean SLPG

KMA
semi-supervised

(α = 0.6)

Camus et al (2016)
[12]

SD4
Statistical downscaling

WT, no supervised
regression

Two-days mean of
daily mean SLP;

KMA no guided
regression

Camus et al (2014)
[13]

IB Theoretical model - - - No clustering Inverse barometer
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The SD2 is a statistical downscaling model based on multiple linear regression [14]. It does not
estimate the statistical relation between classified weather types and the daily maximum surge level
(SS) but, instead, directly fits a multiple linear regression model between PCs of the atmospheric
predictor and SS. Thus, the daily maximum surge level at a given location (xi) holds as follows:

daily max. surge(xi, t) = ai + b1,i × PC(1)(xi, t) + b2,i × PC(2)(xi, t) + . . .+
bpn,i × PC(pn)(xi, t)

(4)

where pn is the number of PCs of atmospheric data that explains 95% of the variance, ai, b1,i, bn,i are the
coefficients obtained in the regression model. As the predictor, SD2 uses the two-day mean of daily
mean SLP and SLPG.

The SD3 and SD4 are weather type statistical downscaling methods based on semi [12] and
non-supervised classification [13], focused on combined wave and storm surge climate and on wave
climate predictions, respectively (see Figure 3, step 2). Here, these methods are adjusted to predict
the SS: the daily maximum observed storm surge is set as the predictand variable instead of the daily
average of wave parameters. As the predictor, SD3 and SD4 use the two-day mean of daily mean SLP
and SLPG.

The IB model (for inverse barometer) is based on the relation between local pressure variations
(∆PA in units) around the mean atmospheric pressure (PA in hPa) over the oceans and the local changes
in sea-level (∆ζ), expressed by Equation (5), where ρ is the salt-water density (kg/m3) and g is the
acceleration of gravity (9.8 m/s2).

∆ζ = −∆PA/ρg (5)

In the present study, the analysis of the local measurements at the meteorological station in La
Rochelle (Meteo France), provides a mean sea level pressure (PA = 1017 hPa).

Finally, it is important to remark that the comparison between the SD1 model and the alternatives
should not be seen as an absolute statement, but only as an estimation of the method skills for predicting
SS, on a site like La Rochelle–La Pallice.

4. Results

The results are described in the subsections below. First (Section 4.1), we present the results
regarding the comparison between different configurations of the SD using WT approach, following the
procedure explained in Section 3.2. Second (Section 4.2), the best model’s configuration is compared
with former models as described in Section 3.3. Third (Section 4.3), we compare the different WT
classifications performed by the optimal configuration and other WT based models (SD3 and SD4).

4.1. Comparing Different SD Based on WT Approach Configurations

The results of the sensitivity tests for different model set-ups for the five validation years (K = 2010
to 2014) are summarized in Figure 4, in terms of MAE. Similar results are reached by considering the
other performance criteria (Table A1). Each arch refers to a parameter tested, which was varied one at
a time with respect to the SD1 configuration (identified as the optimal model). Several observations
can be made.

First, the use of the North Atlantic domain (NA) shows better results (i.e., lower MAE) than
the northeast Atlantic domain (NEA). This highlights the importance of large-scale patterns in the
atmospheric predictor, since the NA domain does not only include the area of the atmospheric surge
genesis but also the swell generation zone which produces the regional wave-setup in the surrounding
of La Rochelle.

The 1◦ resolution has the best performance, showing that the relation between the error and
the spatial resolution is not monotonic: the highest resolution (0.5◦) leads to the largest error values
(RMSE = 0.09; MAE = 0.57 m; R2 = 0.69); and similarly, the coarser resolution (2◦) performs poorly
(RMSE = 0.08; MAE = 0.50 m; R2 = 0.77), as can be observed in Figure 4 and Table 1A in Appendix A.
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different set-ups of the sensitivity tests described in Table 1.

One possible explanation is that the increase in the predictor dimensionality can worsen the
performance of the clustering step, i.e., the identification of the WTs. This relies on the fact that PCA is
applied in this method to reduce the dimensionality of the dataset by removing redundant data in
means of variance in the spatial and temporal domain (e.g., strongly correlated data), thus allowing
the clustering algorithm to improve its performance. The predictor dimensionality is 1364, 5580,
and 21,894 for the 2◦, 1◦, and 0.5◦ spatial resolutions, respectively, which are transformed to 64, 82,
and 98 PCs, which explains 95% of the data variance. This shows that a higher resolution requires
more PCs to explain the same percentage data variability and that predictor dimensionality increases
with spatial resolution, but this does not imply better model performance. Indeed, for too high
resolution, there could remain too much redundant data (“noise”), while, for too low resolution, the
variability may not be sufficiently captured. Thus, there should be an optimal resolution for properly
describing the variance, but avoiding too much redundant data. In addition, we should highlight
that the local predictand (storm surge) is a response to the atmospheric conditions but also to local
bathymetry and coastal morphology. These local processes are not related to the synoptic circulation.
Therefore, the introduction of more detailed information about the atmospheric conditions does not
necessarily improve the skill of the downscaling method. Regarding the number of days used to define
the predictor, the model performance is improved by using the two-day average. This last aspect will
be discussed in more detail in Section 5.

Concerning the clustering process, the use of the KMA algorithm shows a better capability
than SOM to predict the daily maximum surge (further discussion in Section 5). Furthermore,
the fully supervised regression guided classification (α = 1) shows an outstanding improvement of the
predictions, principally in terms of MAE, when α increases, MAE decreases to 0.41 m (α = 1). The other
error metrics exhibit similar behavior, with RMSE (R2) decreasing (increasing) as α values increase
(leading to RMSE = 0.07 and R2= 0.78 for α = 1).

Finally, the combination of the two-day mean daily minimum SLP and two-day mean daily
maximum SLPG as predictors leads to the best surge predictions in La Rochelle. By using these
predictors, we account for both the intensity of the storms and their dynamics. This builds a more
heterogeneous dataset for the clustering process. This ensures the identification of the extreme weather
patterns responsible for the maximum storm surge at the coast.
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4.2. Performance Comparison with Alternative Prediction Approaches

The overall performance of the tested models is estimated by analyzing RMSE and MAE
(the averaged RMSE and MAE errors for the five validation years 2010 to 2014), as shown in
Figure 5. SD1 exhibits the best results (RMSE = ~0.07 m and MAE = ~0.4 m). Although SD2 exhibits
a similar RMSE, it presents a worse MAE (~0.55 m). SD3 shows similar results compared with SD2,
while SD4 and IB models exhibit the worst performances.J. Mar. Sci. Eng. 2019, 7, x FOR PEER REVIEW 12 of 23 
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To better illustrate the models’ performances, we analyze the different validation years separately.
For example, Figure 6 presents the results (observed and modeled SS time series, scatter plot,
and errors) for the 2010 validation year, which contains the maximum observed storm surge value
of ~1.5 m (Xynthia storm, 28 February 2010). For each model, the MAE corresponds to the error in
predicting the Xynthia SS. The optimal model (SD1) has the best fit with the measured data in terms of
RMSE = 0.07 m, MAE = 0.5 m and R2 = 0.8. The multiple linear regression model (SD2) also shows a
good approximation with similar values of RMSE (0.09 m) and R2 (0.7), but with a worse value of MAE
(1.08 m), corresponding to a 58 cm larger underestimation of the Xynthia SS. This reinforces that using
extreme daily predictor values (i.e., min SLP and max SLPG), with a fully supervised regression guided
clustering, can improve the prediction performance, in particular of the upper tail of the predicted
data distribution, i.e., rare and extreme events.

The inverse barometer model (IB) provides the worst results, as expected since this model only
computes the local variations in sea level pressure, ignoring the action of regional weather patterns,
wind stress, and waves. The SD4 model provides a better approximation than IB by including regional
atmospheric patterns, but it is not capable of properly representing the distribution of SS since the
weather pattern and predictand data are not directly linked statistically during the clustering step
(i.e., non-supervised classification). This is improved in the SD3 as this model clusters a concatenated
matrix composed of weather patterns (PCs) and predictand data, by applying a semi-supervised
classification (see Figure 3, step 3).
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Figure 6. Comparison of the performance of the different downscaling approaches described in Table 2.
Validation year: K = 2010.

4.3. Weather Types and Storm Surges in La Rochelle

The use of a fully supervised regression guided classification in the SD1 model has shown
good performance in identifying both regional and local synoptic patterns associated with average
and extreme events of storm surge at La Rochelle. This is illustrated in Figure 7, which shows
the daily minimum SLP fields associated with each of the 100 weather types classified during the
calibration period from the years 2000 to 2014 and validation period K = 2012. As observed, most of
the WTs are associated with positive surge daily maximum values, while few others have negative
surge values distributions, corresponding to the action of the high-pressure areas. It should be noted
that the Xynthia and Joachim storms fall in the weather types WT38 (red rectangle) and WT70
(green rectangle), respectively.

The atmospheric regional patterns can be identified as patterns that spread all over the domain
and, in some cases, exhibit centers of low and high pressure clearly defined by an accentuated SLP
gradient (e.g., WT2, WT11). On the other hand, there are patterns not so well defined (e.g., WT41,
WT86), which are usually related to more frequent events, and lower atmospheric gradient. Regarding
the local synoptic patterns, they can be easily recognized by the accentuated gradients and centers
of low and high sea level pressure covering an area from the United Kingdom to the Bay of Biscay
including the English Channel (e.g., WT51, WT25).

Observing Figure 8, which shows the SS distribution associated with the corresponding WT, it can
be seen that the highest storm surge values are linked with low-frequency weather types, with regional
(WT75, WT76) and local patterns (WT6, WT21). Sometimes these WTs occur only once over the whole
calibration period as in the case of the Xynthia storm (2010), represented by WT38 which looks like a
local storm. Note that the Joachim (2011) storm is also well represented by WT70, showing a regional
scale weather pattern, which highlights the model’s capability to recognize both regional and local
extreme storms.
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Figure 7. Daily minimum SLP associated with each of the 100 weather types of the SD1 model, using
a fully supervised regression classification. Calibration period: years from 2000 to 2014, excluding
2012, which is the validation period. WT38 and WT70 show the atmospheric pattern of the Xynthia
(red rectangle) and Joachim (green rectangle) storms, respectively.

This recognition is lost when compared with the WTs identified by SD3 and SD4 models, based on
the semi-supervised and non-guided regression classification approaches, respectively (see Section 4.2
and Appendix A, Figures A1–A4). In these cases, only the regional weather patterns are identified,
such that the model has a lower performance in classifying extreme events like Xynthia and Joachim as
unique or rare events. Instead, these storms are classified as part of other WT, with ordinary surge
responses, leading to an underestimated prediction.
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Figure 8. SD1 inferred distribution of daily maximum storm surge (SS) for each SD1 weather type
(Figure 7). The dashed red line refers to the value of 0 m. Calibration period: years from 2000 to 2014,
excluding 2012, which is the validation period. WT 38 and WT 70 contain the Xynthia (red rectangle)
and Joachim (green rectangle) storm surge responses in its associated distribution of SS.

5. Discussion

Here, our main findings are compared with former studies (see Section 1 for a description of the
main references). First (Section 5.1), we highlight the differences in the optimized SD configuration and
the key parameters responsible for its improvement in comparison with other models tested. Second
(Section 5.2), we describe the work’s main limitations, and also add a discussion about statistical and
numerical modeling.

5.1. Performance of the Optimized Statistical Downscaling

The optimized SD based on the WT approach (i.e., SD1) for predicting SS at La Rochelle–La Pallice
presents a boosted performance in comparison with the ones tested based on former works [12–14],
especially for extreme storm surges. This improvement relies on two main parameters combined in the
model setup, which are our main findings: the fully supervised classification (α = 1), and the predictor
(two-day mean of daily minimum SLP and two-day mean of daily maximum SLPG).

The fully supervised classification better distinguishes the WTs associated with the storms
responsible for the SS values than the semi or non-supervised approaches do (i.e., SD3 and SD4,
respectively). As a consequence, the predictions are improved. Accordingly to a previous work focused
on wave and storm surge climate predictions [12], the increment of the parameter α was already
suggested as a way to boost results of SDs using the WT framework, especially in areas with a significant
influence of local physical processes (e.g., embayed areas and closed seas). In the same study, the value
of α = 0.6 was defined as the best for the North Atlantic domain, being a good balance between a higher
model performance and the percentage of the explained predictand’s and predictor’s variance.
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Despite a similar performance, SD1 overcomes the multilinear regression model (SD2), especially in
terms of MAE. Based on [14,15,28], this difference may be related to the limitation of linear regression to
properly model the complex predictor–predictand mathematical relationship. In addition, SD1 enables
a direct identification of the WTs linked to the extreme storm surge events, while SD2 does not.

Comparing the SD1 model with SD models focusing on wave climate (SD3 and SD4), it is possible
to identify some similarities and differences in relation to the predictor configuration. The use of the
NA domain and its spatial resolution of 1◦ is in agreement with a former work [18]; however, the time
window used to define the predictor in the SD1 model relies on the two-day mean, while the SD wave
models are based on the three-day mean [13,18]. A possible explanation is the fact that the observed
SS at La Rochelle mainly results from the atmospheric surges, with a minor contribution from the
wave set-up. Indeed, the spin-up of storm surge numerical modeling on the NEA domain lasts one to
two days [5], while swells (i.e., the ones which significantly contribute to the regional wave setup)
need about three days to travel from the NE generation area to the European Atlantic coast [33,34].
Thus, the two-day duration appears as a compromise between these two components.

As in previous studies on weather-type based statistical downscaling for marine variables
prediction [12,13,18], we found that by using the K-means algorithm (KMA) initialized by the
maximum-dissimilarity algorithm (MDA), the clustering technique ensures a deterministic classification
and the most representative initial subset. This technique allows a good statistical representation of
the dataset for both average and extreme data. Despite SOM being a good algorithm for visualization
of the dataset, we found it was less efficient for statistical description, as also outlined by [39].

5.2. Limitations

Although the use of the above characteristics in our SD model has significantly boosted the
performance of the weather type statistical downscaling approach, it still has limitations. We worked
on one specific site only, La Rochelle, and tidal gauge station, La Rochelle–La Pallice, which has a
data availability limitation (only 15 years of continuous data). Thus, it would be interesting to apply
the proposed method to other locations and on different time windows, to investigate whether we
would reach the same conclusions, and if not, in which case it would differ. In addition, even if
improved, the quality of the SD1 prediction remains smaller than what can be expected with the DD
approaches. For instance, the numerical modeling study of water level for the Xynthia storm [4]
reproduces the daily maximum observed storm surge at La Rochelle–La Pallice tidal gauge station with
an error of ~12 cm, while the error of our SD1 model prediction is ~50 cm. It should be noted that this
level of precision (~12 cm) was reached after a significant amount of numerical model improvement
to fit the Xynthia storm surge (e.g., including the regional wave set-up, improving the wind stress
contribution by including the effect of wave on sea surface roughness). In addition to better precision,
such numerical modeling allows for the identifying of the respective contribution of the atmospheric
storm surge and wave setup to the storm surges. The numerical solution can thus provide an accurate
prediction but at the expense of a large computational time of hours/days, and better distinguish the
physical phenomena. However, SD approaches can perform a fast prediction (time computation of
minutes) about the most probable SS expected for a given day, hence rapidly providing useful indicators
for coastal risk assessment and management, and making feasible any probabilistic approaches as
implemented for wave forecasting for instance (see e.g., [17]).

Another complementary information is that, with the SD approaches, it is possible to account
for the different phenomena contributing to the storm surge (e.g., in locations where the wave setup
contribution is not negligible) in a single model, while DD requires the modeling of each phenomena’s
contribution to the surge, and thus to know which phenomena are potentially contributing to the
surges. Finally, SD approaches require only predictor and predictand data, while DD approaches
require atmospheric forcing data (wind and pressure), bathymetric data, seabed roughness data,
and sometimes wave conditions, but can predict storm surges anywhere. Both approaches are thus
highly complementary, which was also highlighted by [9] for waves.
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6. Conclusions

We implemented a statistical downscaling weather type approach for extreme storm surge
prediction at La Rochelle–La Pallice tidal gauge, with a focus on daily maxima. First, based on a
sensitivity analysis of the various parameters of the weather-type approach, we find that the model
configuration providing the best performance in SS prediction relies on a fully supervised classification
using minimum daily sea level pressure (SLP) and maximum SLP gradient, with 1◦ resolution in the
northeast Atlantic domain as the predictor. In comparison with the skills of former SDs, our model
leads to an improvement in storm surge prediction, especially for low-probability storms. For instance,
in the 2010 year, our model exhibits the smallest RMSE (0.07 m), while the prediction error of the
Xynthia storm surge is reduced by more than 0.5 m. This enhancement is mainly due to the use of
the fully supervised regression-guided classification and to the employment of a different predictor
(two-day mean of daily minimum SLP and two-day mean of daily maximum SLPG). This process
leads to a more detailed discretization of different types of storms that impact the region of La Rochelle,
being capable of identifying both regional and local weather types.
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Appendix A

Table A1. Average errors of the set-up sensitivity tests for the years 2010 to 2014.

ID Test Set-Ups RMSE (m) MAE (m) R2

Domain
North Atlantic 0.07 0.41 0.78

Northeast Atlantic 0.09 0.58 0.68

Spatial
Resolution

2◦ × 2◦ 0.08 0.50 0.77
1◦ × 1◦ 0.07 0.41 0.78

0.5◦ × 0.5◦ 0.09 0.57 0.69

Number of Days
averaged for the

Predictor Definition

2 0.07 0.41 0.78
3 0.08 0.53 0.73
4 0.09 0.58 0.65

Type of Clustering KMA 0.07 0.41 0.78
SOM 0.07 0.50 0.77

α

0.2 0.12 0.65 0.45
0.4 0.10 0.64 0.56
0.6 0.08 0.53 0.70
0.8 0.08 0.46 0.77
1 0.07 0.41 0.78

Predictor Variable

Daily Min. SLP and Daily Max. SLPG 0.07 0.41 0.78
Daily Min. SLP and Daily Max. WND 0.07 0.46 0.78

Daily Mean Geopotential 0.10 0.62 0.60
Daily Max. Geopotential 0.10 0.64 0.61

https://www.ecliseaproject.eu/
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Figure A2. SD3 inferred distribution of daily maximum storm surge (SS) for each SD3 weather type
(Figure A1). The dashed red line refers to a value of 0 m. Calibration period: years from 2000 to 2014,
excluding 2012, which is the validation period. WT 15 and WT 28 contain the Xynthia (red rectangle)
and Joachim (green rectangle) storm surge response in its associated distribution of SS.
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Figure A4. SD4 inferred distribution of daily maximum storm surge (SS) for each SD4 weather type
(Figure A3). The dashed red line refers to the value of 0 m. Calibration period: years from 2000 to 2014,
excluding 2012, which is the validation period. WT73 and WT 40 contain the Xynthia (red rectangle)
and Joachim (green rectangle) storm surge response in its associated distribution of SS.
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